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Ambiguity in Parsing

• Time flies like an arrow.

• Fruit flies like a banana.

• I saw the man with the telescope.



Andrew McCallum, UMass

How to solve this combinatorial 
explosion of ambiguity?

1. First try parsing without any weird 
rules, throwing them in only if needed.

2. Better: every rule has a weight.  
A tree’s weight is total weight of all its 
rules.  
Pick the overall “lightest” parse of 
sentence.

3. Can we pick the weights automatically?
We’ll get to this later …

Andrew McCallum, UMass

CYK Parser

Input: A string of words, grammar in CNF

Output: yes/no

Data structure:  n x n table
rows labeled 0 to n-1, columns 1 to n

cell (i,j) lists constituents spanning i,j

For each i from 1 to n
Add to (i-1,i) all Nonterminals that could 
produce the word at (i-1,i)



time   1   flies   2     like    3      an    4    arrow    5

0

NP 3

Vst 3

    

1  NP 4

VP 4

  

2   P 2

V 5

  

3    Det 1  

4     N 8

1  S ! NP VP
6  S ! Vst NP
2  S ! S PP
1  VP ! V NP

2  VP ! VP PP
1  NP ! Det N

2  NP ! NP PP
3  NP ! NP NP
0  PP ! P NP 
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CYK Parser

For width from 2 to n

For start from 0 to n-width

Define end to be start+width

For mid from start+1 to end-1

For every constituent in (start, mid)

For every constituent in (mid,end)

For all ways of combining them (if any)

Add the resulting constituent to (start,end).
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Follow backpointers …
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Not worth keeping …
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… since it just breeds worse options
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Keep only best-in-class!

inferior stock
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Keep only best-in-class!
(and backpointers so you can recover parse)
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Probabilistic Trees

! Instead of lightest weight tree, take highest 
probability tree

! Given any tree, your assignment generator would 
have some probability of producing it!  

! Just like using n-grams to choose among strings …

! What is the probability of this tree? S

NP
time

VP

VP
flies

PP

P
like

NP

Det
an

N   
 arrow



Andrew McCallum, UMass

Probabilistic Trees

! Instead of lightest weight tree, take highest 
probability tree

! Given any tree, your assignment generator would 
have some probability of producing it!  

! Just like using n-grams to choose among strings …

! What is the probability of this tree?

!

! You rolled a lot

of independent dice...

S

NP
time

VP

VP
flies

PP

P
like

NP

Det
an

N   
 arrow

P( | S)

Andrew McCallum, UMass

Chain rule: One word at a time

p(time flies like an arrow) 
   = p(time)

* p(flies | time)
* p(like | time flies)
* p(an | time flies like)
* p(arrow | time flies like an)
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Chain rule + backoff 
(to get trigram model)

p(time flies like an arrow) 
   = p(time)

* p(flies | time)
* p(like | time flies)
* p(an | time flies like)
* p(arrow | time flies like an)

Andrew McCallum, UMass

Chain rule – written differently

p(time flies like an arrow) 
   = p(time)

* p(time flies | time)
* p(time flies like | time flies)
* p(time flies like an | time flies like)
* p(time flies like an arrow | time flies like an)

Proof: p(x,y | x) = p(x | x) * p(y | x, x) = 1 * p(y | x)
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Chain rule + backoff

p(time flies like an arrow) 
   = p(time)

* p(time flies | time)
* p(time flies like | time flies)
* p(time flies like an | time flies like)
* p(time flies like an arrow | time flies like an)

Proof: p(x,y | x) = p(x | x) * p(y | x, x) = 1 * p(y | x)
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Chain rule: One node at a time

S

NP
time

VP

VP
flies

PP

P
like

NP

Det
an

N   
 arrow

p( | S) = p(
S

NP VP

| S) * p(
S

NP
time

VP

|
S

NP VP

)

* p(
S

NP
time

VP

VP PP

|
S

NP
time

VP
)

* p(
S

NP
time

VP

VP
flies

PP

|
S

NP
time

VP
) * …

VP PP
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Chain rule + backoff

S

NP
time

VP
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flies
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P
like

NP
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an

N   
 arrow

p( | S) = p(
S

NP VP

| S) * p(
S
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VP

|
S

NP VP

)

* p(
S
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VP

VP PP
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|
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time

VP
) * …

VP PP
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Simplified notation 

S

NP
time

VP

VP
flies

PP

P
like

NP

Det
an

N   
 arrow

p( | S) = p(S ! NP VP | S) * p(NP ! flies | NP)

* p(VP ! VP NP | VP) 

* p(VP ! flies | VP) * …
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Already have a CKY alg for weights …

S

NP
time

VP

VP
flies

PP

P
like

NP

Det
an

N   
 arrow

w( | S) = w(S ! NP VP)     + w(NP ! flies | NP)

+ w(VP ! VP NP) 

+ w(VP ! flies) + …

Just let w(X ! Y Z) = -log p(X ! Y Z | X)
Then lightest tree has highest prob

time   1   flies   2     like    3      an    4    arrow    5
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3  NP ! NP NP
0  PP ! P NP 

multiply to get 2-22

2-8

2-12

2-2
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multiply to get 2-22
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2-2

2-13

Need only best-in-class to get best parse
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Why probabilities not weights?

! We just saw probabilities are really just a 

special case of weights …

! … but we can estimate them from training 

data by counting and smoothing! Use all 

of our lovely probability theory machinery!
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Probabilistic 
Context Free Grammars 

(PCFGs)Why we need recursive phrase structure

! The velocity of the seismic waves rises to . . .

! Kupiec (1992): HMM tagger goes awry: waves → verb

S

NPsg

DT

The

NN

velocity

PP

IN

of

NPpl

the seismic waves

VPsg

rises to . . .
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PCFGs

A PCFG G consists of the usual parts of a CFG

! A set of terminals, {wk}, k = 1, . . . , V

! A set of nonterminals, {Ni}, i = 1, . . . , n

! A designated start symbol, N1

! A set of rules, {Ni → ζj}, (where ζj is a sequence of

terminals and nonterminals)

and

! A corresponding set of probabilities on rules such that:

∀i
∑

j

P(Ni → ζj) = 1

308

PCFG notation

Sentence: sequence of words w1 · · ·wm

wab: the subsequence wa · · ·wb

Niab: nonterminal Ni dominates wa · · ·wb

Nj

wa · · ·wb

Ni
∗
"⇒ ζ: Repeated derivation from Ni gives ζ.

