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Causality described

Causal assumptions

Causal discovery
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“The paradigmatic assertion in causal relationships
is that manipulation of a cause 

will result in the manipulation of an effect...

Probabilistic causation:

∃x, x� P (Y = y|do(X = x)) > P (Y = y|do(X = x�))
(Pearl 2000)

(Cook & Campbell 1979)

Causation implies that
by varying one factor,

I can make another vary.”

Causation
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Associational vs. Causal Models

Prediction

Action

Explanation

Association

Causation
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Association underdetermines Causation

Direction

Common Causes

Common Effects
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Propositional data representation

movie budget gross genre year

Goodfellas 25M 47M crime 1990

My Cousin 
Vinny

11M 64M comedy 1992

... ... ... ... ...

Clue 15M 15M comedy 1985

• Independent 

• Identically distributed

6
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Movie

Directed Acyclic Graph

(Pearl 1988; 2000)

• Random variables 
V = {year, genre,budget, gross}

genre ⊥⊥ gross | budget
• Conditional independencies

e.g., 

7

• Joint probability distribution
p(V ) = p(year)p(genre)p(budget|genre)p(gross|budget, year)

budget

year genre

gross
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Structure learning paradigms 
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Search-and-score: Perform global search across 
model space, select one with highest likelihood

Constraint-based: Run local tests of independence to 
create constraints on space of possible models
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Structure learning paradigms 

9

Pros Cons

S&S
• Approximates joint distribution
• Smooth/Bayesian (not prone to 

unstable errors)

• Computationally intensive (NP-hard)
• No theoretical guarantees
• May choose single model from 

equivalence class

CB

• Separates structure learning from 
parameter estimation

• Directly learns conditional 
independence relations

• Provably correct
• Can be efficient
• Extensible to other new operations

• Individual errors may propagate
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Causal Assumptions
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Causal sufficiency

11
(Spirtes, Glymour, Scheines 1993; 2001)

V is causally sufficient if and only if
for all potential causal dependencies �X, Y � ∈ V × V,
all common causes are measured and included in V

X Y

Z
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Causal Markov condition

12
(Spirtes, Glymour, Scheines 1993; 2001)

Given that V is causally sufficient,
P is Markov to G if and only if

each variable X ∈ V is conditionally independent
of its non-effects given its direct causes

X

DC DC

E E

NE

NE

NE

NE

NE

E
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Faithfulness

13
(Spirtes, Glymour, Scheines 1993; 2001)

P is faithful to G if and only if
there exist no conditional independencies in P

not entailed by the causal Markov condition on G

X

Y

Z
+

+

_

Monday, May 2, 2011



SGS

14
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Movie

The SGS algorithm

Phase I

Skeleton identification

Determine set of conditional 
independencies among all 

variables

(Spirtes, Glymour, Scheines 1993; 2001)
15

budget

year genre

gross
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budget ⊥⊥ year ?

Movie

The SGS algorithm
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Skeleton identification

Determine set of conditional 
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(Spirtes, Glymour, Scheines 1993; 2001)
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Movie

The SGS algorithm

Phase I

Skeleton identification

Determine set of conditional 
independencies among all 

variables

(Spirtes, Glymour, Scheines 1993; 2001)

genre ⊥⊥ gross | budget ?

15

budget

year genre

gross
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Conditional independence
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YX

X ⊥⊥ Y | W, Z /∈ W

Z

X Y

Z

X Y
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Phase II

Edge orientation

Apply rules to uniquely 
determine causal structure 
consistent with patterns of 
association from Phase I

The SGS algorithm

Movie

17

budget

year genre

gross
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Phase II

Edge orientation

Apply rules to uniquely 
determine causal structure 
consistent with patterns of 
association from Phase I

