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REUMass Amherst 2015
Data Science Bootcamp

Day 4: Unsupervised Learning

Prof. Ben Marlin
marlin@cs.umass.edu
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Plan for Day 4:

* Clustering
* Dimensionality Reduction
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Cluste ring
Definition: The Clustering Task

Given a collection of data cases x; € R”, partition the data cases into
groups such that the data cases within each partition are more similar
to each other than they are to data cases in other partitions.
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Deﬁnltlon of a Partitioning

m Suppose we have N data cases D = {X; };—1.n.

m A clustering of the N cases into K clusters 1s a partitioning of D
into K mutually disjoint subsets C = {Cj, ..., Cg} such that
CiU...UCg =7D.
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Guatemala

Learn more online at:
http://dhimmel.com
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The K-Means Algorithm

Suppose we let z; indicate which cluster x; belongs to and 1, € R” be
the cluster centroid/prototype for cluster k. The two main steps of the
algorithm can then be expressed as follows:

zi = arg min | — xi| |5

va_l[ = k|x;
Zi:l[zi = k|

2 T
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The K-Means Algorithm

m The K-Means algorithm attempts to minimize the sum of the
within-cluster variation over all clusters (also called the
within-cluster sum of squares):
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Given a collection of feature vectors x; € RP, map the feature vectors
into a lower dimensional space z; € R® where K < D while
preserving certain properties of the data.

high-dim distribution high-dim samples estimated manifold
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Linear Dimensionality Reduction
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Linear Dimensionality Reduction

m One possible learning criteria is to minimize the sum of squared
errors when reconstructing X from Z and B. This leads to:

arg min || X — ZB||£
Z.B

where ||A||F is the Frobenius norm of matrix A (the sum of the
squares of all matrix entries).
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Prmapal Components Analysis

Under the assumption that the matrix B is orthonormal,

we obtain a classical method called Principal Components
Analysis where the basis elements correspond to directions
of maximum variation in the data.
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Sparse Coding

Under the additional constraint that the rows of Z are
sparse, we obtain a method called Sparse Coding:

min [|X — ZB]|r — AJ|Z];

such that ||B;||, = 1 for all k
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Multi-Dimensional Scaling

m MDS is a non-linear dimensionality reduction method that 1s
explicitly designed to minimize the distortion in the pairwise
distances between points when projecting them into a low
dimensional embedding.

m Least-squares MDS learns the embeddings z; by minimizing the
following objective function, known as the stress function:

min Y (dj — ||z — zj[|2)’

Zy,...,ZN
1<Jj
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ISOMAP

m [sometric feature mapping (Isomap) 1s a non-linear
dimensionality reduction method that 1s designed to minimize
the distortion in geodesic distances on a manifold when
projecting them into a low dimensional embedding.
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