Graphical Models

Causality

Marc Maier April 28, 2011

Topics

Causality described

Causal assumptions

Causal discovery

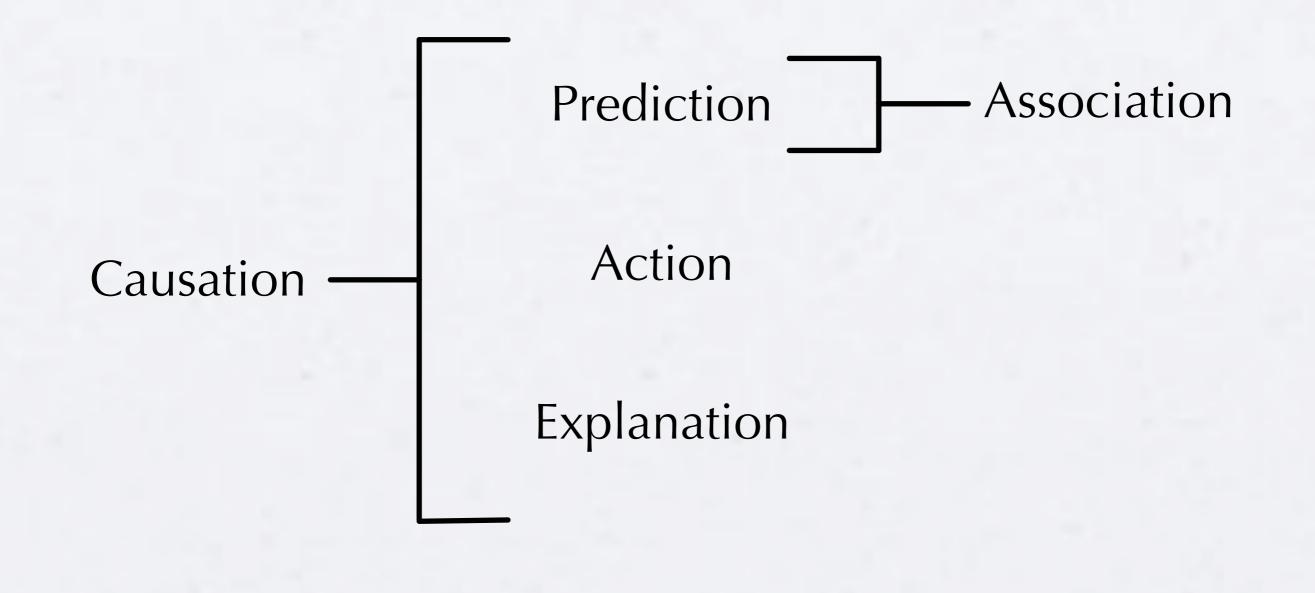
Causation

"The paradigmatic assertion in causal relationships is that manipulation of a cause will result in the manipulation of an effect... Causation implies that by varying one factor, I can make another vary." (Cook & Campbell 1979)

Probabilistic causation:

 $\exists x, x' \ P(Y = y | do(X = x)) > P(Y = y | do(X = x'))$ (Pearl 2000)

Associational vs. Causal Models

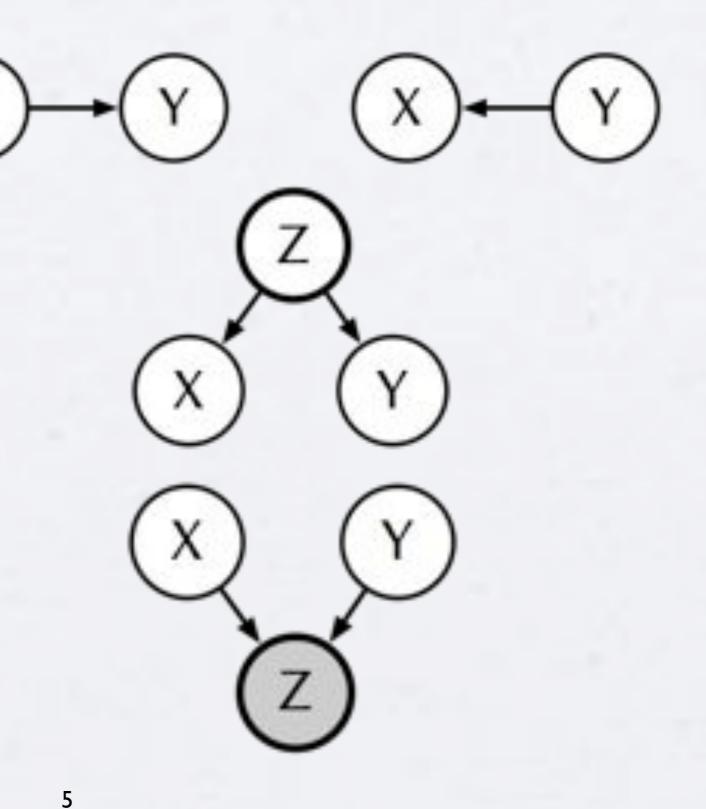


Association underdetermines Causation

Direction

Common Causes

Common Effects



Propositional data representation

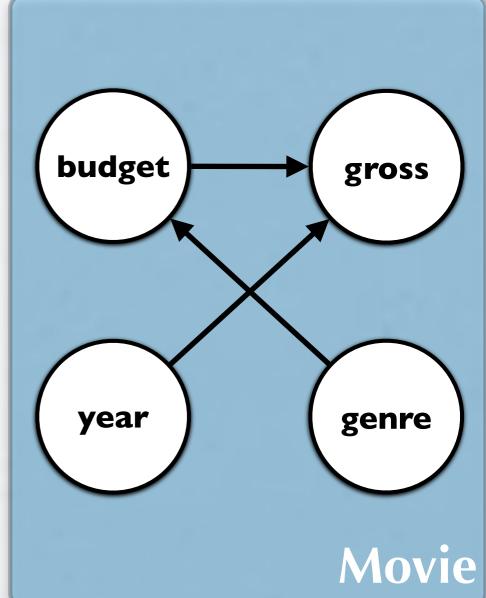
- Independent
- Identically distributed

movie	budget	gross	genre	year
Goodfellas	25M	47M	crime	1990
My Cousin Vinny	IIM	64M	comedy	1992
			•••	
Clue	I5M	I5M	comedy	1985

Directed Acyclic Graph

Random variables
 V = {year, genre, budget, gross}

Conditional independencies
 e.g., genre ⊥⊥ gross | budget



• Joint probability distribution Movie p(V) = p(year)p(genre)p(budget|genre)p(gross|budget, year)

(Pearl 1988; 2000)

Structure learning paradigms

Search-and-score: Perform *global* search across model space, select one with highest likelihood

Constraint-based: Run *local* tests of independence to create constraints on space of possible models

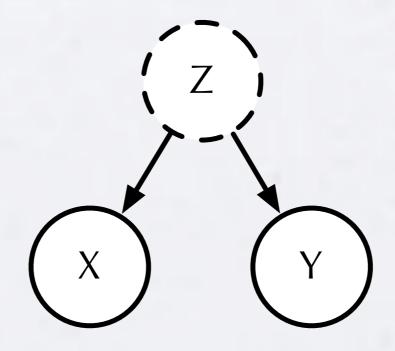
Structure learning paradigms

	Pros	Cons
S&S	 Approximates joint distribution Smooth/Bayesian (not prone to unstable errors) 	 Computationally intensive (NP-hard) No theoretical guarantees May choose single model from equivalence class
CB	 Separates structure learning from parameter estimation Directly learns conditional independence relations Provably correct Can be efficient Extensible to other new operations 	• Individual errors may propagate

Causal Assumptions

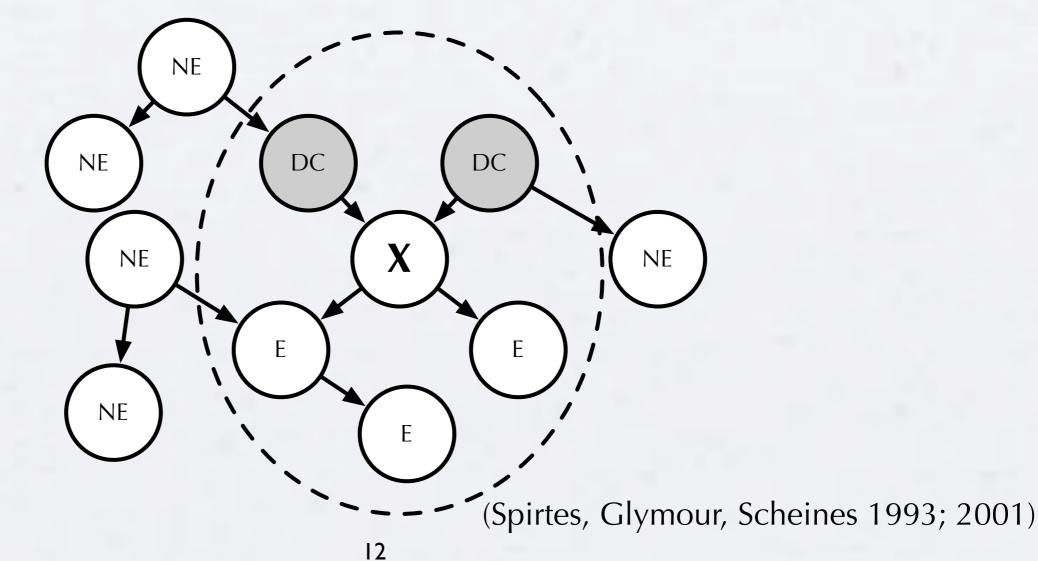
Causal sufficiency

 \mathcal{V} is causally sufficient if and only if for all potential causal dependencies $\langle X, Y \rangle \in \mathcal{V} \times \mathcal{V}$, all common causes are measured and included in \mathcal{V}



