
Graphical	
  Models

Lecture	
  5:	
  	
  

Template-­‐Based	
  Representa:ons
Andrew	
  McCallum

mccallum@cs.umass.edu

Thanks	
  to	
  Noah	
  Smith	
  and	
  	
  Carlos	
  Guestrin	
  for	
  some	
  slide	
  materials.1



Administra:on

• Homework	
  #3	
  won’t	
  go	
  out	
  un:l	
  early	
  March.
Push	
  back	
  HW#2	
  due	
  date?

• Lagrange	
  Mul:pliers?

• Calendar.
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“Unrolled”	
  Ground	
  Network
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BNB1 B2 …

Ground	
  network



Students	
  and	
  their	
  Grades

B

A

N

Example:	
  	
  A	
  =	
  student,	
  B	
  =	
  grade



Student,	
  Course,	
  Grade,	
  Difficulty

B

A1

N

A2

T

Nes:ng

Example:	
  	
  A1	
  =	
  course	
  difficulty,	
  A2	
  =	
  student	
  ap:tude	
  for	
  the	
  area,	
  B	
  =	
  grade

Each	
  student	
  takes	
  only	
  one	
  course



Student,	
  Course,	
  Grade,	
  Difficulty

B

A1

N

A2

T

Intersec:ng

Example:	
  	
  A1	
  =	
  assignment	
  difficulty,	
  A2	
  =	
  intelligence,	
  B	
  =	
  grade

Mul:ple	
  courses	
  per	
  student



Plate	
  Models:	
  
Limita:ons	
  and	
  Alterna:ves

• Limita:ons:
– can’t	
  have	
  edges	
  between	
  two	
  “copies”	
  of	
  the	
  same	
  variable,	
  
(e.g.	
  posi%on	
  a	
  :me	
  t	
  depends	
  on	
  posi%on	
  at	
  :me	
  :me	
  t-­‐1)

– can’t	
  have	
  edges	
  between	
  par:cular	
  pairs	
  selected	
  by	
  some	
  
other	
  rela:on,	
  (e.g.	
  Genotype(U1)	
  depends	
  on	
  Genotype(U2),	
  
where	
  U2	
  is	
  mother	
  of	
  U1.

• Alterna:ves
– Dynamic	
  Bayesian	
  Networks	
  (DBNs)

• Specific	
  to	
  repe::ons	
  over	
  :me

– Probabilis:c	
  rela:onal	
  models
• More	
  flexible;	
  see	
  K&F	
  6.4.2.



Temporal	
  Models

• X	
  takes	
  different	
  values	
  at	
  each	
  (discrete)	
  
:me	
  step.
– X(t)	
  is	
  the	
  random	
  variable	
  at	
  :me	
  t

• Markov	
  Assump:on:	
  	
  
X(t+1)	
  ⟂ {X(0),	
  …,	
  X(t-­‐1)}	
  |	
  X(t)

• Sta:onary	
  Assump:on	
  (aka	
  %me	
  invariant	
  or	
  homogeneous)	
  
P(X(t+1)	
  |	
  X(t))	
  is	
  the	
  same	
  for	
  all	
  t.

• Can	
  use	
  condi%onal	
  Bayesian	
  network	
  to	
  define	
  
P(X(t+1)	
  |	
  X(t))



Hidden	
  Markov	
  Model

O’

S’S

2-­‐$me-­‐slice	
  condi&onal	
  BN

O(1)

S(1)S(0)

O(2)

S(2)

O(3)

S(3)

unrolled	
  or	
  ground	
  Bayesian	
  network

…

Time	
  slice
t+1

Time	
  slice
t



Dynamic	
  Bayesian	
  Network

• Bayesian	
  network	
  over	
  X(0),	
  
condi:onal	
  Bayesian	
  network	
  for	
  X(t+1)	
  given	
  X(t)	
  
(2-­‐:me-­‐slice)
– HMM	
  is	
  a	
  special	
  case.

– Kalman	
  filter	
  (linear	
  dynamical	
  system)	
  is	
  a	
  special	
  
case.



Example:	
  DBN	
  for	
  vehicle	
  posi:on
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Failure
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Time	
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Example:	
  DBN	
  for	
  vehicle	
  posi:on
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Weather0

Velocity0

Loca:on0

Failure0

Weather1

Velocity1

Loca:on1

Failure1

Observ1

Unrolled	
  over	
  3	
  steps

Observ0

Weather2

Velocity2

Loca:on2

Failure2

Observ2

Weather3

Velocity3

Loca:on3

Failure3

Observ3

Facto
r	
  tem

plate



Dynamic	
  Bayesian	
  Networks

O’

Si’Si

Factorial	
  HMM

K O1’

S1’S1

Coupled	
  HMM

O1’

S1’S1

Oi’

S’S

Pair	
  HMM 2



Probabilis:c	
  Rela:onal	
  Models

• Con:ngent	
  Dependency
– specifies	
  the	
  context	
  in	
  which	
  some	
  dependency	
  
holds,	
  with	
  a	
  “guard”––a	
  formula	
  that	
  must	
  hold	
  
for	
  the	
  dependency	
  to	
  be	
  applicable.