The SGS algorithm

Movie

17

budget

year genre

gross
Constraints In Constraints Out

Collider Detection Rule

X Y

Z Z

X Y

Monday, May 2, 2011



Movie

The SGS algorithm

Phase II

Edge orientation

Apply rules to uniquely 
determine causal structure 
consistent with patterns of 
association from Phase I

year ⊥⊥ budget | {W}
gross /∈ W

18

budget

year genre

gross
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Movie

The SGS algorithm

Phase II

Edge orientation

Apply rules to uniquely 
determine causal structure 
consistent with patterns of 
association from Phase I

year ⊥⊥ budget | {W}
gross /∈ W

18

year

budget

genre

grossgross

Monday, May 2, 2011



Movie

The SGS algorithm

Phase II

Edge orientation

Apply rules to uniquely 
determine causal structure 
consistent with patterns of 
association from Phase I

18

year

budget

genre

grossgross
Constraints In Constraints Out

Known Non-Colliders Rule

Constraints In Constraints Out

Cycle Avoidance Rule

X Y

Z

X Y

Z

X Y

Z
1

Z
k

Y

Z
1

Z
k

X

Constraints In Constraints Out

Collider Detection Rule

X Y

Z Z

X Y
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Movie

The SGS algorithm

Phase II

Edge orientation

Apply rules to uniquely 
determine causal structure 
consistent with patterns of 
association from Phase I

SGS correctly identifies a class of 
statistically indistinguishable causal models

19

budget

year genre

gross
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PC
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Movie

The PC algorithm

Phase I

Skeleton identification

Determine set of conditional 
independencies among all 

variables

(Spirtes, Glymour, Scheines 1993; 2001)
21
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Other propositional algorithms

• Relax/decompose faithfulness condition

• Conservative PC (CPC) (Ramsey, Zhang, Spirtes 2006)

• Remove causal sufficiency assumption

• Causal Inference (CI)

• Fast Causal Inference (FCI) (Spirtes, Glymour, Scheines 1993; 2001)

• Practical modifications

• Modified PC (Abellan, Gomez-Olmedo, Moral 2006)

• POWER (Fast, Hay, Jensen 2008)

• Hybrid algorithms

• MMHC (Tsamardinos, Brown, Aliferis 2006)

• RELAX (Fast 2009)

22
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RPC
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Relational data
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Relational database

movie 
id movie budget gross genre

1 Goodfellas 25M 47M crime

2
My Cousin 

Vinny 11M 64M comedy

... ... ... ...

movie id director id

1 1

2 2

... ...

director id director

1 Martin 
Scorsese

2
Jonathan 

Lynn

... ...

movie id actor id

1 1

2 2

... ...

actor id actor

1 Robert De 
Niro

2 Joe Pesci

... ...

26
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Relational data representation
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Studio

Director Actor

Directs
Stars-In

Releases

Critic

Rates

Movie
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Directed Acyclic Probabilistic 
Entity-Relationship (DAPER) Model

DIRECTOR

MOVIE

DIRECTS

Dir. Age
Budget

Gross

Genre

(Heckerman, Meek, Koller 2007)
28
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DAPER ground graph

Jonathan Lynn

DIRECTS

Dir. Age

DIRECTS

Dir. Age

Clue

Budget

Gross

Genre

My Cousin Vinny

Budget

Gross

Genre

Martin Scorsese
DIRECTS

Dir. Age

Goodfellas

Budget

Gross

Genre

DIRECTS

Dir. Age
Casino

Budget

Gross

Genre

DIRECTS

Dir. Age

The Departed

Budget

Gross

Genre
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Relational PC

PC

Relational extension of PC

(Maier, Taylor, Oktay, Jensen 2010)
30
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Consequences of relational data

31

[Movie].budget

MODE([Movie Directs Director Directs Movie]).genre

COUNT([Movie Stars-In Actor])

EXISTS([Rates])

Movie

Studio

Director Actor

Directs
Stars-In

Releases

Critic

Rates

1. Increased space of potential dependencies

• Variables from multiple entities and relationships

• Aggregates

• Structural variables

2. New constraints derived from relationship existence
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Evaluating causal algorithms