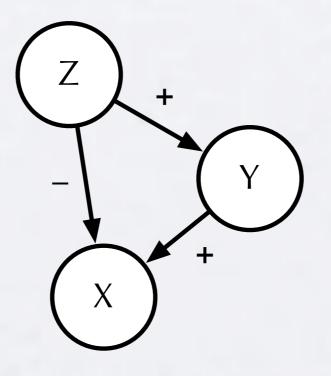
Causal Markov condition

Given that \mathcal{V} is causally sufficient, \mathcal{P} is *Markov* to \mathcal{G} if and only if each variable $X \in \mathcal{V}$ is conditionally independent of its non-effects given its direct causes



Faithfulness

 \mathcal{P} is *faithful* to \mathcal{G} if and only if there exist no conditional independencies in \mathcal{P} not entailed by the causal Markov condition on \mathcal{G}

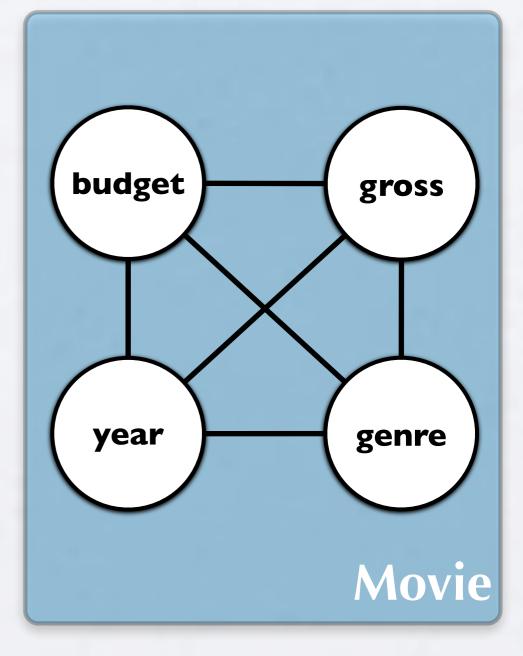


SGS

Phase I

Skeleton identification

Determine set of conditional independencies among all variables



budget ⊥⊥ genre | {} budget ⊥⊥ gross | {} budget ⊥⊥ year | {} genre ⊥⊥ budget | {} genre ⊥L gross | {} genre ⊥⊥ year | {} gross ⊥ budget | {} gross ⊥⊥ genre | {} gross ⊥⊥ year | {} year ⊥ budget | {} year ⊥⊥ genre | {} year ⊥⊥ gross | {} budget ⊥⊥ genre | {gross} budget ⊥⊥ genre | {year} budget ⊥⊥ gross | {genre} budget ⊥⊥ gross | {year}

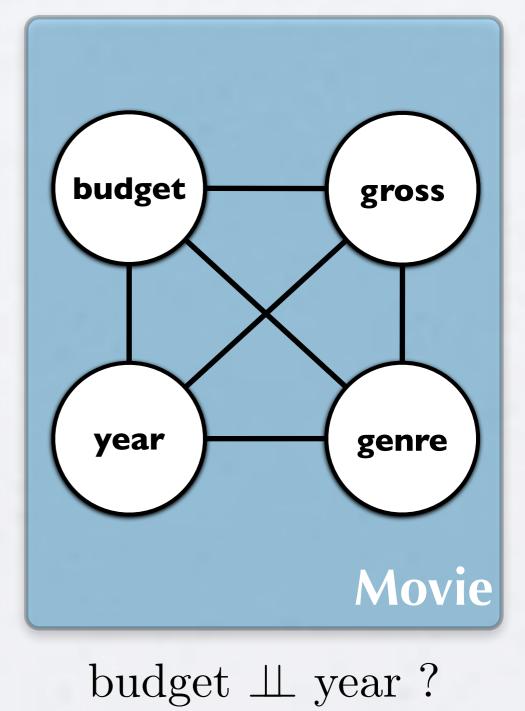
budget ⊥⊥ year | {genre} budget ⊥⊥ year | {gross} genre ⊥⊥ budget | {gross} genre ⊥⊥ budget | {year} genre ⊥⊥ gross | {budget} genre ⊥⊥ gross | {year} genre ⊥⊥ year | {budget} genre ⊥⊥ year | {gross} gross ⊥⊥ budget | {genre} gross ⊥⊥ budget | {year} gross ⊥⊥ genre | {budget} gross ⊥⊥ genre | {year} gross ⊥⊥ year | {budget} gross ⊥⊥ year | {genre} year ⊥⊥ budget | {genre} year ⊥⊥ budget | {gross} year ⊥⊥ genre | {budget}

year ⊥⊥ genre | {gross} year ⊥⊥ gross | {budget} year ⊥⊥ gross | {genre} budget ⊥⊥ genre | {gross, year} budget ⊥⊥ gross | {genre, year} budget ⊥⊥ year | {genre, gross} genre ⊥ budget | {gross, year} genre ⊥⊥ gross | {budget, year} genre ⊥⊥ year | {budget, gross} gross ⊥ budget | {genre, year} gross ⊥⊥ genre | {budget, year} gross ⊥⊥ year | {budget, genre} year ⊥ budget | {genre, gross} year ⊥⊥ genre | {budget, gross} year ⊥⊥ gross | {budget, genre}

Phase I

Skeleton identification

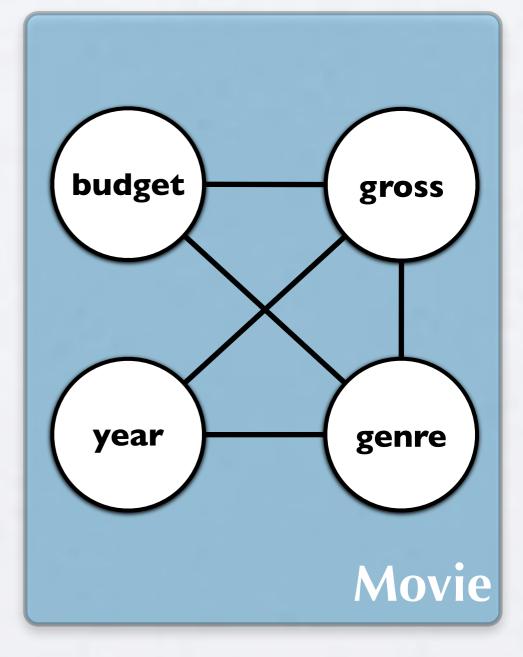
Determine set of conditional independencies among all variables



Phase I

Skeleton identification

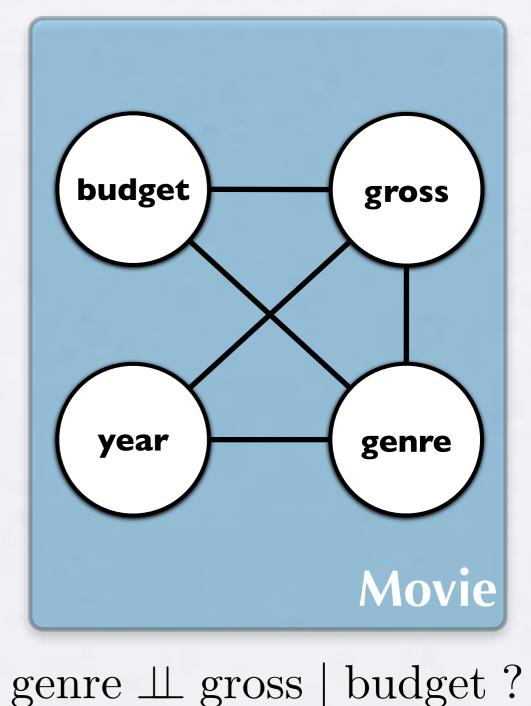
Determine set of conditional independencies among all variables



Phase I

Skeleton identification

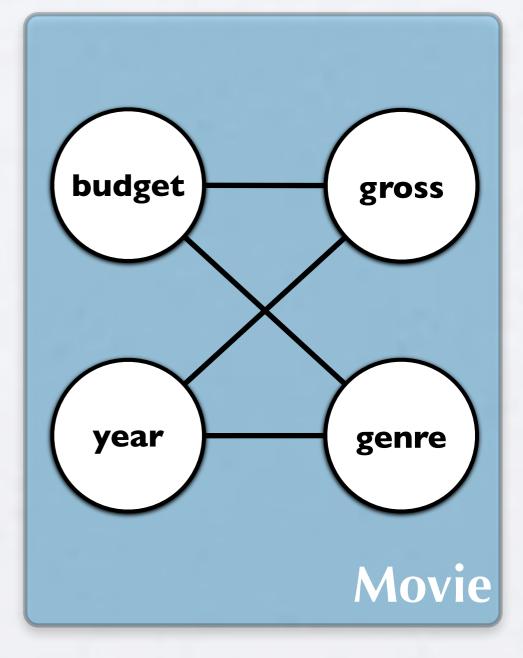
Determine set of conditional independencies among all variables



Phase I

Skeleton identification

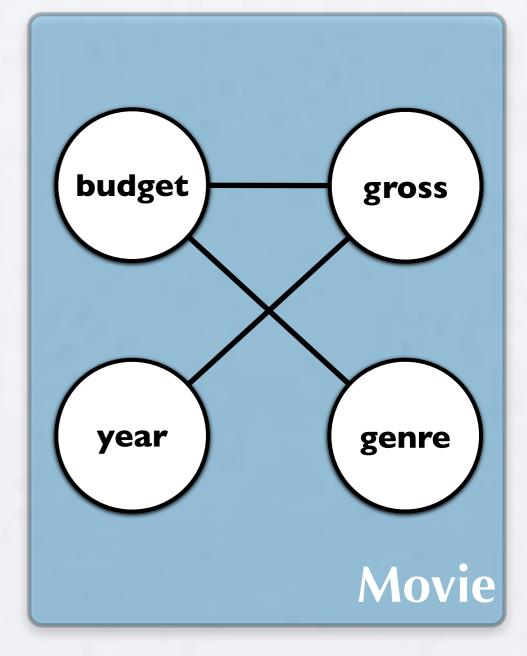
Determine set of conditional independencies among all variables