309

PCFG probability of a string

P(w1n) =
∑

t

P(w1n, t) t a parse of w1n

=
∑

{t :yield(t)=w1n}

P(t)

310

A simple PCFG (in CNF)

S → NP VP 1.0 NP → NP PP 0.4

PP → P NP 1.0 NP → astronomers 0.1

VP → V NP 0.7 NP → ears 0.18

VP → VP PP 0.3 NP → saw 0.04

P → with 1.0 NP → stars 0.18

V → saw 1.0 NP → telescopes 0.1

311

t1: S1.0

NP0.1

astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears
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t2: S1.0

NP0.1

astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18
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The two parse trees’ probabilities and the sen-

tence probability

P(t1) = 1.0× 0.1× 0.7× 1.0× 0.4

×0.18× 1.0× 1.0× 0.18

= 0.0009072

P(t2) = 1.0× 0.1× 0.3× 0.7× 1.0

×0.18× 1.0× 1.0× 0.18

= 0.0006804

P(w15) = P(t1)+ P(t2) = 0.0015876

314

Attachment ambiguities: A key parsing deci-

sion

! The main problem in parsing is working out how to

‘attach’ various kinds of constituents – PPs, adverbial

or participial phrases, coordinations, and so on

! Prepositional phrase attachment

" I saw the man with a telescope

! What does with a telescope modify?

" The verb saw?

" The noun man?

! Is the problem ‘AI-complete’? Yes, but . . .

315

Attachment ambiguities (2)

! Proposed simple structural factors

" Right association (Kimball 1973) = ‘low’ or ‘near’ at-

tachment = ‘late closure’ (of NP) [NP → NP PP]

" Minimal attachment (Frazier 1978) [depends on gram-

mar] = ‘high’ or ‘distant’ attachment = ‘early closure’

(of NP) [VP → V NP PP]

! Such simple structural factors dominated in early psy-

cholinguistics, and are still widely invoked.

! In the V NP PP context, right attachment gets it right in

55–67% of cases.

! But that means it gets it wrong in 33–45% of cases

316

Importance of lexical factors

! Words are good predictors (or even inducers) of attach-

ment (even absent understanding):

" The children ate the cake with a spoon.

" The children ate the cake with frosting.

" Moscow sent more than 100,000 soldiers into Afghanistan

" Sydney Water breached an agreement with NSW Health

! Ford et al. (1982):

" Ordering is jointly determined by strengths of al-

ternative lexical forms, alternative syntactic rewrite

rules, and the sequence of hypotheses in parsing

317

Attachment ambiguities S

NP

PRP

I

VP

V

VBD

saw

NP

DT

the

NN

man

PP

IN

with

NP

DT

a

NN

telescope

S

NP

PRP

I

VP

V

VBD

saw

v

NP

NP

DT

the

NN

man

n1

PP

IN

with

p

NP

DT

a

NN

telescope

n2

318



Andrew McCallum, UMass

The two parse trees’ probabilities
and the sentence probability
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Assumptions of PCFGsAssumptions of PCFGs

1. Place invariance (like time invariance in HMM):

∀k P(N
j
k(k+c) → ζ)is the same

2. Context-free:

P(N
j
kl → ζ|words outside wk . . .wl) = P(N

j
kl → ζ)

3. Ancestor-free:

P(N
j
kl → ζ|ancestor nodes of N

j
kl) = P(N

j
kl → ζ)

The sufficient statistics of a PCFG are thus simply counts of

how often different local tree configurations occurred

(= counts of which grammar rules were applied).

319

Some features of PCFGs

Reasons to use a PCFG, and some idea of their limitations:

! Partial solution for grammar ambiguity: a PCFG gives

some idea of the plausibility of a sentence.

! But, in the simple case, not a very good idea, as indepen-

dence assumptions are two strong (e.g., not lexicalized).

! Gives a probabilistic language model for English.

! In the simple case, a PCFG is a worse language model

for English than a trigram model.

! Better for grammar induction (Gold 1967 vs. Horning

1969)

! Robustness. (Admit everything with low probability.)

321

Some features of PCFGs

! A PCFG encodes certain biases, e.g., that smaller trees

are normally more probable.

! One can hope to combine the strengths of a PCFG and a

trigram model.

We’ll look at simple PCFGs first. They have certain inade-

quacies, but we’ll see that most of the state-of-the-art prob-

abilistic parsers are fundamentally PCFG models, just with

various enrichments to the grammar

322

Questions for PCFGs

Just as for HMMs, there are three basic questions we wish

to answer:

! Language modeling: P(w1m|G)

! Parsing: arg maxt P(t|w1m,G)

! Learning algorithm: Find G such that P(w1m|G) is max-

imized.

324

Chomsky Normal Form grammars

We’ll do the case of Chomsky Normal Form grammars, which

only have rules of the form:

Ni → NjNk

Ni → wj

Any CFG can be represented by a weakly equivalent CFG in

Chomsky Normal Form. It’s straightforward to generalize

the algorithm (recall chart parsing).

325

Probabilistic Regular Grammar:

Ni → wjNk

Ni → wj

Start state, N1

HMM:
∑
w1n

P(w1n) = 1 ∀n

whereas in a PCFG or a PRG:
∑

w∈L

P(w) = 1

327
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A slightly different task

- Been asking: What is probability of generating a 
given tree?  

- To pick tree with highest prob: useful in parsing.

-

- But could also ask: What is probability of 
generating a given string with the generator?

- To pick string with highest prob: useful in speech 
recognition, as substitute for an n-gram model. 

