

REUMass Amherst 2015 Data Science Bootcamp

Day 4: Unsupervised Learning

Prof. Ben Marlin marlin@cs.umass.edu

REUMASS Anherst 2015 pata science Bootcamp

Plan for Day 4:

- Clustering
- Dimensionality Reduction

REUMESS Finherst 2015 pala science Bootcamp 2015

Clustering

Definition: The Clustering Task

Given a collection of data cases $\mathbf{x}_i \in \mathbb{R}^D$, partition the data cases into groups such that the data cases within each partition are more similar to each other than they are to data cases in other partitions.

REUMASS AINHEIST 2015 Data science Bootcamp

Definition of a Partitioning

- Suppose we have *N* data cases $\mathcal{D} = \{\mathbf{x}_i\}_{i=1:N}$.
- A clustering of the N cases into K clusters is a partitioning of \mathcal{D} into K mutually disjoint subsets $\mathcal{C} = \{C_1, ..., C_K\}$ such that $C_1 \cup ... \cup C_K = \mathcal{D}$.

REUMASS FINHERST 2015 pata science Bootcamp 2015

Example: Gene Expression Data

REUMASS AINHEIST DO15 Data science Bootcamp

Example: Online Community Detection

REUMASS Anherst Dols Data science Bootcamp Dols

Example: Super Pixels

REUMESS FINHERST 2015 para science Bootcamp

The K-Means Algorithm

Suppose we let z_i indicate which cluster \mathbf{x}_i belongs to and $\mu_k \in \mathbb{R}^D$ be the cluster centroid/prototype for cluster k. The two main steps of the algorithm can then be expressed as follows:

$$\mu_k = \frac{\sum_{i=1}^{N} [z_i = k] \mathbf{x}_i}{\sum_{i=1}^{N} [z_i = k]}$$

REUMASS FINHERST DO 15 pata science Bootcamp

The K-Means Algorithm

■ The K-Means algorithm attempts to minimize the sum of the within-cluster variation over all clusters (also called the within-cluster sum of squares):

$$C^* = \arg\min_{C} \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{\mathbf{x}_i, \mathbf{x}_j \in C_k} ||\mathbf{x}_i - \mathbf{x}_j||_2^2$$

REUMASS AINHEIST DO 15 Data science Bootcamp

Dimensionality Reduction

Definition: The Dimensionality Reduction Task

Given a collection of feature vectors $\mathbf{x}_i \in \mathbb{R}^D$, map the feature vectors into a lower dimensional space $\mathbf{z}_i \in \mathbb{R}^K$ where K < D while preserving certain properties of the data.

REUMASS AINHERST 2015 Data science Bootcamp 2015

Example: Image Manifolds

REUMASS AINHERST 2015 Data science Bootcamp 2015

Example: Digits

REUMESS FINHERST 2015 pata science Bootcamp 2015

Linear Dimensionality Reduction

REUMESS FINHERST DOLLS Data science Bootcamp

Linear Dimensionality Reduction

One possible learning criteria is to minimize the sum of squared errors when reconstructing X from Z and B. This leads to:

$$\underset{\mathbf{Z},\mathbf{B}}{\operatorname{arg\,min}} ||\mathbf{X} - \mathbf{Z}\mathbf{B}||_F$$

where $||\mathbf{A}||_F$ is the Frobenius norm of matrix \mathbf{A} (the sum of the squares of all matrix entries).

REUMESS FINHERST 2015 pata science Bootcamp

Principal Components Analysis

Under the assumption that the matrix B is orthonormal, we obtain a classical method called *Principal Components Analysis* where the basis elements correspond to directions of maximum variation in the data.

REUMESS Finherst 2015 pata science Bootcamp

Sparse Coding

Under the additional constraint that the rows of Z are sparse, we obtain a method called *Sparse Coding*:

$$\min_{\mathbf{Z},\mathbf{B}} ||\mathbf{X} - \mathbf{Z}\mathbf{B}||_F - \lambda ||\mathbf{Z}||_1$$

such that
$$||B_k||_2 = 1$$
 for all k

REUMASS Amherst 2015 pata science Bootcamp 2015

Sparse Coding

REUMESS FINHERST DO 15 Data science Bootcamp

Multi-Dimensional Scaling

- MDS is a non-linear dimensionality reduction method that is explicitly designed to minimize the distortion in the pairwise distances between points when projecting them into a low dimensional embedding.
- Least-squares MDS learns the embeddings \mathbf{z}_i by minimizing the following objective function, known as the *stress* function:

$$\min_{\mathbf{z}_1,...,\mathbf{z}_N} \sum_{i < i} (d_{ij} - ||\mathbf{z}_i - \mathbf{z}_j||_2)^2$$

REUMASS AINHERST DO 15 Data science Bootcamp

ISOMAP

Isometric feature mapping (Isomap) is a non-linear dimensionality reduction method that is designed to minimize the distortion in geodesic distances on a manifold when projecting them into a low dimensional embedding.