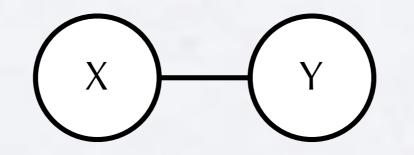
Phase I

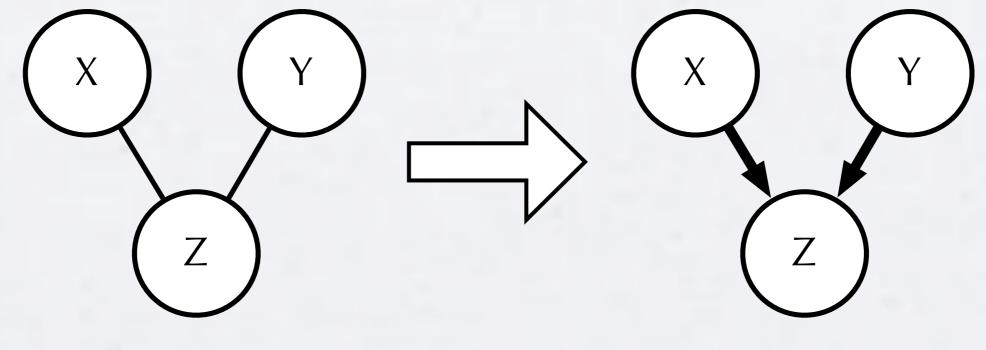
Skeleton identification

Determine set of conditional independencies among all variables



Conditional independence



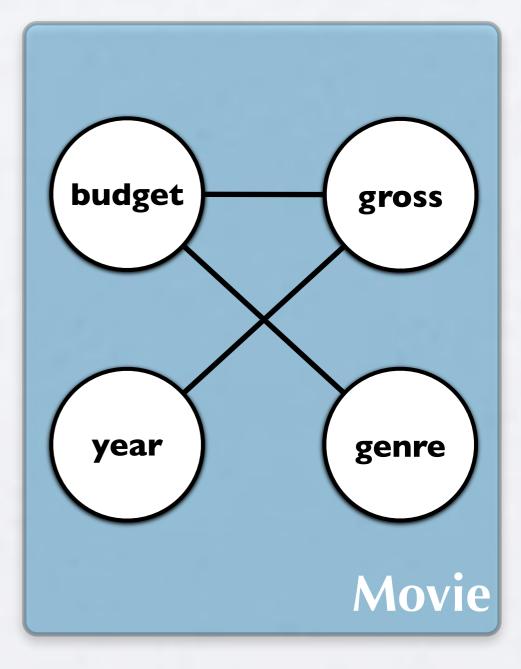


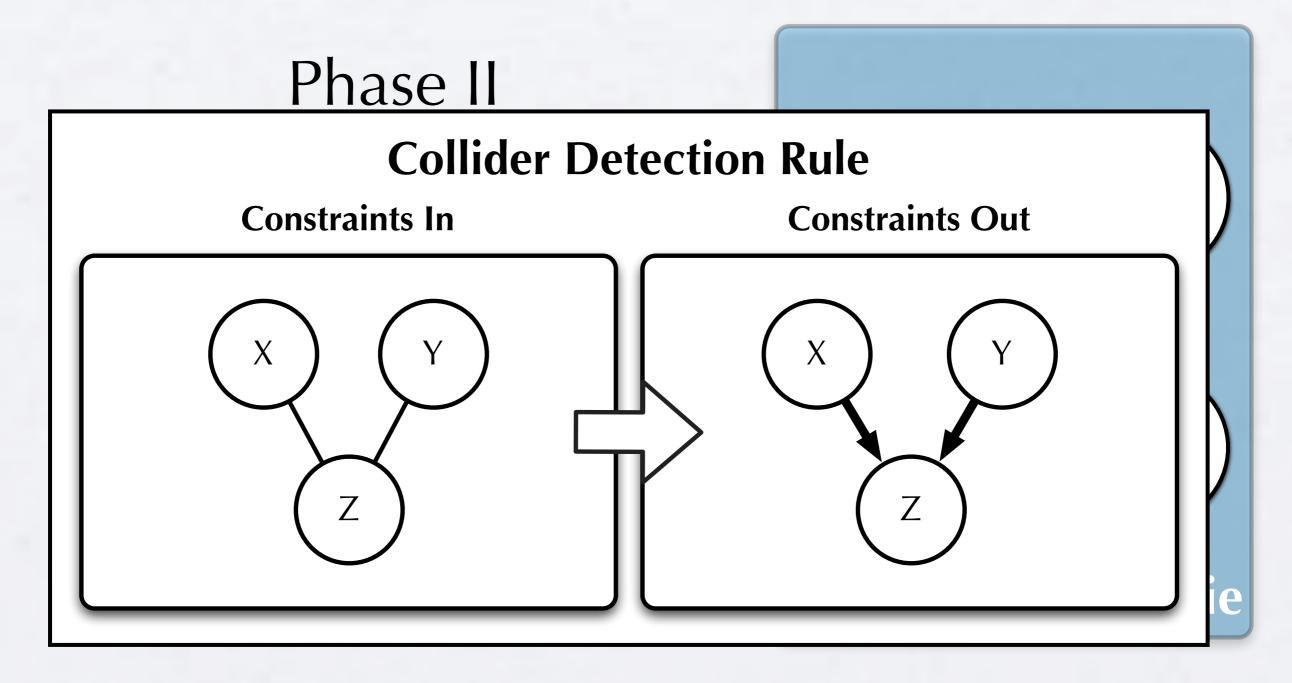
 $X \perp\!\!\!\perp Y \mid \mathbf{W}, \ Z \notin \mathbf{W}$

Phase II

Edge orientation

Apply rules to uniquely determine causal structure consistent with patterns of association from Phase I

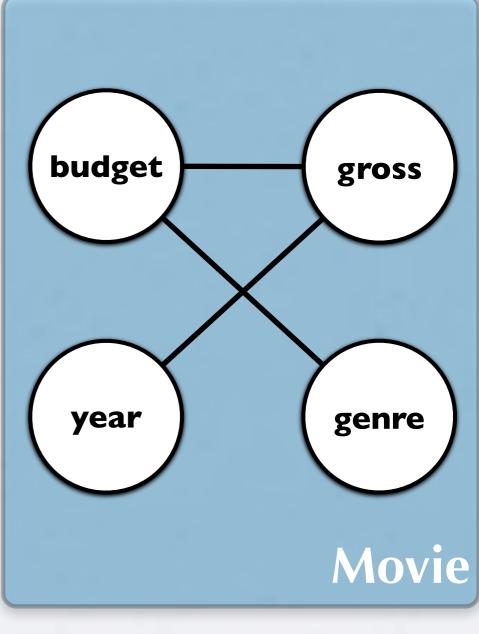




Phase II

Edge orientation

Apply rules to uniquely determine causal structure consistent with patterns of association from Phase I