- (“Put the file in the folder” vs. “Put the file and the folder”)

- To get prob of generating string, must add up 
probabilities of all trees for the string …

time   1   flies   2     like    3      an    4    arrow    5

0

NP 3

Vst 3

NP 10

S 8  

S 13

  NP 24

S 22

S 27

NP 24

S 27

S 22

S 27

1  NP 4

VP 4

  NP 18

S 21

VP 18

2   P 2

V 5

 PP 12

VP 16

3    Det 1 NP 10

4     N 8

1  S ! NP VP
6  S ! Vst NP
2  S ! S PP
1  VP ! V NP

2  VP ! VP PP
1  NP ! Det N

2  NP ! NP PP
3  NP ! NP NP
0  PP ! P NP 

Could just add up the parse probabilities

2-22

2-27

2-27

2-22

2-27

oops, back to finding 

exponentially many 

parses
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S
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VP 4

  NP 18

S 21

VP 18

2   P 2
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VP 16

3    Det 1 NP 10

4     N 8

1  S ! NP VP
6  S ! Vst NP

2-2  S ! S PP
1  VP ! V NP

2  VP ! VP PP
1  NP ! Det N

2  NP ! NP PP
3  NP ! NP NP
0  PP ! P NP 

Any more efficient way?
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 2-27  
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Add as we go … (the “inside algorithm”)
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+2-27  
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2-22

+2-27  

2-22

+2-27 

+2-27 
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Inside and Outside Probabilities

Probability of all possible rule re-writes for 
generating words inside position p to q, 
given that non-terminal j exactly spans p to q.

Probability of all possible rule re-writes for 
generating words outside position p to q, 
and that non-terminal j exactly spans p to q.

Probabilistic Regular Grammar

Consider:

P(John decided to bake a)

High probability in HMM, low probability in a PRG or a PCFG.

Implement via sink (end) state.

A PRG

Start HMM Finish
Π

328

Comparison of HMMs (PRGs) and PCFGs

X: NP !→ N′ !→ N′ !→ N0
!→ sink

| | | |

O: the big brown box

NP

the N′

big N′

brown N0

box

329

Inside and outside probabilities

This suggests: whereas for an HMM we have:

Forwards = αi(t) = P(w1(t−1),Xt = i)

Backwards = βi(t) = P(wtT |Xt = i)

for a PCFG we make use of Inside and Outside probabilities,

defined as follows:

Outside = αj(p, q) = P(w1(p−1),N
j
pq,w(q+1)m|G)

Inside = βj(p, q) = P(wpq|N
j
pq,G)

A slight generalization of dynamic Bayes Nets covers PCFG

inference by the inside-outside algorithm (and-or tree of

conjunctive daughters disjunctively chosen)

330

Inside and outside probabilities in PCFGs.

w1 wmwp−1wp wqwq+1

N1

Nj

· · · · · · · · ·

α

β

331

Probability of a string

Inside probability

P(w1m|G) = P(N1 ⇒ w1m|G)

= P(w1m,N
1
1m,G) = β1(1,m)

Base case: We want to find βj(k, k) (the probability of a rule

Nj → wk):

βj(k, k) = P(wk|N
j
kk,G)

= P(Nj → wk|G)

332

Induction: We want to find βj(p, q), for p < q. As this is the inductive

step using a Chomsky Normal Form grammar, the first rule must be of

the form Nj → Nr Ns, so we can proceed by induction, dividing the

string in two in various places and summing the result:

Nj

Nr

wp wd

Ns

wd+1 wq

These inside probabilities can be calculated bottom up.
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Probabilistic Regular Grammar

Consider:

P(John decided to bake a)

High probability in HMM, low probability in a PRG or a PCFG.

Implement via sink (end) state.

A PRG

Start HMM Finish
Π

328

Comparison of HMMs (PRGs) and PCFGs

X: NP !→ N′ !→ N′ !→ N0
!→ sink

| | | |

O: the big brown box

NP

the N′

big N′

brown N0

box

329

Inside and outside probabilities

This suggests: whereas for an HMM we have:

Forwards = αi(t) = P(w1(t−1),Xt = i)

Backwards = βi(t) = P(wtT |Xt = i)

for a PCFG we make use of Inside and Outside probabilities,

defined as follows:

Outside = αj(p, q) = P(w1(p−1),N
j
pq,w(q+1)m|G)

Inside = βj(p, q) = P(wpq|N
j
pq,G)

A slight generalization of dynamic Bayes Nets covers PCFG

inference by the inside-outside algorithm (and-or tree of

conjunctive daughters disjunctively chosen)

330

Inside and outside probabilities in PCFGs.

w1 wmwp−1wp wqwq+1

N1

Nj

· · · · · · · · ·

α

β

331

Probability of a string

Inside probability

P(w1m|G) = P(N1 ⇒ w1m|G)

= P(w1m,N
1
1m,G) = β1(1,m)

Base case: We want to find βj(k, k) (the probability of a rule

Nj → wk):

βj(k, k) = P(wk|N
j
kk,G)

= P(Nj → wk|G)

332

Induction: We want to find βj(p, q), for p < q. As this is the inductive

step using a Chomsky Normal Form grammar, the first rule must be of

the form Nj → Nr Ns, so we can proceed by induction, dividing the

string in two in various places and summing the result:

Nj

Nr

wp wd

Ns

wd+1 wq

These inside probabilities can be calculated bottom up.
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Inside and Outside Probabilities

Probabilistic Regular Grammar

Consider:

P(John decided to bake a)

High probability in HMM, low probability in a PRG or a PCFG.

Implement via sink (end) state.

A PRG

Start HMM Finish
Π

328

Comparison of HMMs (PRGs) and PCFGs

X: NP !→ N′ !→ N′ !→ N0
!→ sink

| | | |

O: the big brown box

NP

the N′

big N′

brown N0

box

329

Inside and outside probabilities

This suggests: whereas for an HMM we have:

Forwards = αi(t) = P(w1(t−1),Xt = i)

Backwards = βi(t) = P(wtT |Xt = i)

for a PCFG we make use of Inside and Outside probabilities,

defined as follows:

Outside = αj(p, q) = P(w1(p−1),N
j
pq,w(q+1)m|G)

Inside = βj(p, q) = P(wpq|N
j
pq,G)

A slight generalization of dynamic Bayes Nets covers PCFG

inference by the inside-outside algorithm (and-or tree of

conjunctive daughters disjunctively chosen)

330

Inside and outside probabilities in PCFGs.

