Probability

Introduction to Natural Language Processing CMPSCI 585, Spring 2004
University of Massachusetts Amherst

Andrew McCallum

Grading

- 32% Homework (4 programs \& writeup)
- 25\% Final project
- 10\% Midterm Exam
- 15\% Final Exam
- 5\% Classroom participation
- $3 \%+$ E.C.
"Pen/Pencil Quizzes"

Syllabus

- Probability and Information Theory
- Spam filtering or email categorization
- Language models and clustering - Word sense disambiguation
- Hidden Markov models
- Part-of-speech tagging
- SPRING BREAK
- Parsing
- Build a Probabilistic Context Free Parser
- Information extraction
- Machine translation
- Semantics \& discourse
- Final project!

Probability Theory

- Probability theory deals with predicting how likely it is that something will happen.
- Toss 3 coins,
how likely is it that all come up heads?
- See phrase "more lies ahead",
how likely is it that "lies" is noun?
- See "Nigerian minister of defense" in email, how likely is it that the email is spam?
- See "Le chien est noir",
how likely is it that the correct translation is "The dog is black"?

Experiments and Sample Spaces

- Experiment (or trial)
- repeatable process by which observations are made
- e.g. tossing 3 coins
- Observe basic outcome from
sample space, Ω, (set of all possible basic outcomes), e.g.
- one coin toss, sample space $\Omega=\{\mathrm{H}, \mathrm{T}\}$;
basic outcome $=\mathrm{H}$ or T
- three coin tosses, $\Omega=\{$ HHH, HHT, HTH, ,.., TTT $\}$
- Part-of-speech of a word, $\Omega=\left\{\mathrm{CC}_{1}, \mathrm{CD}_{2}, \mathrm{CT}_{3}, \ldots, \mathrm{WRB}_{36}\right\}$
- lottery tickets, $|\Omega|=10^{7}$
- next word in Shakespeare play, $|\Omega|=$ size of vocabulary
- number of words in your Ph.D. thesis $\Omega=\{0,1, \ldots \infty\}$ discrete,
- length of time of "a" sounds when I said "sample". continuous, countably infinite

Events and Event Spaces

- An event, A , is a set of basic outcomes i.e., a subset of the sample space, Ω.
- Intuitively, a question you could ask about an outcome.
$-\Omega=\{\mathrm{HHH}$, HHT, HTH, HTT, THH, THT, TTH, TTT $\}$
- e.g. basic outcome $=$ THH
- e.g. event = "has exactly 2 H 's", $\mathrm{A}=\{\mathrm{THH}, \mathrm{HHT}, \mathrm{HTH}\}$
$-A=\Omega$ is the certain event, $A=\varnothing$ is the impossible event.
- For "not A", we write $\overline{\mathrm{A}}$
- A common event space, F, is the power set of the sample space, Ω. (power set is written 2^{Ω})
- Intuitively: all possible questions you could ask about a basic outcome.

Probability

- A probability is a number between 0 and 1 .
- 0 indicates impossibility
- 1 indicates certainty
- A probability function, P , (or probability distribution) distributes probability mass of 1 throughout the event space, F.
$-\mathrm{P}: \mathrm{F} \rightarrow[0,1]$
$-P(\Omega)=1$
- Countable additivity: For disjoint events A_{j} in F $P\left(U_{j} A_{i}\right)=\Sigma_{j} P\left(A_{j}\right)$
- We call $P(A)$ "the probability of event A ".
- Well-defined probability space consists of
- sample space Ω
- event space F
- probability function P

Probability (more intuitively)

- Repeat an experiment many, many times. (Let $\mathrm{T}=$ number of times.)
- Count the number of basic outcomes that are a member of event A .
(Let $\mathrm{C}=$ this count.)
- The ratio C / T will approach (some unknown) but constant value.
- Call this constant "the probability of event A "; write it $P(A)$.

Why is the probability this ratio of counts?
Stay tuned! Maximum likelihood estimation at end.