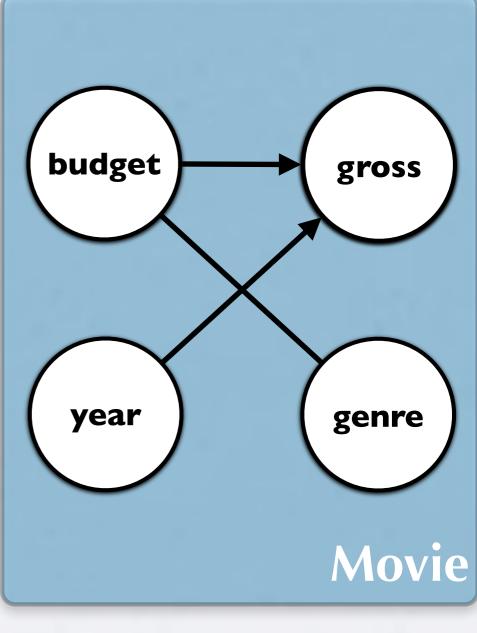


year $\perp \perp$ budget $\mid \{W\}$ gross $\notin W$

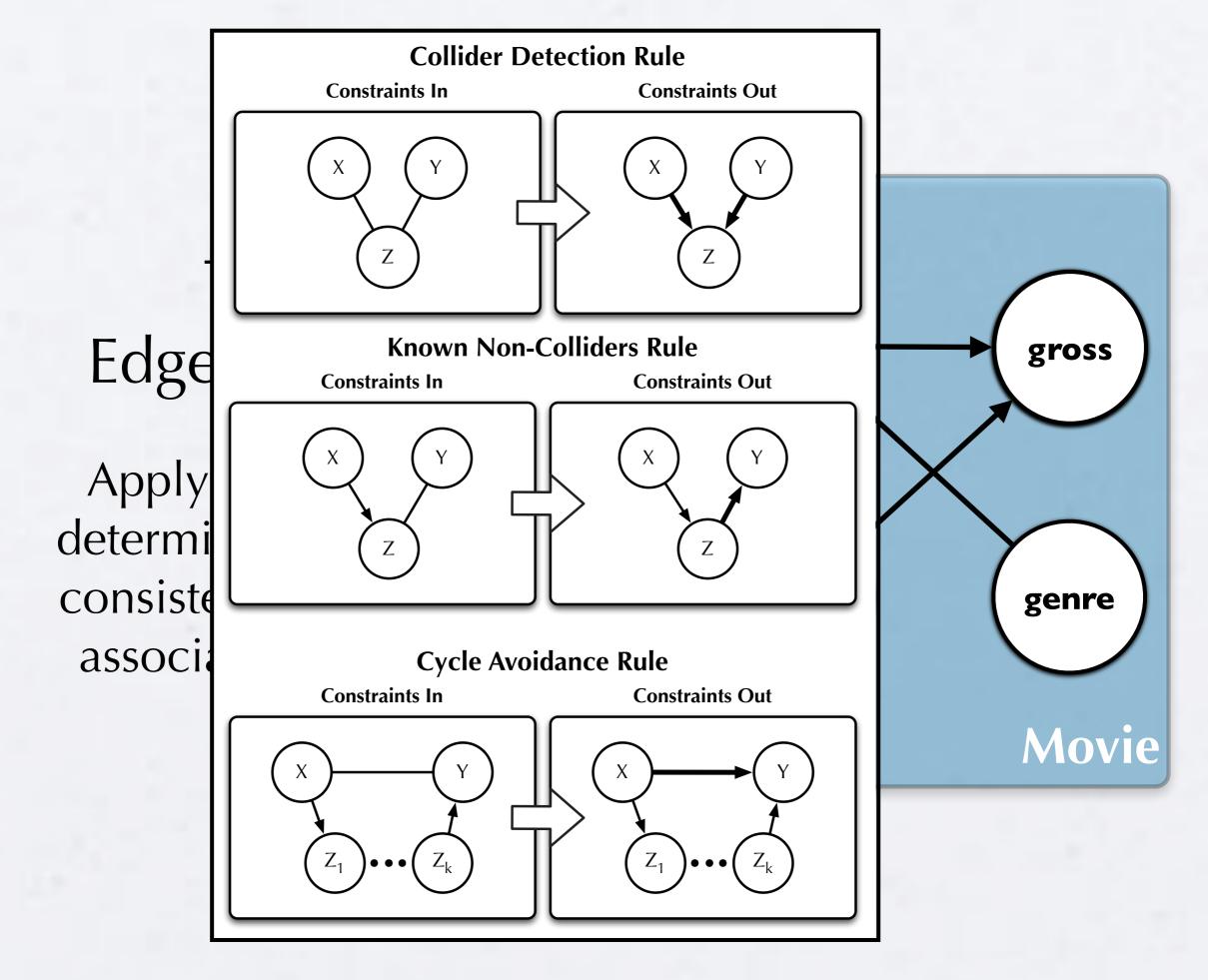
Phase II

Edge orientation

Apply rules to uniquely determine causal structure consistent with patterns of association from Phase I



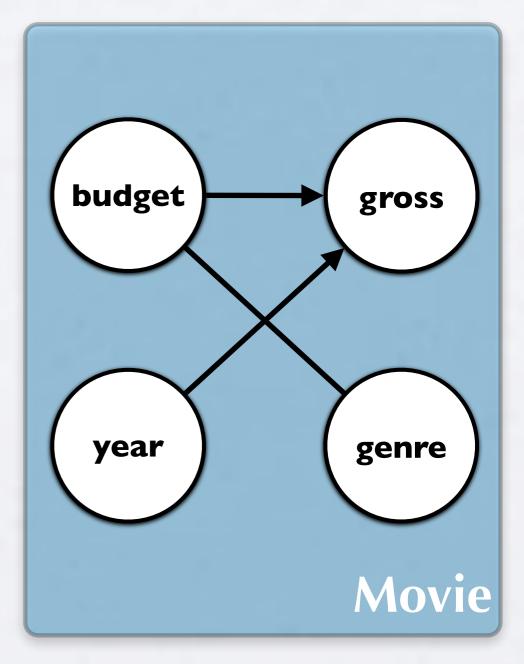
year $\perp \perp$ budget $\mid \{W\}$ gross $\notin W$



Phase II

Edge orientation

Apply rules to uniquely determine causal structure consistent with patterns of association from Phase I



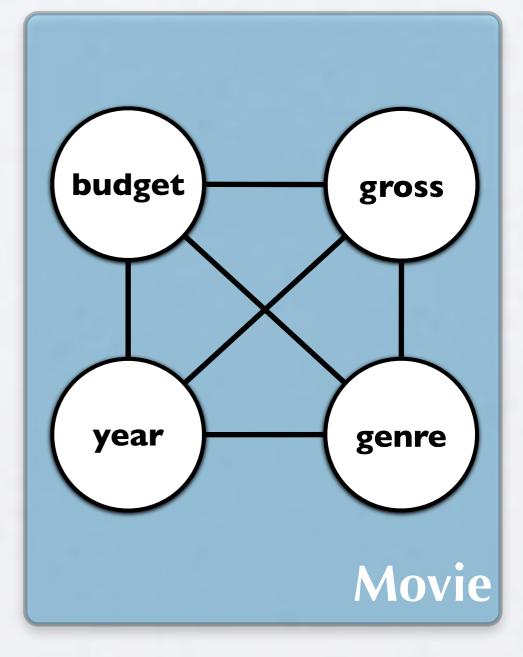
SGS correctly identifies a class of statistically indistinguishable causal models

PC

Phase I

Skeleton identification

Determine set of conditional independencies among all variables



budget ⊥⊥ genre | {} budget ⊥⊥ gross | {} budget ⊥⊥ year | {} genre ⊥⊥ budget | {} genre ⊥L gross | {} genre ⊥⊥ year | {} gross ⊥ budget | {} gross ⊥⊥ genre | {} gross ⊥⊥ year | {} year ⊥ budget | {} year ⊥⊥ genre | {} year ⊥⊥ gross | {} budget ⊥⊥ genre | {gross} budget ⊥⊥ genre | {year} budget ⊥⊥ gross | {genre} budget ⊥⊥ gross | {year}

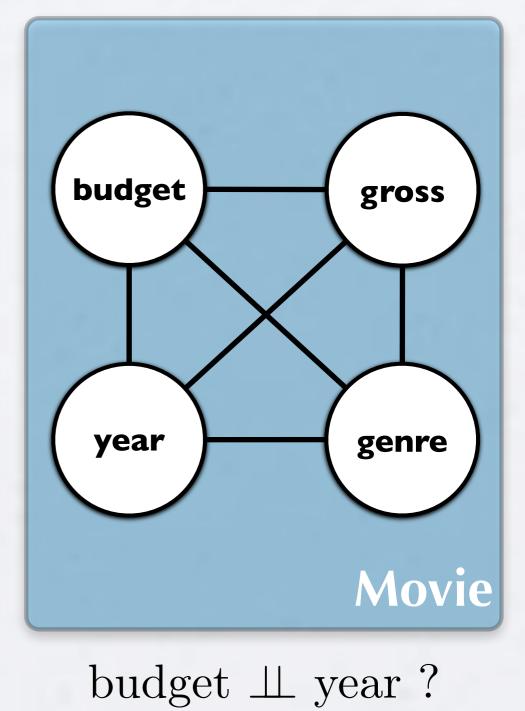
budget ⊥⊥ year | {genre} budget ⊥⊥ year | {gross} genre ⊥⊥ budget | {gross} genre ⊥⊥ budget | {year} genre ⊥⊥ gross | {budget} genre ⊥⊥ gross | {year} genre ⊥⊥ year | {budget} genre ⊥⊥ year | {gross} gross ⊥⊥ budget | {genre} gross ⊥⊥ budget | {year} gross ⊥⊥ genre | {budget} gross ⊥⊥ genre | {year} gross ⊥⊥ year | {budget} gross ⊥⊥ year | {genre} year ⊥⊥ budget | {genre} year ⊥⊥ budget | {gross} year ⊥⊥ genre | {budget}

year ⊥⊥ genre | {gross} year ⊥⊥ gross | {budget} year ⊥⊥ gross | {genre} budget ⊥⊥ genre | {gross, year} budget ⊥⊥ gross | {genre, year} budget ⊥⊥ year | {genre, gross} genre ⊥ budget | {gross, year} genre ⊥⊥ gross | {budget, year} genre ⊥⊥ year | {budget, gross} gross ⊥ budget | {genre, year} gross ⊥⊥ genre | {budget, year} gross ⊥⊥ year | {budget, genre} year ⊥ budget | {genre, gross} year ⊥⊥ genre | {budget, gross} year ⊥⊥ gross | {budget, genre}

Phase I

Skeleton identification

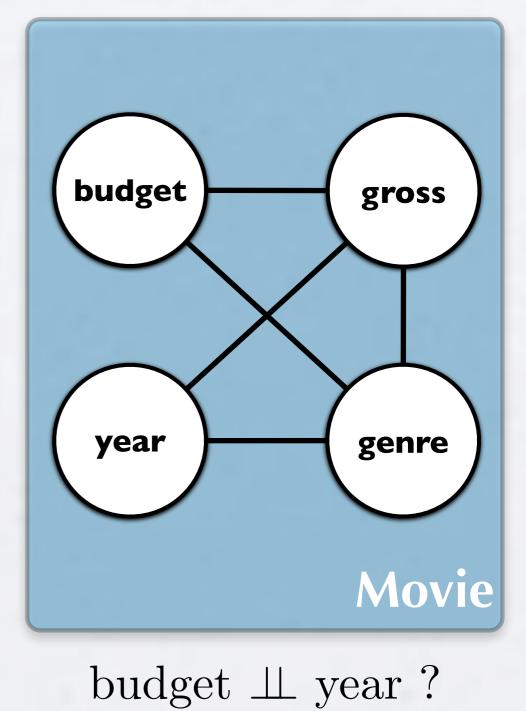
Determine set of conditional independencies among all variables



Phase I

Skeleton identification

Determine set of conditional independencies among all variables



budget ⊥⊥ genre {}
budget ⊥⊥ gross {}
budget 11 year {}
genre $\perp \perp$ budget {}
genre $\perp \perp$ gross {}
genre $\perp \perp$ year {}
gross $\perp \perp$ budget {}
gross ⊥⊥ genre {}
gross ⊥⊥ year {}
year ⊥L budget {}
year ⊥⊥ genre {}
year $\perp \perp$ gross {}
budget ⊥⊥ genre {gross
budget ⊥L genre {year}
budget ⊥⊥ gross {genre]
budget ⊥⊥ gross {year}

-budget ⊥⊥ year {genre}
budget ill year {gross}
genre $\perp \perp$ budget {gross}
genre ⊥L budget {year}
genre ⊥⊥ gross {budget}
genre ⊥⊥ gross {year}
genre ⊥⊥ year {budget}
genre ⊥⊥ year {gross}
gross ⊥⊥ budget {genre}
gross ⊥⊥ budget {year}
gross ⊥⊥ genre {budget}
gross ⊥⊥ genre {year}
-gross ⊥⊥ year {budget}
gross ⊥⊥ year {genre}
year ⊥⊥ budget {genre}
$year \perp budget {gross}$
year ⊥L genre {budget}