w1 wmwp−1wp wqwq+1

N1

Nj

· · · · · · · · ·

α

β

331

Probability of a string

Inside probability

P(w1m|G) = P(N1 ⇒ w1m|G)

= P(w1m,N
1
1m,G) = β1(1,m)

Base case: We want to find βj(k, k) (the probability of a rule

Nj → wk):

βj(k, k) = P(wk|N
j
kk,G)

= P(Nj → wk|G)

332

Induction: We want to find βj(p, q), for p < q. As this is the inductive

step using a Chomsky Normal Form grammar, the first rule must be of

the form Nj → Nr Ns, so we can proceed by induction, dividing the

string in two in various places and summing the result:

Nj

Nr

wp wd

Ns

wd+1 wq

These inside probabilities can be calculated bottom up.
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"VP(1,5) = p(flies like an arrow | VP)

#VP(1,5) = p(time VP today | S)

Inside & Outside Probabilities 

S

NP
time

VP

VP NP
today

VP
flies

PP

P
like

NP

Det
an

N   
 arrow

#VP(1,5) * "VP(1,5) 

= p(time [VP flies like an arrow] today | S) 

“inside” the VP

“outside” the VP
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"VP(1,5) = p(flies like an arrow | VP)

#VP(1,5) = p(time VP today | S)

Inside & Outside Probabilities 

S

NP
time

VP

VP NP
today

VP
flies

PP

P
like

NP

Det
an

N   
 arrow

#VP(1,5) * "VP(1,5) 

= p(time flies like an arrow today & VP(1,5) | S)

/ "S(0,6) 

p(time flies like an arrow today | S)

= p(VP(1,5) | time flies like an arrow today, S)

So #VP(1,5) * "VP(1,5) / "s(0,6) 

is probability that there is a VP here,
given all of the observed data (words)

Andrew McCallum, UMass

Probability of a string

Probabilistic Regular Grammar

Consider:

P(John decided to bake a)

High probability in HMM, low probability in a PRG or a PCFG.

Implement via sink (end) state.

A PRG

Start HMM Finish
Π

328

Comparison of HMMs (PRGs) and PCFGs

X: NP !→ N′ !→ N′ !→ N0
!→ sink

| | | |

O: the big brown box

NP

the N′

big N′

brown N0

box

329

Inside and outside probabilities

This suggests: whereas for an HMM we have:

Forwards = αi(t) = P(w1(t−1),Xt = i)

Backwards = βi(t) = P(wtT |Xt = i)

for a PCFG we make use of Inside and Outside probabilities,

defined as follows:

Outside = αj(p, q) = P(w1(p−1),N
j
pq,w(q+1)m|G)

Inside = βj(p, q) = P(wpq|N
j
pq,G)

A slight generalization of dynamic Bayes Nets covers PCFG

inference by the inside-outside algorithm (and-or tree of

conjunctive daughters disjunctively chosen)

330

Inside and outside probabilities in PCFGs.

w1 wmwp−1wp wqwq+1

N1

Nj

· · · · · · · · ·

α

β

331

Probability of a string

Inside probability

P(w1m|G) = P(N1 ⇒ w1m|G)

= P(w1m,N
1
1m,G) = β1(1,m)

Base case: We want to find βj(k, k) (the probability of a rule

Nj → wk):

βj(k, k) = P(wk|N
j
kk,G)

= P(Nj → wk|G)

332

Induction: We want to find βj(p, q), for p < q. As this is the inductive

step using a Chomsky Normal Form grammar, the first rule must be of

the form Nj → Nr Ns, so we can proceed by induction, dividing the

string in two in various places and summing the result:

Nj

Nr

wp wd

Ns

wd+1 wq

These inside probabilities can be calculated bottom up.
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Probability of a string

Probabilistic Regular Grammar

Consider:

P(John decided to bake a)

High probability in HMM, low probability in a PRG or a PCFG.

Implement via sink (end) state.

A PRG

Start HMM Finish
Π

328

Comparison of HMMs (PRGs) and PCFGs

X: NP !→ N′ !→ N′ !→ N0
!→ sink

| | | |

O: the big brown box

NP

the N′

big N′

brown N0

box

329

Inside and outside probabilities

This suggests: whereas for an HMM we have:

Forwards = αi(t) = P(w1(t−1),Xt = i)

Backwards = βi(t) = P(wtT |Xt = i)

for a PCFG we make use of Inside and Outside probabilities,

defined as follows:

Outside = αj(p, q) = P(w1(p−1),N
j
pq,w(q+1)m|G)

Inside = βj(p, q) = P(wpq|N
j
pq,G)

A slight generalization of dynamic Bayes Nets covers PCFG

inference by the inside-outside algorithm (and-or tree of

conjunctive daughters disjunctively chosen)
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Inside and outside probabilities in PCFGs.

w1 wmwp−1wp wqwq+1

N1

Nj

· · · · · · · · ·

α

β

331

Probability of a string

Inside probability

P(w1m|G) = P(N1 ⇒ w1m|G)

= P(w1m,N
1
1m,G) = β1(1,m)

Base case: We want to find βj(k, k) (the probability of a rule

Nj → wk):

βj(k, k) = P(wk|N
j
kk,G)

= P(Nj → wk|G)

332

Induction: We want to find βj(p, q), for p < q. As this is the inductive

step using a Chomsky Normal Form grammar, the first rule must be of

the form Nj → Nr Ns, so we can proceed by induction, dividing the

string in two in various places and summing the result:

Nj

Nr

wp wd

Ns

wd+1 wq

These inside probabilities can be calculated bottom up.
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For all j,

βj(p, q) = P(wpq|N
j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(wpd,N
r
pd,w(d+1)q,N

s
(d+1)q|N

j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
j
pq,N

r
pd,N

s
(d+1)q,G)

P(w(d+1)q|N
j
pq,N

r
pd,N

s
(d+1)q,wpd,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
r
pd,G)P(w(d+1)q|N

s
(d+1)q,G)

=
∑
r ,s

q−1∑

d=p

P(Nj → NrNs)βr (p, d)βs(d + 1, q)

334

Calculation of inside probabilities (CKY algorithm)

