
Hidden Markov Models
Baum Welch Algorithm

Introduction to Natural Language Processing
CS 585

Andrew McCallum

March 9, 2004

Administration

• If you give me your quiz #2, I will give you feedback.

• I’m now giving you quiz #3. Hand it in next class, and we’ll give you
feedback before the midterm.

• I’m now giving you homework #3. Due one week after Spring Break
ends: March 30th; assignment gives many hints about implementation.

Everyone should be subscribed to class mailing list.
To: majordomo@cs.umass.edu
subscribe cs585

Standard HMM formalism

• (X, O, A,B), µ = (A,B)

• X is hidden state sequence, O is observation sequence
Probability of starting in some state is folded into A, let x0 always be
the starting state
A is matrix of transition probabilities
B is matrix of output probabilities

P (X, O|µ) =
N∏

t=1

a[xt−1, xt]b[ot, xt]

• HMM is a probabilistic finite state automaton, with probabilistic outputs
(from vertices, not arcs, in the simple case; book describes more complex
”outputs on arcs”.)

Probabilistic Inference in an HMM

Three fundamental questions for an HMM:

• Compute the probability of a given observation sequence, when the tag
sequence is hidden (language modeling)

• Given an observation sequence, find the most likely hidden state sequence
(tagging)

• Given observation sequence(s) and a set of states, find the parameters
that would make the observations most likely (parameter estimation)

Calculating the probability of an observation sequence

Given a model µ = (A,B)
we want to find P (O|µ)

P (X, O|µ) =
N∏

t=1

a[xt−1, xt]b[ot, xt]

P (O|µ) =
∑
X

P (O,X|µ)

Problem: sum is exponential in sequence length!

Finding probability of observation sequence using
dynamic programming

Efficient computation of total probability: forward procedure

Intuition: Probability of the first t observations is the same for all possible
t + 1 length sequences

Define forward probability

αi(t) = P (o1o2...ot, xt|µ)

αj(t + 1) =
N∑

i=1

αi(t)a[xi, xj]b[xj, ot+1]

Compute it recursively from the beginning.
(This is a version of variable elimination algorithm for Bayes Net inference.)

Forward Procedure Recipe
Initialization

αi(1) = a[x0, xi]b[xi, o1]

Induction

αj(t + 1) =
N∑

i=1

αi(t)a[xi, xj]b[xj, ot+1]

Termination
(Note that αi(T) = P (o1...oT , xT = i|µ)

P (o1...oT |µ) =
N∑

i=1

αi(T)

This is the solution to Problem #1

Problem #3: Parameter Estimation

We want to find the most likely model parameters given the data (using
MLE):

arg max
µ

P (Otraining|µ)

This would let us learn model probabilities from raw data

Can’t determine these probabilities analytically.

Use iterative hill-climbing algorithm to try to find good model

HMM training: Baum-Welch reestimation

Used to automatically estimate parameters of an HMM
a.k.a. the Forward-Backward algorithm

A special case of the Expectation Maximization (EM) algorithm

1. Start with initial probability estimates
2. Compute expectations of how often each transition/emission is used
3. Re-estimate the probabilities based on those expectations
...and repeat until convergence

HMM training: Baum-Welch reestimation

Needed because the state paths are hidden, and the equations cannot be
solved analytically.

Provides a maximum likelihood estimates: attempts to find the model that
assigns the training data the highest likelihood.

Hill-climbing algorithm that can get stuck in local maxima

Not so effective for inductive POS tagging (the ML re-estimation procedure
doesn’t know the meaning we have given to the hidden states) But good in
many other tasks (speech...)

We need “expected counts” for the E-step!

Calculating the probability of the observations and a
state i at time t

Given model µ = (A,B)
we want to find P (xt = i, O|µ)

P (P (xt = i, O|µ) = P (o1o2...ot, xt = i|µ)P (ot+1ot+2...oT |xt = i, µ)

(Why is this true?)

Remember we have the first part αi(t) = P (o1o2...ot, xt = i|µ).

We need something for the second part: mirror image of the “forward
procedure”, called “backward procedure.”

Backward procedure recipe

Definition
βi(t) = P (ot+1ot+2...oT |xt = i, µ)

Initialization
βi(T) = 1

Induction

βi(t) =
N∑

j=1

a[xi, xj]b[xj, ot+1)βj(t + 1)

Probability of a state i at time t

P (xt = i, O|µ) = P (o1o2...ot, xt = i|µ)P (ot+1ot+2...oT |xt = i, µ)

= αi(t)βi(t)

P (xt = i|O,µ) =
P (xt = i, O|µ)

P (O|µ)
= γi(t)

Probability of a transition from state i to state j

at time t

The probability of a trajectory being in state xi at time t and making the
transition to sj at t + 1 given the observation sequence and model.

ξt(i, j) = P (xt = i, xt+1 = j|O,µ)

We compute these probabilities using the forward and backward variables.

ξt(i, j) =
αi(t)a[xixj]b[xj, ot+1]βj(t + 1)

Pr(O|µ)

Expected transition and emission counts
Note that (E-step)

T∑
t=1

γi(t) = expected number of transitions from xi

T∑
t=1

ξt(i, j) = expected number of transitions from xi to xj

Then we can estimate parameters by ratio of expected counts (M-step)

ā[xi, xj] =
∑T−1

t=1 ξt(i, j)∑
t=1 T − 1γj(t)

b̄[xi, ok]
∑T−1

t=1 γj(t) 1(ot = k)∑T−1
t=1 γj(t)

Baum-Welch training algorithm

• Begin with some model µ (perhaps random, perhaps preselected)

• Run O through the current model to estimate the expectations of each
model parameter.

• Change the model to maximize the values of the paths that are used a
lot (while still repsecting the stochastic constraints).

• Repeat, hoping to converge on optimal values for the model parameters,
µ.

Baum-Welch tips and tricks: normalization

α and β values can get very small. On-the-fly re-normalization badly
needed.

Normalize α, β using the same normalization factor

Z(t) =
N∑

i=1

αi(t)

Then adjust the α, β across all states after each time step

αi(t)∗ = αi(t)/Z(t)

βi(t)∗ = βi(t)/Z(t)

HMM final remarks

• Parameter ”tying” (keep just one counter and parameter across several
states or transitions.

Any combination possible.

Reduces capacity, and thus over-fitting

• Real number output: Emissions represented by a Gaussian distribution.

• Empty (epsilon) transitions, do not generate output.