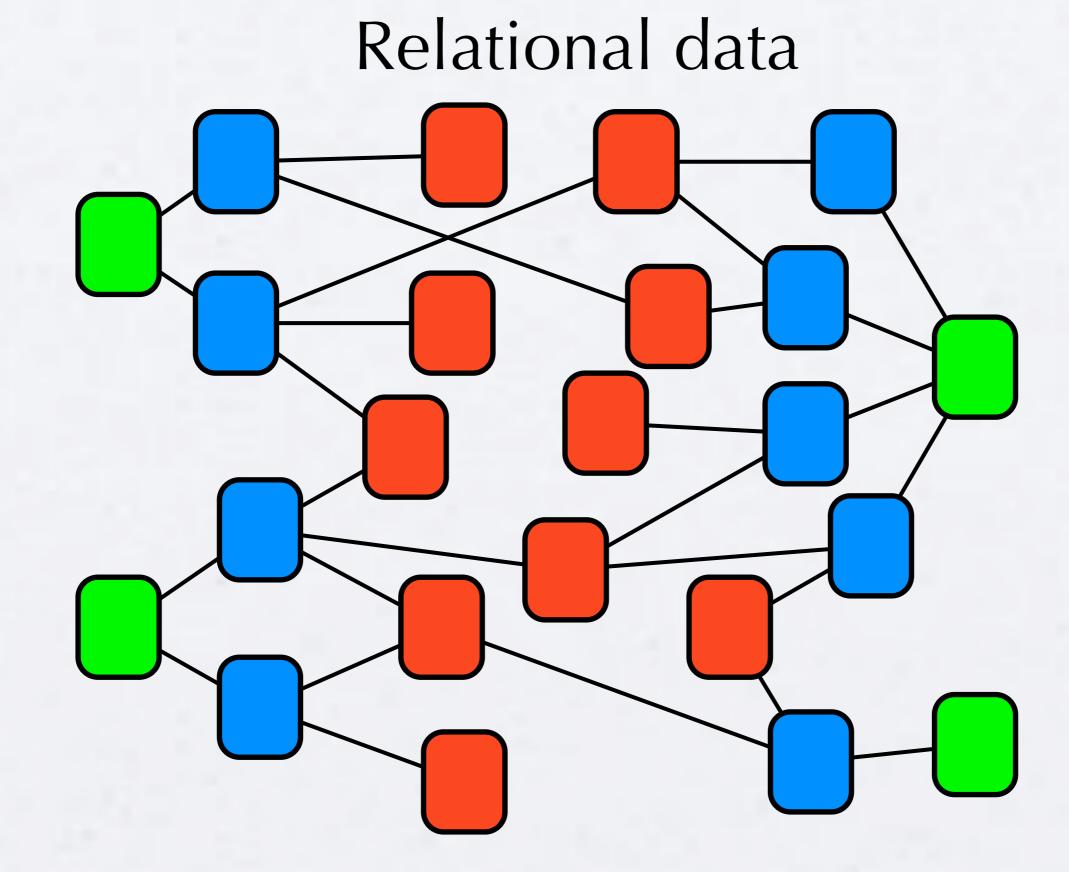
year ⊥⊥ genre {gross}
year ⊥L gross {budget}
year ⊥⊥ gross {genre}
-budget genre {gross, year}
budget il gross {genre, year}
budget ⊥⊥ year {genre, gross}
genre ⊥ budget {gross, year}
genre III. gross {budget, year}
genre ⊥⊥ year {budget, gross}
gross ⊥ budget {genre, year}
gross ⊥⊥ genre {budget, year}
gross ⊥⊥ year {budget, genre}
year ⊥ budget {genre, gross}
year ⊥⊥ genre {budget, gross}
year ⊥⊥ gross {budget, genre}

budget 11 year ?

Other propositional algorithms

- Relax/decompose faithfulness condition
 - Conservative PC (CPC) (Ramsey, Zhang, Spirtes 2006)
- Remove causal sufficiency assumption
 - Causal Inference (CI)
 - Fast Causal Inference (FCI) (Spirtes, Glymour, Scheines 1993; 2001)
- Practical modifications
 - Modified PC (Abellan, Gomez-Olmedo, Moral 2006)
 - POWER (Fast, Hay, Jensen 2008)
- Hybrid algorithms
 - MMHC (Tsamardinos, Brown, Aliferis 2006)
 - RELAX (Fast 2009)

RPC



Relational database

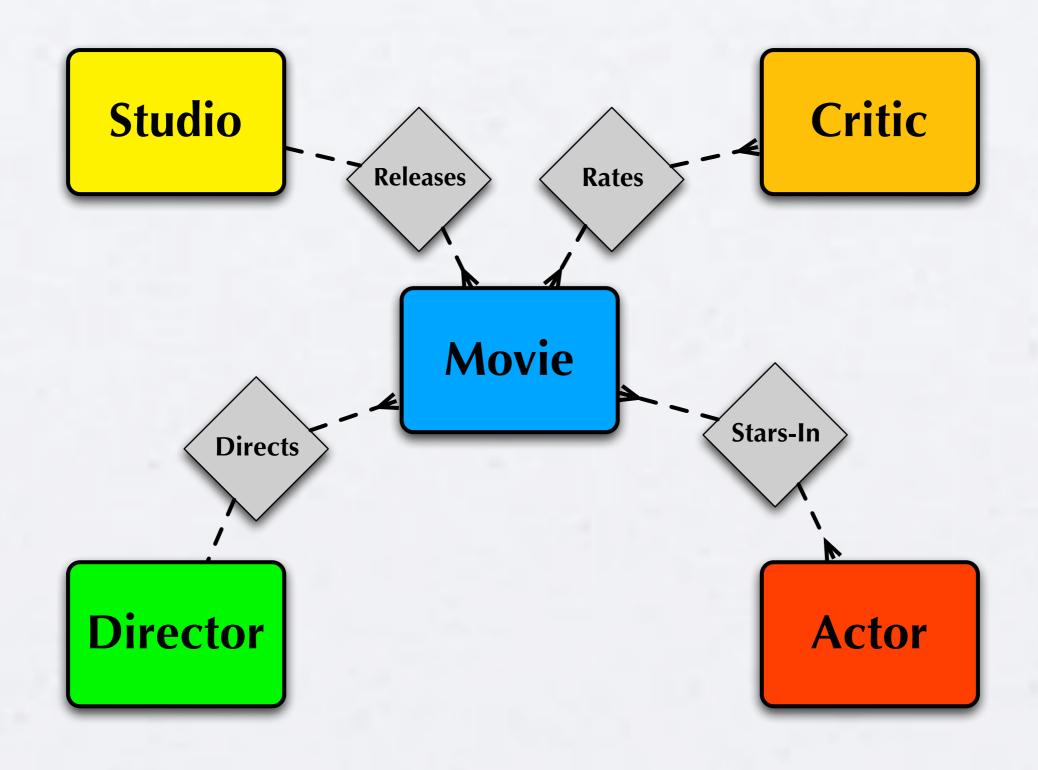
movie id	movie	budget	gross	genre
I	Goodfellas	25M	47M	crime
2	My Cousin Vinny	IIM	64M	comedy

movie id	director id	director id	director
I	I	I.	Martin Scorsese
2	2	2	Jonathan Lynn