1 2 3 4 5

1 βNP = 0.1 βS = 0.0126 βS = 0.0015876

2 βNP = 0.04

βV = 1.0

βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296

4 βP = 1.0 βPP = 0.18

5 βNP = 0.18

astronomers saw stars with ears
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Outside probabilities

Probability of a string: For any k, 1 ≤ k ≤m,

P(w1m|G) =
∑

j

P(w1(k−1),wk,w(k+1)m,N
j
kk|G)

=
∑

j

P(w1(k−1),N
j
kk,w(k+1)m|G)

×P(wk|w1(k−1),N
j
kk,w(k+1)n,G)

=
∑

j

αj(k, k)P(N
j → wk)

Inductive (DP) calculation: One calculates the outside probabilities top

down (after determining the inside probabilities).
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Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j %= 1

Inductive Case: it’s either a left or right branch – we will some over

both possibilities and calculate using outside and inside probabilities

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm

338

Inductive Case:

αj(p, q) =
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(q+1)m,N
f
pe,N

j
pq,N

g
(q+1)e)

]

+
[∑

f ,g

p−1∑

e=1

P(w1(p−1),w(q+1)m,N
f
eq,N

g
e(p−1),N

j
pq)
]

=
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(e+1)m,N
f
pe)P(N

j
pq,N

g
(q+1)e|N

f
pe)

×P(w(q+1)e|N
g
(q+1)e)

]
+
[∑

f ,g

p−1∑

e=1

P(w1(e−1),w(q+1)m,N
f
eq)

×P(N
g
e(p−1),N

j
pq|N

f
eq)P(we(p−1)|N

g
e(p−1)

]

=
[∑

f ,g

m∑

e=q+1

αf (p, e)P(N
f → Nj Ng)βg(q + 1, e)

]

+
[∑

f ,g

p−1∑

e=1

αf (e, q)P(N
f → Ng Nj)βg(e, p − 1)

]

340

Overall probability of a node existing

As with a HMM, we can form a product of the inside and

outside probabilities. This time:

αj(p, q)βj(p, q)

= P(w1(p−1),N
j
pq,w(q+1)m|G)P(wpq|N

j
pq,G)

= P(w1m,N
j
pq|G)

Therefore,

p(w1m,Npq|G) =
∑

j

αj(p, q)βj(p, q)

Just in the cases of the root node and the preterminals, we

know there will always be some such constituent.

341
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Inside probabilities as CYK
For all j,

βj(p, q) = P(wpq|N
j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(wpd,N
r
pd,w(d+1)q,N

s
(d+1)q|N

j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
j
pq,N

r
pd,N

s
(d+1)q,G)

P(w(d+1)q|N
j
pq,N

r
pd,N

s
(d+1)q,wpd,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
r
pd,G)P(w(d+1)q|N

s
(d+1)q,G)

=
∑
r ,s

q−1∑

d=p

P(Nj → NrNs)βr (p, d)βs(d + 1, q)

334

Calculation of inside probabilities (CKY algorithm)

1 2 3 4 5

1 βNP = 0.1 βS = 0.0126 βS = 0.0015876

2 βNP = 0.04

βV = 1.0

βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296

4 βP = 1.0 βPP = 0.18

5 βNP = 0.18

astronomers saw stars with ears
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Outside probabilities

Probability of a string: For any k, 1 ≤ k ≤m,

P(w1m|G) =
∑

j

P(w1(k−1),wk,w(k+1)m,N
j
kk|G)

=
∑

j

P(w1(k−1),N
j
kk,w(k+1)m|G)

×P(wk|w1(k−1),N
j
kk,w(k+1)n,G)

=
∑

j

αj(k, k)P(N
j → wk)

Inductive (DP) calculation: One calculates the outside probabilities top

down (after determining the inside probabilities).
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Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j %= 1

Inductive Case: it’s either a left or right branch – we will some over

both possibilities and calculate using outside and inside probabilities

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm

338

Inductive Case:

αj(p, q) =
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(q+1)m,N
f
pe,N

j
pq,N

g
(q+1)e)

]

+
[∑

f ,g

p−1∑

e=1

P(w1(p−1),w(q+1)m,N
f
eq,N

g
e(p−1),N

j
pq)
]

=
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(e+1)m,N
f
pe)P(N

j
pq,N

g
(q+1)e|N

f
pe)

×P(w(q+1)e|N
g
(q+1)e)

]
+
[∑

f ,g

p−1∑

e=1

P(w1(e−1),w(q+1)m,N
f
eq)

×P(N
g
e(p−1),N

j
pq|N

f
eq)P(we(p−1)|N

g
e(p−1)

]

=
[∑

f ,g

m∑

e=q+1

αf (p, e)P(N
f → Nj Ng)βg(q + 1, e)

]

+
[∑

f ,g

p−1∑

e=1

αf (e, q)P(N
f → Ng Nj)βg(e, p − 1)

]

340

Overall probability of a node existing

As with a HMM, we can form a product of the inside and

outside probabilities. This time:

αj(p, q)βj(p, q)

= P(w1(p−1),N
j
pq,w(q+1)m|G)P(wpq|N

j
pq,G)

= P(w1m,N
j
pq|G)

Therefore,

p(w1m,Npq|G) =
∑

j

αj(p, q)βj(p, q)

Just in the cases of the root node and the preterminals, we

know there will always be some such constituent.
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Outside probabilities

For all j,

βj(p, q) = P(wpq|N
j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(wpd,N
r
pd,w(d+1)q,N

s
(d+1)q|N

j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
j
pq,N

r
pd,N

s
(d+1)q,G)

P(w(d+1)q|N
j
pq,N

r
pd,N

s
(d+1)q,wpd,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
r
pd,G)P(w(d+1)q|N

s
(d+1)q,G)

=
∑
r ,s

q−1∑

d=p

P(Nj → NrNs)βr (p, d)βs(d + 1, q)

334

Calculation of inside probabilities (CKY algorithm)

1 2 3 4 5

1 βNP = 0.1 βS = 0.0126 βS = 0.0015876

2 βNP = 0.04

βV = 1.0

βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296

4 βP = 1.0 βPP = 0.18

5 βNP = 0.18

astronomers saw stars with ears
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Outside probabilities