Example: Uniform Distribution

- "A fair coin is tossed 3 times. What is the likelihood of 2 heads?"
- Experiment: Toss a coin three times, $\Omega=\{$ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT $\}$
- Event: basic outcome has exactly 2 H's $A=\{T H H, H T H, H H T\}$
- Assume a uniform distribution over outcomes
- Each basic outcome is equally likely
$-P(\{H H H\})=P(\{H H T\})=\ldots=P(\{T T T\})$
- $\mathrm{P}(\mathrm{A})=|\mathrm{A}| /|\Omega|=3 / 8=0.375$

Probability (again)

- A probability is a number between 0 and 1 .
- 0 indicates impossibility
- 1 indicates certainty
- A probability function, P , (or probability distribution) distributes probability mass of 1 throughout the event space, F.
$-\mathrm{P}: F \rightarrow[0,1]$
$-P(\Omega)=1$
- Countable additivity: For disjoint events A_{j} in F $P\left(\cup_{j} A_{j}\right)=\Sigma_{j} P\left(A_{j}\right)$
- The above are axioms of probability theory
- Immediate consequences:
$-P(\varnothing)=0, \bar{P}(A)=1-P(A), A \subseteq B-P(A) \leq P(B)$,
$\Sigma_{\mathrm{a} \in \Omega} \mathrm{P}(\mathrm{a})=1$, for $\mathrm{a}=$ basic outcome.

Joint and Conditional Probability

- Joint probability of A and B : $P(A \cap B)$ is usually written $P(A, B)$
- Conditional probability of A given B : $P(A \mid B)=P(A, B)$
$P(B)$

Two Useful Rules

- Multiplication Rule

$$
P(A, B)=P(A \mid B) P(B)
$$

(equivalent to conditional probability definition from previous slide)

- Total Probability Rule (Sum Rule)

$$
P(A)=P(A, B)+P(\bar{A}, B)
$$

or more generally, if B can take on n values $\mathrm{P}(\mathrm{A})=\Sigma_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{P}\left(\mathrm{A}, \mathrm{B}_{\mathrm{i}}\right)$
(from additivity axiom)

Conditional Probability Table

What does it look like "under the hood"?
P (precipitation I temperature)

	sun	rain	sleet	snow
10 s	0.9	0.0	0.0	0.1
20 s	0.8	0.0	0.0	0.2
30 s	0.5	0.1	0.1	0.3
40 s	0.6	0.3	0.1	0.0
50 s	0.6	0.4	0.0	0.0
60 s	0.6	0.4	0.0	0.0
70 s	0.7	0.3	0.0	0.0
80 s	0.7	0.3	0.0	0.0
90 s	0.8	0.2	0.0	0.0
100 s	0.8	0.2	0.0	0.0

it takes 40 numbers

Bayes Rule

- $P(A, B)=P(B, A)$, since $P(A \cap B)=P(B \cap A)$
- Therefore $P(A \mid B) P(B)=P(B \mid A) P(A)$, and thus...
- $P(A \mid B)=P(B \mid A) P(A)$
$P(B)$

Bayes Rule lets you swap the order of the dependence between events...
calculate $P(A I B)$ in terms of $P(B I A)$

Independence

- Can we compute $P(A, B)$ from $P(A)$ and $P(B)$?
- Recall:

$$
P(A, B)=P(B \mid A) p(A) \quad \text { (multiplication rule) }
$$

- We are almost there: How does $P(B \mid A)$ relate to $P(B)$? $P(B \mid A)=P(B)$ iff B and A are independent!
- Examples:
- Two coin tosses
- Color shirt I'm wearing today, what a Bill Clinton had for breakfast.
- Two events A, B are independent from each other if $P(A, B)=P(A) P(B) \quad$ Equivalent to $P(B)=P(B \mid A)$ (if $P(A) \neq 0$)
- Otherwise they are dependent.

Chain Rule
$\begin{aligned} P\left(A_{1}, A_{2}, A_{3}, A_{4}, \ldots A_{n}\right)= & \\ & P\left(A_{1} \mid A_{2}, A_{3}, A_{4}, \ldots A_{n}\right) \\ & P\left(A_{2} \mid A_{3}, A_{4}, \ldots A_{n}\right) \\ & P\left(A_{3} \mid A_{4}, \ldots A_{n}\right) \\ & \ldots \\ & P\left(A_{n}\right) \end{aligned}$
Furthermore, if $A_{1} \ldots A_{n}$ are all independent from each other...