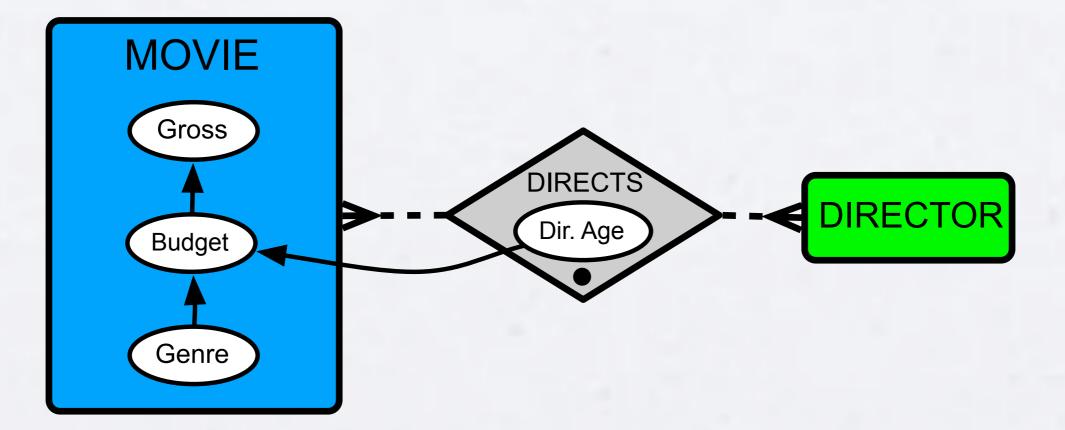
movie id	actor id	a
I	I	
2	2	
•••		

actor id	actor
I	Robert De Niro
2	Joe Pesci
	•••

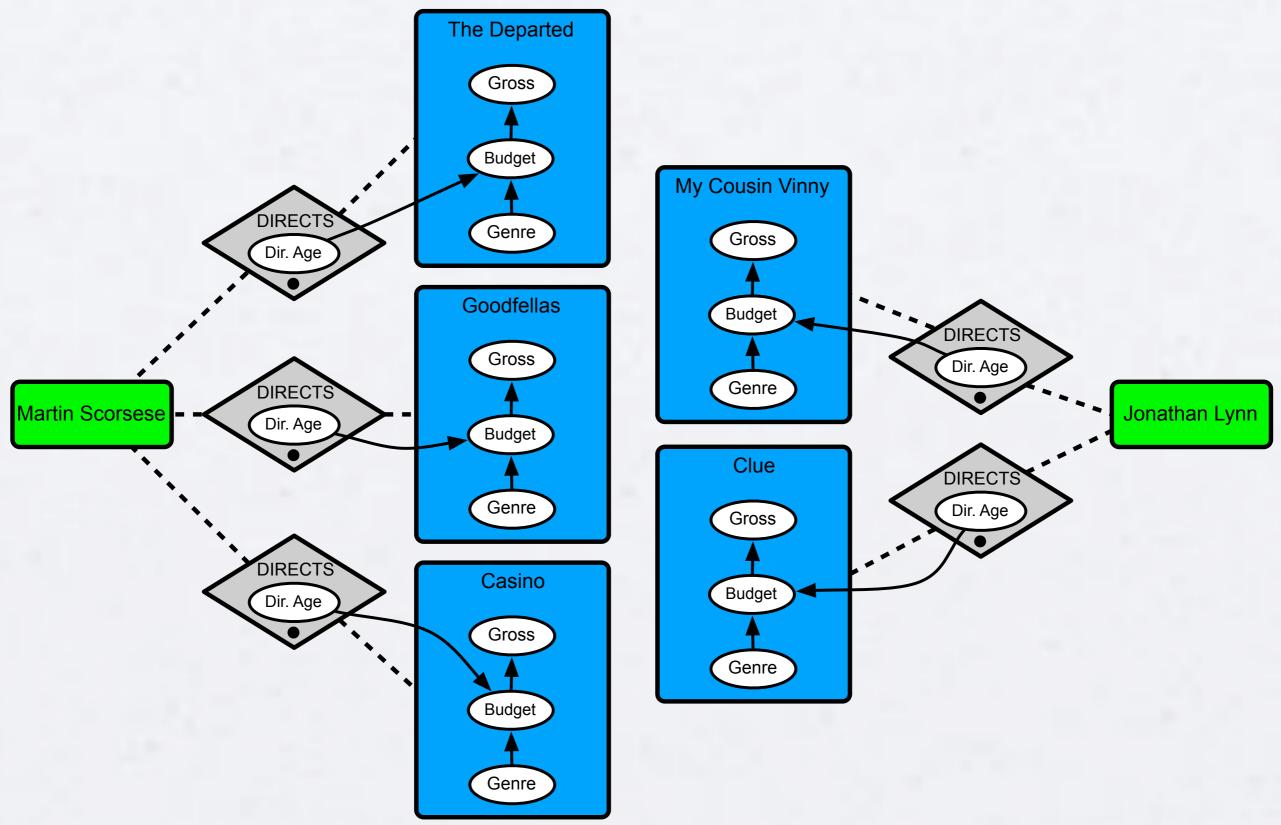
Relational data representation



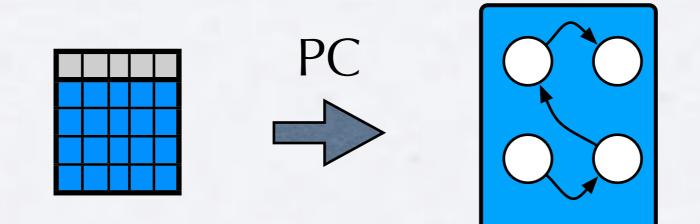
Directed Acyclic Probabilistic Entity-Relationship (DAPER) Model

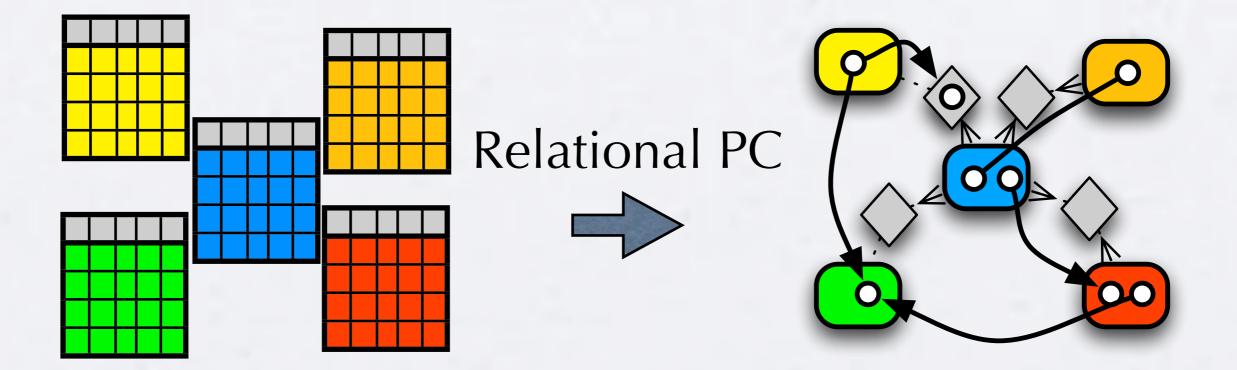


DAPER ground graph



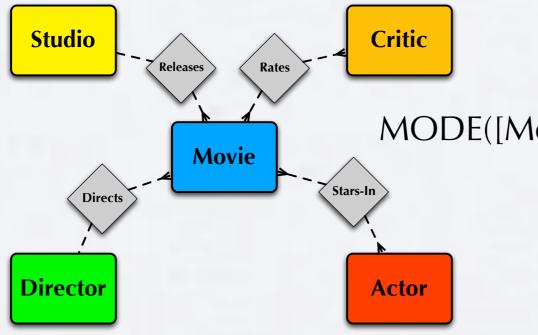
Relational extension of PC





(Maier, Taylor, Oktay, Jensen 2010)

Consequences of relational data



[Movie].budget

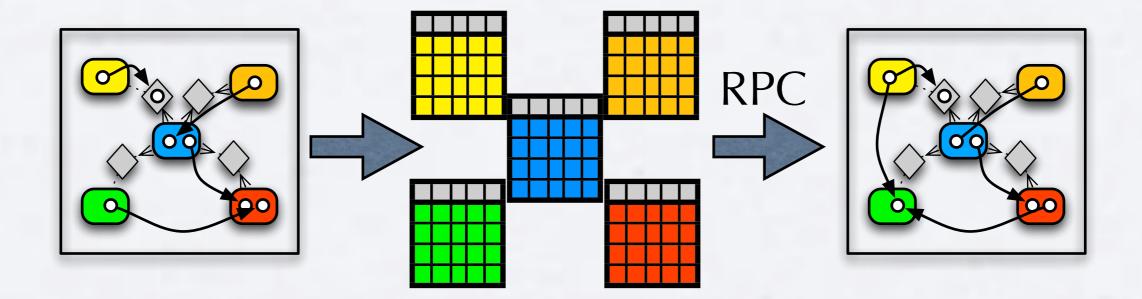
MODE([Movie Directs Director Directs Movie]).genre

COUNT([Movie Stars-In Actor])

EXISTS([Rates])

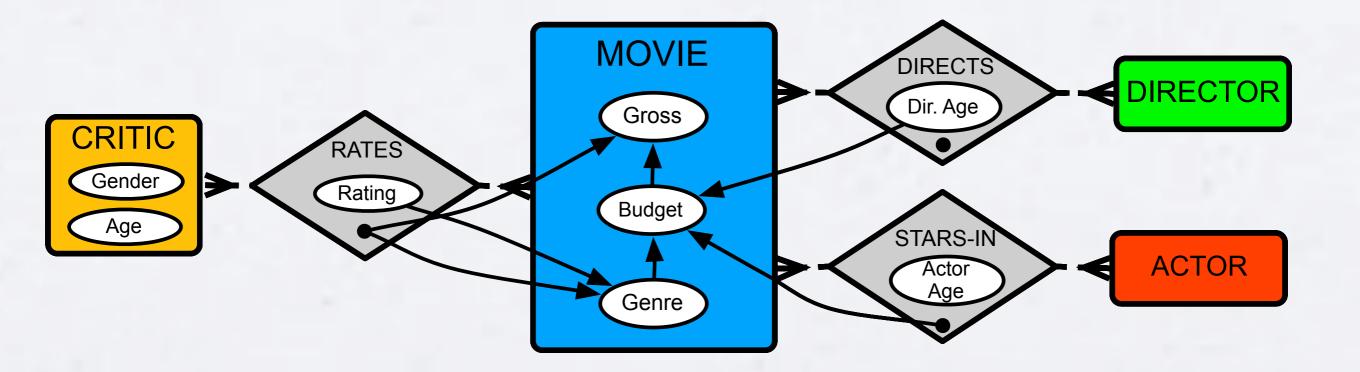
- 1. Increased space of potential dependencies
 - Variables from multiple entities and relationships
 - Aggregates
 - Structural variables
- 2. New constraints derived from relationship existence

Evaluating causal algorithms



- 1. Higher **power** yields more dependencies.
- 2. Chain reactions occur.
- 3. At best, identifies the class of **statistically indistinguishable** models.

Causal Model of MovieLens



Relational Blocking

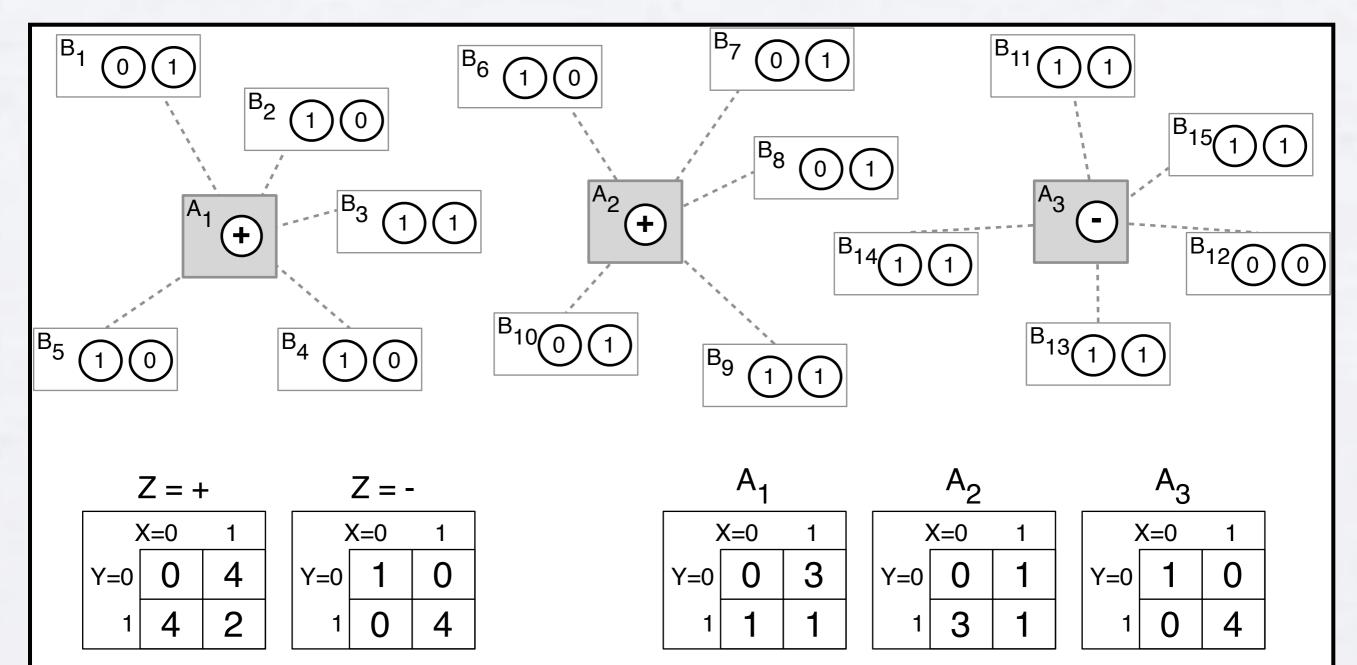
Relational blocking defined

- Let *A* and *B* be two entity sets in a *k*-partite network
- A **block** contains a set of *B* entities linked to a common *A* entity
- Let *ID* be the unique identifier of a block, and let *X* and *Y* be two attributes of *B*
- **Relational blocking** is a process that evaluates