Probability of a string: For any k, 1 ≤ k ≤m,

P(w1m|G) =
∑

j

P(w1(k−1),wk,w(k+1)m,N
j
kk|G)

=
∑

j

P(w1(k−1),N
j
kk,w(k+1)m|G)

×P(wk|w1(k−1),N
j
kk,w(k+1)n,G)

=
∑

j

αj(k, k)P(N
j → wk)

Inductive (DP) calculation: One calculates the outside probabilities top

down (after determining the inside probabilities).
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Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j %= 1

Inductive Case: it’s either a left or right branch – we will some over

both possibilities and calculate using outside and inside probabilities

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm

338

Inductive Case:

αj(p, q) =
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(q+1)m,N
f
pe,N

j
pq,N

g
(q+1)e)

]

+
[∑

f ,g

p−1∑

e=1

P(w1(p−1),w(q+1)m,N
f
eq,N

g
e(p−1),N

j
pq)
]

=
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(e+1)m,N
f
pe)P(N

j
pq,N

g
(q+1)e|N

f
pe)

×P(w(q+1)e|N
g
(q+1)e)

]
+
[∑

f ,g

p−1∑

e=1

P(w1(e−1),w(q+1)m,N
f
eq)

×P(N
g
e(p−1),N

j
pq|N

f
eq)P(we(p−1)|N

g
e(p−1)

]

=
[∑

f ,g

m∑

e=q+1

αf (p, e)P(N
f → Nj Ng)βg(q + 1, e)

]

+
[∑

f ,g

p−1∑

e=1

αf (e, q)P(N
f → Ng Nj)βg(e, p − 1)

]

340

Overall probability of a node existing

As with a HMM, we can form a product of the inside and

outside probabilities. This time:

αj(p, q)βj(p, q)

= P(w1(p−1),N
j
pq,w(q+1)m|G)P(wpq|N

j
pq,G)

= P(w1m,N
j
pq|G)

Therefore,

p(w1m,Npq|G) =
∑

j

αj(p, q)βj(p, q)

Just in the cases of the root node and the preterminals, we

know there will always be some such constituent.
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Outside probabilities

For all j,

βj(p, q) = P(wpq|N
j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(wpd,N
r
pd,w(d+1)q,N

s
(d+1)q|N

j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
j
pq,N

r
pd,N

s
(d+1)q,G)

P(w(d+1)q|N
j
pq,N

r
pd,N

s
(d+1)q,wpd,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
r
pd,G)P(w(d+1)q|N

s
(d+1)q,G)

=
∑
r ,s

q−1∑

d=p

P(Nj → NrNs)βr (p, d)βs(d + 1, q)

334

Calculation of inside probabilities (CKY algorithm)

1 2 3 4 5

1 βNP = 0.1 βS = 0.0126 βS = 0.0015876

2 βNP = 0.04

βV = 1.0

βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296

4 βP = 1.0 βPP = 0.18

5 βNP = 0.18

astronomers saw stars with ears
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Outside probabilities

Probability of a string: For any k, 1 ≤ k ≤m,

P(w1m|G) =
∑

j

P(w1(k−1),wk,w(k+1)m,N
j
kk|G)

=
∑

j

P(w1(k−1),N
j
kk,w(k+1)m|G)

×P(wk|w1(k−1),N
j
kk,w(k+1)n,G)

=
∑

j

αj(k, k)P(N
j → wk)

Inductive (DP) calculation: One calculates the outside probabilities top

down (after determining the inside probabilities).

336

Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j %= 1

Inductive Case: it’s either a left or right branch – we will some over

both possibilities and calculate using outside and inside probabilities

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm

338

Inductive Case:

αj(p, q) =
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(q+1)m,N
f
pe,N

j
pq,N

g
(q+1)e)

]

+
[∑

f ,g

p−1∑

e=1

P(w1(p−1),w(q+1)m,N
f
eq,N

g
e(p−1),N

j
pq)
]

=
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(e+1)m,N
f
pe)P(N

j
pq,N

g
(q+1)e|N

f
pe)

×P(w(q+1)e|N
g
(q+1)e)

]
+
[∑

f ,g

p−1∑

e=1

P(w1(e−1),w(q+1)m,N
f
eq)

×P(N
g
e(p−1),N

j
pq|N

f
eq)P(we(p−1)|N

g
e(p−1)

]

=
[∑

f ,g

m∑

e=q+1

αf (p, e)P(N
f → Nj Ng)βg(q + 1, e)

]

+
[∑

f ,g

p−1∑

e=1

αf (e, q)P(N
f → Ng Nj)βg(e, p − 1)

]

340

Overall probability of a node existing

As with a HMM, we can form a product of the inside and

outside probabilities. This time:

αj(p, q)βj(p, q)

= P(w1(p−1),N
j
pq,w(q+1)m|G)P(wpq|N

j
pq,G)

= P(w1m,N
j
pq|G)

Therefore,

p(w1m,Npq|G) =
∑

j

αj(p, q)βj(p, q)

Just in the cases of the root node and the preterminals, we

know there will always be some such constituent.
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Outside probabilities, 
Inductive case

For all j,

βj(p, q) = P(wpq|N
j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(wpd,N
r
pd,w(d+1)q,N

s
(d+1)q|N

j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
j
pq,N

r
pd,N

s
(d+1)q,G)

P(w(d+1)q|N
j
pq,N

r
pd,N

s
(d+1)q,wpd,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
r
pd,G)P(w(d+1)q|N

s
(d+1)q,G)

=
∑
r ,s

q−1∑

d=p

P(Nj → NrNs)βr (p, d)βs(d + 1, q)

334

Calculation of inside probabilities (CKY algorithm)

1 2 3 4 5

1 βNP = 0.1 βS = 0.0126 βS = 0.0015876

2 βNP = 0.04

βV = 1.0

βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296

4 βP = 1.0 βPP = 0.18

5 βNP = 0.18

astronomers saw stars with ears
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Outside probabilities

Probability of a string: For any k, 1 ≤ k ≤m,

P(w1m|G) =
∑

j

P(w1(k−1),wk,w(k+1)m,N
j
kk|G)

=
∑

j

P(w1(k−1),N
j
kk,w(k+1)m|G)

×P(wk|w1(k−1),N
j
kk,w(k+1)n,G)

=
∑

j

αj(k, k)P(N
j → wk)

Inductive (DP) calculation: One calculates the outside probabilities top

down (after determining the inside probabilities).