– e.g.	
  Loca:on(V)	
  depends	
  on	
  Loca:on(U)
con:ngent	
  on	
  Precedes(U,V)

– e.g.	
  Genotype(V)	
  depends	
  on	
  Genotype(U)
con:ngent	
  on	
  Mother(U,V)

• Rela:onal	
  Uncertainty	
  (one	
  kind	
  of	
  structural	
  uncertainty)
– The	
  “guard”	
  predicates	
  are	
  random	
  variables!
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Object	
  Uncertainty

• The	
  set	
  of	
  objects	
  is	
  not	
  predetermined.
– Get	
  list	
  of	
  authors	
  in	
  100	
  BibTeX	
  files.
“Stuart	
  Russell”	
  	
  “Stuart	
  Rusell”	
  	
  “S.	
  Russell”
How	
  many	
  people	
  are	
  men:oned?

• Introduce	
  
person-­‐objects	
  (represents	
  en:ty)
person-­‐reference	
  objects	
  (represents	
  men:on)
refers-­‐to(m,o)	
  rela:on

• Model	
  generates	
  (a)	
  #	
  of	
  people,	
  (b)	
  person	
  
objects,	
  (c)	
  their	
  reference	
  objects.
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[Milch	
  et	
  al	
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Directed	
  Factor	
  Graph	
  Nota:on

[Laura	
  Dietz	
  2010]
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Variables	
  and	
  Constants

19

notation [5], which depicts the factorization of the joint distribution. It pro-
vides a flexible visual notation with clear semantics for probabilistic models,
such as the unified modelling language (UML [6]) provides for software.

Factor graphs are undirected. However in generative models, the factors
are usually members of the exponential family and are used with their re-
spective conjugate priors. Distributions in the exponential family, such as
Gaussian, multinomial, and beta-Bernoulli distinguish between input param-
eters of the distribution and random variables drawn from this distribution
(output variables). This input-output relationship is visualized by introduc-
ing directed edges to the factor graph. For many models, the directed factor
graph is as expressive as the generative process in pseudocode notation.

Outline. The visual notation is introduced in Section 2. Examples of how
models translate to directed factor graph notation are given in Section 3,
with benefits dicussed. The paper concludes in Section 4.

2 Notation

In this section, we introduce the graphical primitives and how they relate to
probabilistic concepts.

2.1 Variables and Constants

The factor graph consists of two kinds of nodes: variables and factors. Vari-
ables are depicted by a circle, which is shaded in the case of observed vari-
ables. Constants or hyperparameters are denoted without border.

Directed factor graph Pseudocode
Llatent

variable /
latent

parameter

var

Observed
variable

obs

Constant /
hyper

parameter
const

2



Factors	
  and	
  Densi:es

20

2.2 Factors and Densities

Factors are depicted by small filled boxes. The name of the density is written
next to the box. Input parameters and output variables are connected by
edges, with an arrow pointing towards the output variable.

Directed factor graph Pseudocode

Factor
with one

input
parameter

in
Density

out 1: draw out ∼ Density(in)

Example:
Gaussian µ

σ

N
x

1: draw x ∼ N (µ, σ)

2.3 Replication with Plates

If variables or factors are to be repeated, plates provide a notation for this.
A template of variables, factors and connections that is to be iterated over,
is placed inside the plate. Text in the lower right corner indicates how many
replicas are created. Specifying an iteration variable induces an index for the
repeated variables. Connections across the plate border represent multiple
connections between each replica and the variable/factor outside the plate.

Directed factor graph Pseudocode

Plate

global
Density

var

∀i ∈ {1..N} 1: for all ∀i ∈ {1..N} do
2: draw vari ∼global

Example:
repeated
Gaussian

µ

σ

N
x

∀i ∈ {1..N} 1: for all ∀i ∈ {1..N} do
2: draw xi ∼ N (µ, σ)

3



Replica:on	
  with	
  Plates
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2.2 Factors and Densities

Factors are depicted by small filled boxes. The name of the density is written
next to the box. Input parameters and output variables are connected by
edges, with an arrow pointing towards the output variable.

Directed factor graph Pseudocode

Factor
with one

input
parameter

in
Density

out 1: draw out ∼ Density(in)

Example:
Gaussian µ

σ

N
x

1: draw x ∼ N (µ, σ)

2.3 Replication with Plates

If variables or factors are to be repeated, plates provide a notation for this.
A template of variables, factors and connections that is to be iterated over,
is placed inside the plate. Text in the lower right corner indicates how many
replicas are created. Specifying an iteration variable induces an index for the
repeated variables. Connections across the plate border represent multiple
connections between each replica and the variable/factor outside the plate.