$X \perp\!\!\!\perp Y \mid ID$

by grouping *B* entities into disjoint blocks

Blocking vs Conditioning



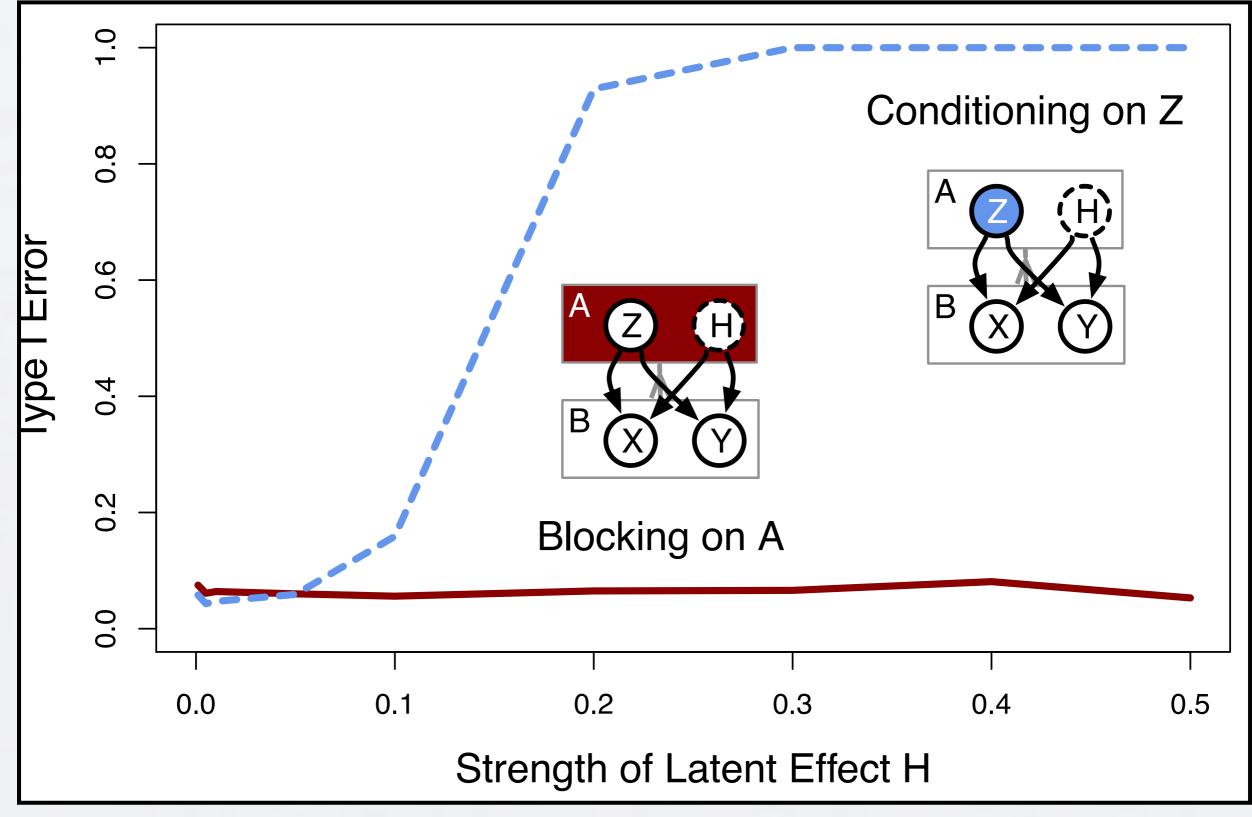
Conditioning

p=0.009

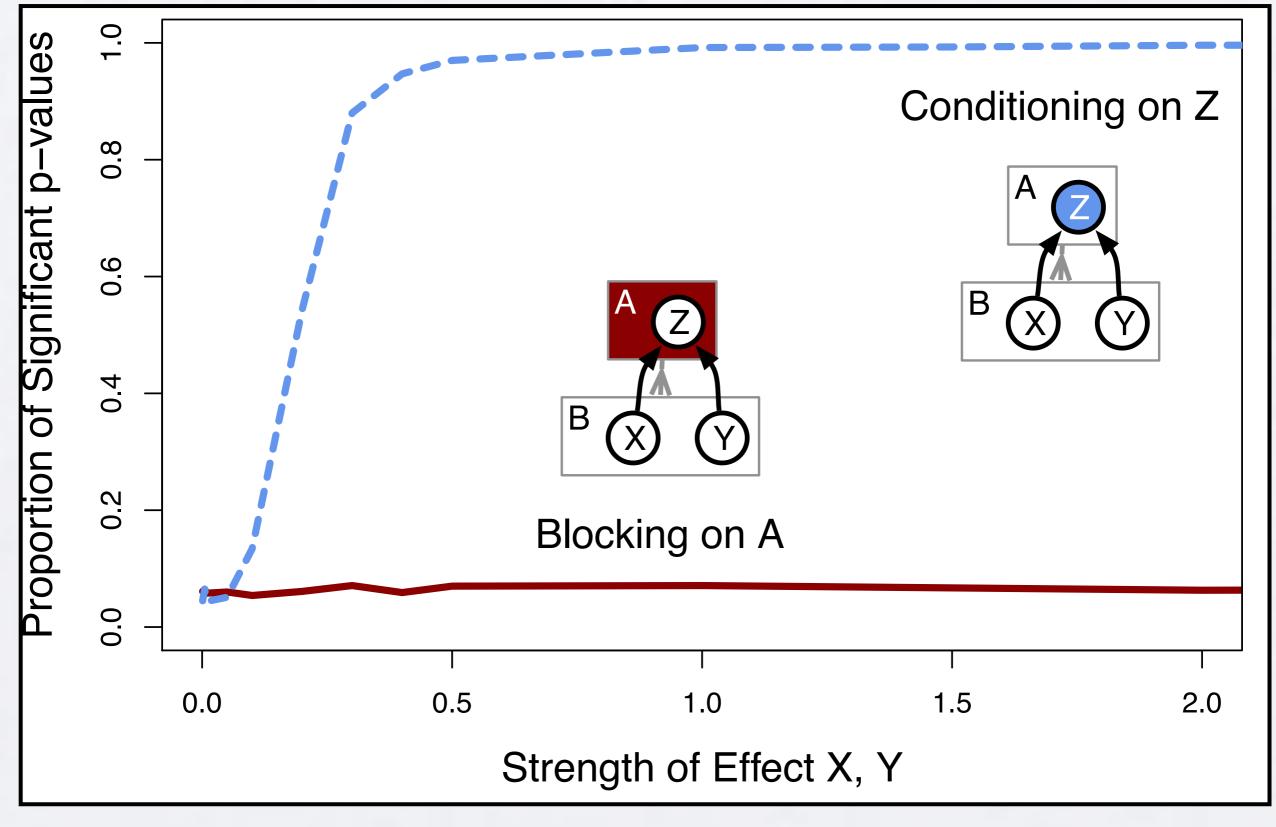
Blocking

p=0.033

Latent common causes



Common effects



D-separation

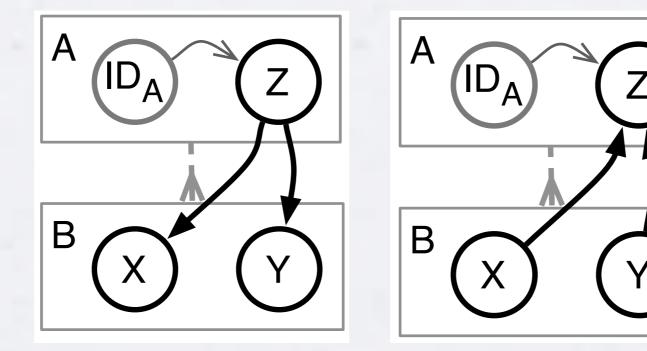
Α

Α

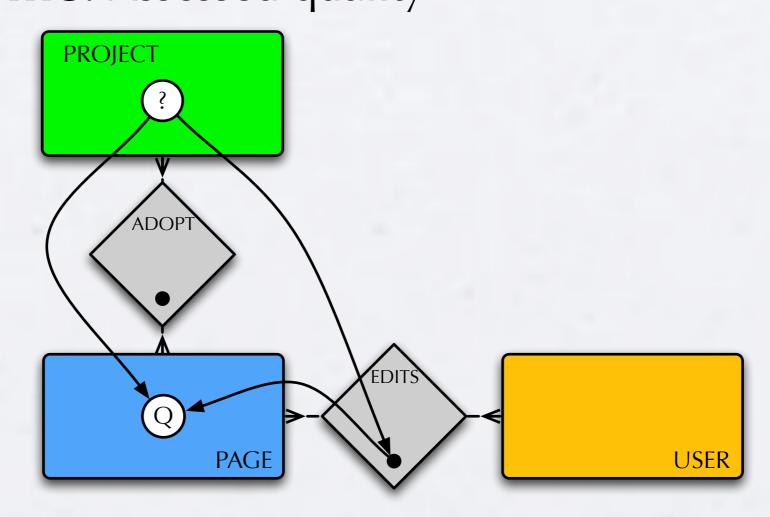
B

Let \mathbf{X} , \mathbf{Y} , and \mathbf{W} be three disjoint sets of vertices in DAG G. Let $Det(\mathbf{V})$ be the set of all variables determined by \mathbf{V} . Then, \mathbf{X} and \mathbf{Y} are *d***-separated** by \mathbf{W} if and only if for all undirected paths $\overset{P}{P}$ between \mathbf{X} and \mathbf{Y} either

(1) $\exists v \in \text{colliders}(P)$ such that $v \wedge \text{descendants}(v) \notin \mathbf{W}$ or (2) $\exists v \in \text{noncolliders}(P)$ such that $v \in \text{Det}(\mathbf{W})$.