336

Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j %= 1

Inductive Case: it’s either a left or right branch – we will some over

both possibilities and calculate using outside and inside probabilities

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm
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Inductive Case:

αj(p, q) =
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(q+1)m,N
f
pe,N

j
pq,N

g
(q+1)e)

]

+
[∑

f ,g

p−1∑

e=1

P(w1(p−1),w(q+1)m,N
f
eq,N

g
e(p−1),N

j
pq)
]

=
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(e+1)m,N
f
pe)P(N

j
pq,N

g
(q+1)e|N

f
pe)

×P(w(q+1)e|N
g
(q+1)e)

]
+
[∑

f ,g

p−1∑

e=1

P(w1(e−1),w(q+1)m,N
f
eq)

×P(N
g
e(p−1),N

j
pq|N

f
eq)P(we(p−1)|N

g
e(p−1)

]

=
[∑

f ,g

m∑

e=q+1

αf (p, e)P(N
f → Nj Ng)βg(q + 1, e)

]

+
[∑

f ,g

p−1∑

e=1

αf (e, q)P(N
f → Ng Nj)βg(e, p − 1)

]
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Overall probability of a node existing

As with a HMM, we can form a product of the inside and

outside probabilities. This time:

αj(p, q)βj(p, q)

= P(w1(p−1),N
j
pq,w(q+1)m|G)P(wpq|N

j
pq,G)

= P(w1m,N
j
pq|G)

Therefore,

p(w1m,Npq|G) =
∑

j

αj(p, q)βj(p, q)

Just in the cases of the root node and the preterminals, we

know there will always be some such constituent.

341



Andrew McCallum, UMass

Probability that a rule is used

P (N
j
pq|w1m, G) =

P (N
j
pq|w1m, G)

P (w1m|G)
=

αj(p, q)βj(p, q)

β1(1, m)

For all j,

βj(p, q) = P(wpq|N
j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(wpd,N
r
pd,w(d+1)q,N

s
(d+1)q|N

j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
j
pq,N

r
pd,N

s
(d+1)q,G)

P(w(d+1)q|N
j
pq,N

r
pd,N

s
(d+1)q,wpd,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
r
pd,G)P(w(d+1)q|N

s
(d+1)q,G)

=
∑
r ,s

q−1∑

d=p

P(Nj → NrNs)βr (p, d)βs(d + 1, q)

334

Calculation of inside probabilities (CKY algorithm)

1 2 3 4 5

1 βNP = 0.1 βS = 0.0126 βS = 0.0015876

2 βNP = 0.04

βV = 1.0

βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296

4 βP = 1.0 βPP = 0.18

5 βNP = 0.18

astronomers saw stars with ears

335

Outside probabilities

Probability of a string: For any k, 1 ≤ k ≤m,

P(w1m|G) =
∑

j

P(w1(k−1),wk,w(k+1)m,N
j
kk|G)

=
∑

j

P(w1(k−1),N
j
kk,w(k+1)m|G)

×P(wk|w1(k−1),N
j
kk,w(k+1)n,G)

=
∑

j

αj(k, k)P(N
j → wk)

Inductive (DP) calculation: One calculates the outside probabilities top

down (after determining the inside probabilities).

336

Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j %= 1

Inductive Case: it’s either a left or right branch – we will some over

both possibilities and calculate using outside and inside probabilities

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm

338

Inductive Case:

αj(p, q) =
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(q+1)m,N
f
pe,N

j
pq,N

g
(q+1)e)

]

+
[∑

f ,g

p−1∑

e=1

P(w1(p−1),w(q+1)m,N
f
eq,N

g
e(p−1),N

j
pq)
]

=
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(e+1)m,N
f
pe)P(N

j
pq,N

g
(q+1)e|N

f
pe)

×P(w(q+1)e|N
g
(q+1)e)

]
+
[∑

f ,g

p−1∑

e=1

P(w1(e−1),w(q+1)m,N
f
eq)

×P(N
g
e(p−1),N

j
pq|N

f
eq)P(we(p−1)|N

g
e(p−1)

]

=
[∑

f ,g

m∑

e=q+1

αf (p, e)P(N
f → Nj Ng)βg(q + 1, e)

]

+
[∑

f ,g

p−1∑

e=1

αf (e, q)P(N
f → Ng Nj)βg(e, p − 1)

]

340

Overall probability of a node existing

As with a HMM, we can form a product of the inside and

outside probabilities. This time:

αj(p, q)βj(p, q)

= P(w1(p−1),N
j
pq,w(q+1)m|G)P(wpq|N

j
pq,G)

= P(w1m,N
j
pq|G)

Therefore,

p(w1m,Npq|G) =
∑

j

αj(p, q)βj(p, q)

Just in the cases of the root node and the preterminals, we

know there will always be some such constituent.
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This is an “expected count” for the number of times
this rule occurred.
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Overall probability of a node existing

For all j,

βj(p, q) = P(wpq|N
j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(wpd,N
r
pd,w(d+1)q,N

s
(d+1)q|N

j
pq,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
j
pq,N

r
pd,N

s
(d+1)q,G)

P(w(d+1)q|N
j
pq,N

r
pd,N

s
(d+1)q,wpd,G)

=
∑
r ,s

q−1∑

d=p

P(Nrpd,N
s
(d+1)q|N

j
pq,G)

P(wpd|N
r
pd,G)P(w(d+1)q|N

s
(d+1)q,G)

=
∑
r ,s

q−1∑

d=p

P(Nj → NrNs)βr (p, d)βs(d + 1, q)

334

Calculation of inside probabilities (CKY algorithm)

1 2 3 4 5

1 βNP = 0.1 βS = 0.0126 βS = 0.0015876

2 βNP = 0.04

βV = 1.0

βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296

4 βP = 1.0 βPP = 0.18

5 βNP = 0.18

astronomers saw stars with ears

335

Outside probabilities

Probability of a string: For any k, 1 ≤ k ≤m,

P(w1m|G) =
∑

j

P(w1(k−1),wk,w(k+1)m,N
j
kk|G)

=
∑

j

P(w1(k−1),N
j
kk,w(k+1)m|G)

×P(wk|w1(k−1),N
j
kk,w(k+1)n,G)

=
∑

j

αj(k, k)P(N
j → wk)

Inductive (DP) calculation: One calculates the outside probabilities top

down (after determining the inside probabilities).