Directed factor graph Pseudocode

Plate

global
Density

var

∀i ∈ {1..N} 1: for all ∀i ∈ {1..N} do
2: draw vari ∼global

Example:
repeated
Gaussian

µ

σ

N
x

∀i ∈ {1..N} 1: for all ∀i ∈ {1..N} do
2: draw xi ∼ N (µ, σ)

3



Nested	
  Plates

22

Directed factor graph Pseudocode

Nested
plates

µ

σ

N
x

∀i ∈ {1..N}

∀k ∈ {1..K} 1: for all ∀k ∈ {1..K} do
2: for all ∀i ∈ {1..N} do
3: draw xk,i ∼ N (µk, σ)

2.4 Conditioning with Gates

If depending on the configuration of a variable, the model should do some-
thing slightly different, this can be represented by gates [4]. In contrast to a
plate which represents replication, gates represent selection. Analogously to
plates, a structural template of variables and factors is placed inside the gate.
Text in the upper right corner of the gate specifies under which condition
the structural template becomes active. Input variables to the conditions
are attached to the gate boundary. Several gates of which only one may be
active are placed adjacently to each other.

Whenever the generative pseudocode contains if-then-else or case con-
structs or a latent variable is used as an index, the analogue in directed
factor graphs is a gate.

Directed factor graph Pseudocode

Unrolled
boolean

gate

θ1

f

x

θ2

g

c = 1

c = 0
c

1: if c = 1 then
2: draw x ∼ f(θ1)
3: else
4: draw x ∼ g(θ2)

If the gate is nested inside a plate, the plate replicates the gate and the
condition may depend on the iterator variable of the plate as well. This is
particularly useful, for instance, when the control variable is drawn from a
multinomial and different input parameters are used for each possible out-
come.

4



Condi:oning	
  with	
  Gates
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Directed factor graph Pseudocode

Nested
plates

µ

σ

N
x

∀i ∈ {1..N}

∀k ∈ {1..K} 1: for all ∀k ∈ {1..K} do
2: for all ∀i ∈ {1..N} do
3: draw xk,i ∼ N (µk, σ)

2.4 Conditioning with Gates

If depending on the configuration of a variable, the model should do some-
thing slightly different, this can be represented by gates [4]. In contrast to a
plate which represents replication, gates represent selection. Analogously to
plates, a structural template of variables and factors is placed inside the gate.
Text in the upper right corner of the gate specifies under which condition
the structural template becomes active. Input variables to the conditions
are attached to the gate boundary. Several gates of which only one may be
active are placed adjacently to each other.

Whenever the generative pseudocode contains if-then-else or case con-
structs or a latent variable is used as an index, the analogue in directed
factor graphs is a gate.

Directed factor graph Pseudocode

Unrolled
boolean

gate

θ1

f

x

θ2

g

c = 1

c = 0
c

1: if c = 1 then
2: draw x ∼ f(θ1)
3: else
4: draw x ∼ g(θ2)

If the gate is nested inside a plate, the plate replicates the gate and the
condition may depend on the iterator variable of the plate as well. This is
particularly useful, for instance, when the control variable is drawn from a
multinomial and different input parameters are used for each possible out-
come.

4

Minka	
  &	
  Winn	
  2008



Plates	
  &	
  Gates	
  (and	
  implicit	
  combo)
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Algorithm 1 Generative process of latent Dirichlet allocation.
1: for all M documents do
2: draw θ ∼ Dir(α)
3: for all of the N words wn do
4: draw a topic zn ∼ Multi(θ)
5: draw a word wn ∼ Multi(βzn)

For brevity, the plate around the single-box gate may be dropped when
the iteration range is obvious. In cases, where the control variable itself
is used to index the input variables, the gate condition description may be
dropped as well.

Directed factor graph Pseudocode

Replicated
gate

c

Multi

d = c

∀c

θ

∀d

x

1: draw x ∼ Multi(θc)

Implicit
notation

for
replicating

gates

c

Multi
θ

∀c

x

1: draw x ∼ Multi(θc)

3 Examples

The classical alternative are boiler plate diagrams, which do not explicitly
name factors and usually do not use the gates notation.

Recent trends in generative models use different connections in the model

5
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Latent	
  Dirichlet	
  Alloca:on
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Plate diagram Directed factor graph

α

θ

z β

w

N

M

cf. [7], Figure 1

α

Dirich

θ

Multi

z

Multi

k = z

β

k

w

N

M

Figure 1: The latent Dirichlet allocation model as boiler plate diagram (left),
directed factor graph (right).
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[Blei,	
  Ng,	
  Jordan]