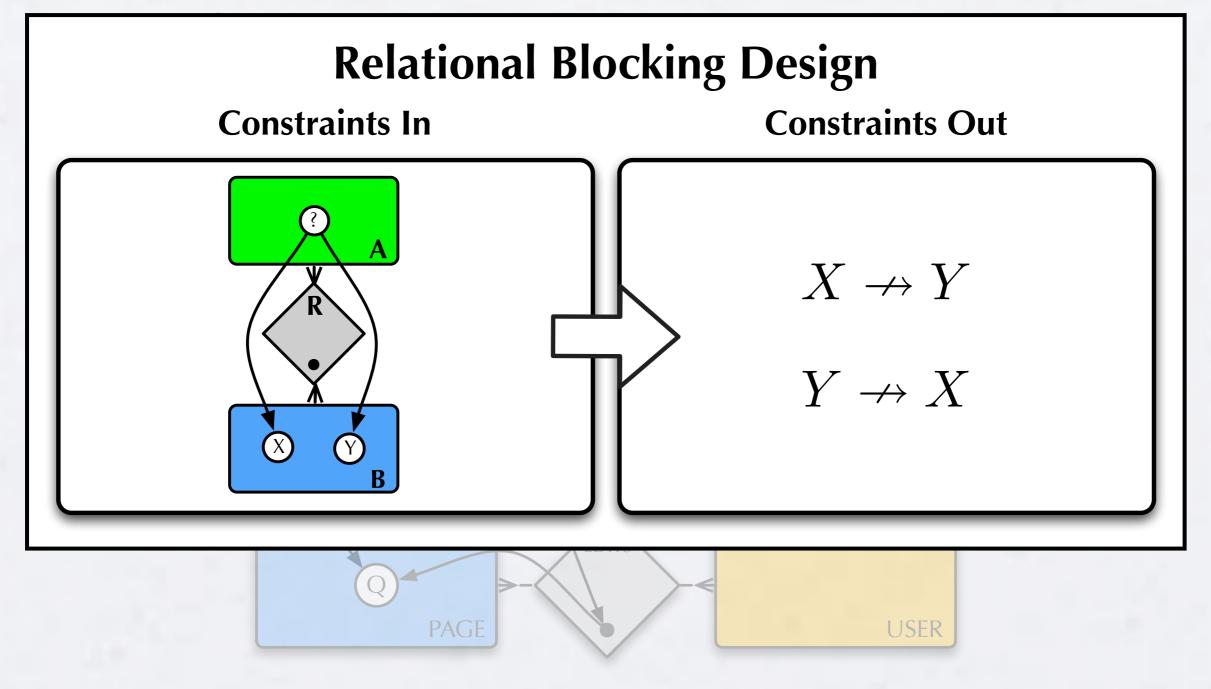
Example of relational blocking Domain: Wikipedia Question: Do "many eyes" cause quality? Treatment: Number of distinct editors Outcome: Assessed quality



(Rattigan, Maier, Jensen 2010)

Example of relational blocking

Domain: Wikipedia



(Rattigan, Maier, Jensen 2010)

QEDs

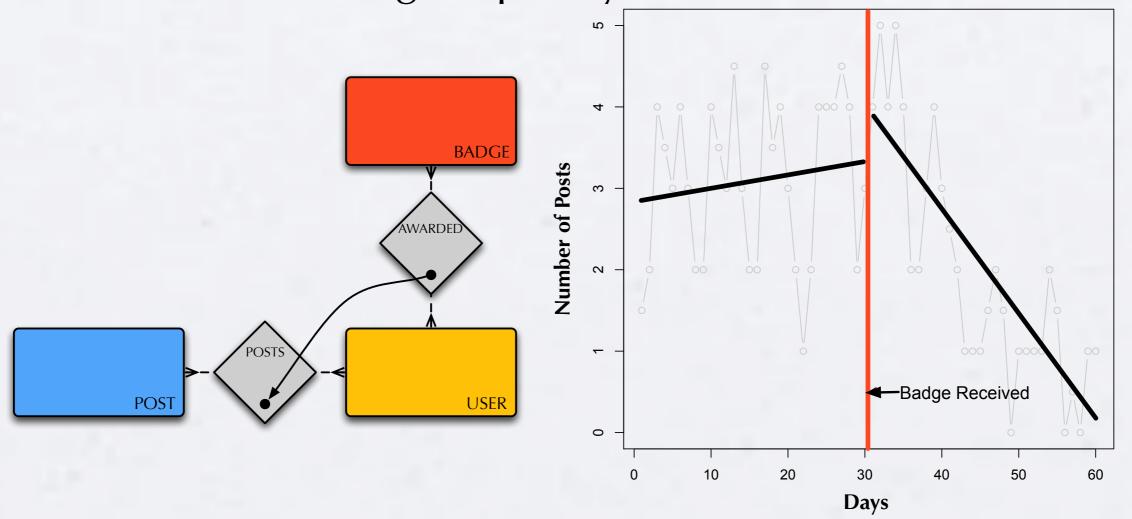
Quasi-Experimental Design

- Techniques developed and used by social scientists
 - Provide causal conclusions
 - Devise local hypothesis tests
 - Enabled by temporal and relational representation
 - Lack a formalization

- **Relational blocking**: twin study, matching design
- **Temporal blocking**: interrupted time series design, non-equivalent control group design

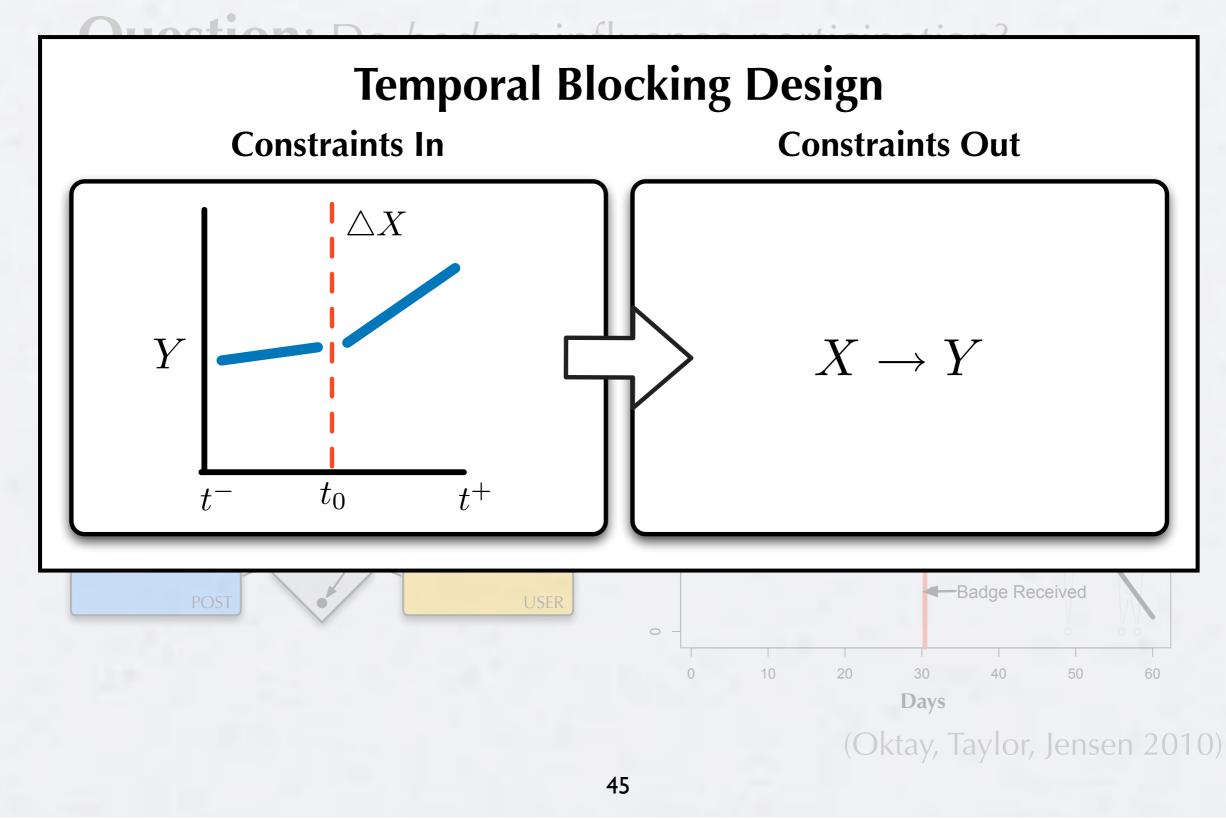
(Cook & Campbell 1979; Shadish, Cook, Campbell 2002)

Example of temporal blocking Domain: Stack Overflow Question: Do *badges* influence *participation*? Treatment: User receives "epic" badge Outcome: Posting frequency over time



(Oktay, Taylor, Jensen 2010)

Example of temporal blocking Domain: Stack Overflow



Thank you! Questions? maier@cs.umass.edu