336

Outside probabilities

Base Case:

α1(1,m) = 1

αj(1,m) = 0, for j %= 1

Inductive Case: it’s either a left or right branch – we will some over

both possibilities and calculate using outside and inside probabilities

N1

N
f
pe

N
j
pq

w1 · · ·wp−1 wp · · ·wq

N
g
(q+1)e

wq+1 · · ·we we+1 · · ·wm
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Inductive Case:

αj(p, q) =
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(q+1)m,N
f
pe,N

j
pq,N

g
(q+1)e)

]

+
[∑

f ,g

p−1∑

e=1

P(w1(p−1),w(q+1)m,N
f
eq,N

g
e(p−1),N

j
pq)
]

=
[∑

f ,g

m∑

e=q+1

P(w1(p−1),w(e+1)m,N
f
pe)P(N

j
pq,N

g
(q+1)e|N

f
pe)

×P(w(q+1)e|N
g
(q+1)e)

]
+
[∑

f ,g

p−1∑

e=1

P(w1(e−1),w(q+1)m,N
f
eq)

×P(N
g
e(p−1),N

j
pq|N

f
eq)P(we(p−1)|N

g
e(p−1)

]

=
[∑

f ,g

m∑

e=q+1

αf (p, e)P(N
f → Nj Ng)βg(q + 1, e)

]

+
[∑

f ,g

p−1∑

e=1

αf (e, q)P(N
f → Ng Nj)βg(e, p − 1)

]

340

Overall probability of a node existing

As with a HMM, we can form a product of the inside and

outside probabilities. This time:

αj(p, q)βj(p, q)

= P(w1(p−1),N
j
pq,w(q+1)m|G)P(wpq|N

j
pq,G)

= P(w1m,N
j
pq|G)

Therefore,

p(w1m,Npq|G) =
∑

j

αj(p, q)βj(p, q)

Just in the cases of the root node and the preterminals, we

know there will always be some such constituent.
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Learning PCFGs (1)

Finding the most likely parse (Viterbi algorithm)

Like inside algorithm, but find maximum rather than sum

Record which rule gave this maximum

δi(p, q) = the highest inside probability parse of a subtree Nipq

1. Initialization: δi(p, p) = P(N
i → wp)

2. Induction

δi(p, q) = max
1≤j,k≤n
p≤r<q

P(Ni → Nj Nk)δj(p, r)δk(r + 1, q)

3. Store backtrace

ψi(p, q) = arg max
(j,k,r)

P(Ni → Nj Nk)δj(p, r)δk(r + 1, q)

4. From start symbol N1, most likely parse t is:

t begins with ψ1(1,m). P(t̂) = δ1(1,m)

342

Calculation of Viterbi probabilities (CKY algorithm)

1 2 3 4 5

1 δNP = 0.1 δS = 0.0126 δS = 0.0009072

2 δNP = 0.04

δV = 1.0

δVP = 0.126 δVP = 0.009072

3 δNP = 0.18 δNP = 0.01296

4 δP = 1.0 δPP = 0.18

5 δNP = 0.18

astronomers saw stars with ears
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Learning PCFGs (1)

! We would like to calculate how often each rule is used:

P̂ (Nj → ζ) =
C(Nj → ζ)∑
γ C(N

j → γ)

! If we have labeled data, we count and find out

! Relative frequency again gives maximum likelihood prob-

ability estimates

! This is the motivation for building Treebanks of hand-

parsed sentences

351

Learning PCFGs (2): the Inside-Outside algorithm

(Baker 1979)

! Otherwise we work iteratively from expectations of cur-

rent model.

! We construct an EM training algorithm, as for HMMs

! For each sentence, at each iteration, we work out expec-

tation of how often each rule is used using inside and

outside probabilities

! We assume sentences are independent and sum expec-

tations over parses of each

! We re-estimate rules based on these ‘counts’

352
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Learning PCFGs (2)
Inside-Outside

Finding the most likely parse (Viterbi algorithm)

Like inside algorithm, but find maximum rather than sum

Record which rule gave this maximum

δi(p, q) = the highest inside probability parse of a subtree Nipq

1. Initialization: δi(p, p) = P(N
i → wp)

2. Induction

δi(p, q) = max
1≤j,k≤n
p≤r<q

P(Ni → Nj Nk)δj(p, r)δk(r + 1, q)

3. Store backtrace

ψi(p, q) = arg max
(j,k,r)

P(Ni → Nj Nk)δj(p, r)δk(r + 1, q)

4. From start symbol N1, most likely parse t is:

t begins with ψ1(1,m). P(t̂) = δ1(1,m)

342

Calculation of Viterbi probabilities (CKY algorithm)

1 2 3 4 5

1 δNP = 0.1 δS = 0.0126 δS = 0.0009072

2 δNP = 0.04

δV = 1.0

δVP = 0.126 δVP = 0.009072

3 δNP = 0.18 δNP = 0.01296

4 δP = 1.0 δPP = 0.18

5 δNP = 0.18

astronomers saw stars with ears

343

Learning PCFGs (1)

! We would like to calculate how often each rule is used:

P̂ (Nj → ζ) =
C(Nj → ζ)∑
γ C(N

j → γ)

! If we have labeled data, we count and find out

! Relative frequency again gives maximum likelihood prob-

ability estimates

! This is the motivation for building Treebanks of hand-

parsed sentences

351

Learning PCFGs (2): the Inside-Outside algorithm

(Baker 1979)

! Otherwise we work iteratively from expectations of cur-

rent model.

! We construct an EM training algorithm, as for HMMs

! For each sentence, at each iteration, we work out expec-

tation of how often each rule is used using inside and

outside probabilities

! We assume sentences are independent and sum expec-

tations over parses of each

! We re-estimate rules based on these ‘counts’
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