RPC

32

1. Higher power yields more dependencies.

2. Chain reactions occur.

3. At best, identifies the class of statistically 
indistinguishable models.
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DIRECTOR

MOVIE
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Causal Model of MovieLens
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Relational
Blocking
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Relational blocking defined

• Let A and B be two entity sets in a k-partite network

• A block contains a set of B entities linked to a common A entity

• Let ID be the unique identifier of a block, and let X and Y be 
two attributes of B

• Relational blocking is a process that evaluates 

       by grouping  B entities into disjoint blocks

X ⊥⊥ Y | ID

(Rattigan, Maier, Jensen 2011)
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0 4
4 2

X=0 1

Y=0

1

Z = + 

1 0
0 4

X=0 1

Y=0

1

Z = - 
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1 1
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1
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0 1
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1 0
0 4

X=0 1

Y=0

1

A3 

Conditioning Blocking

A1 +

B1 0 1

B5 1 0

B2 1 0

B3 1 1

B4 1 0

A2 +

B6 1 0

B8 0 1

B10 0 1 B9 1 1

B7 0 1

A3 -

B11 1 1

B14 1 1

B15 1 1

B12 0 0

B13 1 1

Blocking vs Conditioning

p=0.009 p=0.033
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Latent common causes
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Common effects
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D-separation

A
Z

B
X Y

(a)

A
Z

B
X Y

(b)

A
Z

B
X Y

(d)

IDA
A IDA Z

B
X Y

(e)
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A
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B
X Y

(c)

IDA

A
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B
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(a)

A
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B
X Y

(b)

A
Z

B
X Y

(d)

IDA
A IDA Z

B
X Y

(e)

H

A
Z

B
X Y

(c)

IDALet X, Y, and W be three disjoint sets of vertices in DAG G.
Let Det(V) be the set of all variables determined by V.
Then, X and Y are d-separated by W if and only if
for all undirected paths P between X and Y either

(1) ∃v ∈ colliders(P ) such that v ∧ descendants(v) /∈ W or
(2) ∃v ∈ noncolliders(P ) such that v ∈ Det(W).
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Example of relational blocking

(Rattigan, Maier, Jensen 2010)

Domain: Wikipedia

Question: Do “many eyes” cause quality?

Treatment: Number of distinct editors

Outcome: Assessed quality

PAGE

Q

EDITS

USER

?

PROJECT

ADOPT

40
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PAGE

Q

EDITS

USER

Example of relational blocking

(Rattigan, Maier, Jensen 2010)

Domain: Wikipedia

Question: Do “many eyes” cause quality?

Treatment: Number of distinct editors

Outcome: Assessed quality

41

?

PROJECT

ADOPT

Constraints In Constraints Out

Relational Blocking Design

B

X

?

A

R

Y

X � Y

Y � X
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QEDs
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Quasi-Experimental Design
• Techniques developed and used by social scientists

• Provide causal conclusions

• Devise local hypothesis tests

• Enabled by temporal and                             
relational representation

• Lack a formalization

(Cook & Campbell 1979; 
Shadish, Cook, Campbell 2002)

43

• Relational blocking: twin study, matching design 

• Temporal blocking: interrupted time series design, 
non-equivalent control group design
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(Oktay, Taylor, Jensen 2010)

Domain: Stack Overflow

Question: Do badges influence participation?

Treatment: User receives “epic” badge

Outcome: Posting frequency over time

Example of temporal blocking

POST
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(Oktay, Taylor, Jensen 2010)

Domain: Stack Overflow

Question: Do badges influence participation?

Treatment: User receives “epic” badge

Outcome: Posting frequency over time

Example of temporal blocking

Constraints In Constraints Out

Temporal Blocking Design

t0t− t+

�X

Y X → Y
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Thank you!
Questions?

maier@cs.umass.edu
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