Chain Rule

If $A_{1} \ldots A_{n}$ are all independent from each other
$P\left(A_{1}, A_{2}, A_{3}, A_{4}, \ldots A_{n}\right)=$
$P\left(A_{1}\right)$
$P\left(A_{2}\right)$
$P\left(A_{3}\right)$
$P\left(A_{n}\right)$

Example: Two ways, same answer

- "A fair coin is tossed 3 times. What is the likelihood of 3 heads?"
- Experiment: Toss a coin three times,
$\Omega=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
- Event: basic outcome has exactly 3 H's $A=\{H H H\}$
- Chain rule
$P(\mathrm{HHH})=P(H) P(H \mid H) P(H \mid H H)$

$$
=P(H) P(H) P(H)=(0.5)^{3}=1 / 8
$$

- Size of event spaces
$P(H H H)=|A| /|\Omega|=1 / 8$

Finding most likely posterior event

- $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} \quad$ (for example, $P($ (Tlies"Noun|"more lies ahead")
- Want to find most likely A given B, but $P(B)$ is sometimes a pain to calculate...
- $\arg \max _{A} \xrightarrow{P(B \mid A) P(A)}=\arg \max _{A} P(B \mid A) P(A)$ P(B)
because B is constant while changing A

Random Variables

- A random variable is a function $\mathrm{X}: \Omega \rightarrow \mathrm{Q}$ - in general $Q=\Re^{\text {n }}$, but more generally simply $\mathrm{Q}=\mathfrak{R}$ - makes it easier to talk about numerical values related to event space
- Random variable is discrete if Q is countable
- Example: coin $\mathrm{Q}=\{0,1\}$, die $\mathrm{Q}=[1,6]$
- Called an indicator variable or Bernoulli trial if $Q \in\{0,1\}$
- Example:
- Suppose event space comes from tossing two dice.
- We can define a random variable X that is the sum of their faces
- X: $\Omega \rightarrow\{2, . .12\}$

Because a random variable has a numeric range, we can often do math more easily by working with values of the random variable than directly with events.

Expected Value

- ... is a weighted average, or mean, of a random variable $E[X]=\Sigma_{x \in X(\Omega)} x \cdot p(x)$
- Example:
- $X=$ value of one roll of a fair six-sided die
$\mathrm{E}[\mathrm{X}]=(1+2+3+4+5+6) / 6=3.5$
- $\mathrm{X}=$ sum of two rolls...
$\mathrm{E}[\mathrm{X}]=7$
- If $\mathrm{Y} \sim \mathrm{p}(\mathrm{Y}=\mathrm{y})$ is a random variable, then any function $\mathrm{g}(\mathrm{Y})$ defines a new random variable, with expected value
$E[g(Y)]=\Sigma_{y \in Y(\Omega)} g(y) \cdot p(y)$
- For example,
- let $g(Y)=a Y+b$, then $E[g(Y)]=a E[Y]+b$
$-E[X+Y]=E[X]+E[Y]$
- if X and Y are independent, $\mathrm{E}[\mathrm{XY}]=\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]$

Joint and Conditional Probabilities with Random Variables

- Joint and Conditional Probability Rules
- Analogous to probability of events!
- Joint probability
$p(x, y)=P(X=x, Y=y)$
- Marginal distribution $\mathrm{p}(\mathrm{x})$ obtained from the joint $\mathrm{p}(\mathrm{x}, \mathrm{y})$ $\mathrm{p}(\mathrm{x})=\Sigma_{\mathrm{y}} \mathrm{p}(\mathrm{x}, \mathrm{y}) \quad$ (by the total probability rule)
- Bayes Rule

$$
p(x \mid y)=p(y \mid x) p(x) / p(y)
$$

- Chain Rule

$$
p(w, x, y, z)=p(z) p(y \mid z) p(x \mid y, z) p(w \mid x, y, z)
$$

Parameterized Distributions

- Common probability mass functions with same mathematical form...
- ...just with different constants employed.
- A family of functions, called a distribution.
- Different numbers that result in different members of the distribution, called parameters.
- $p(a ; b)$

Binomial Distribution

- A discrete distribution with two outcomes $\Omega=\{0,1\}$
(hence bi-nomial)
- Make n experiments.
- "Toss a coin n times."
- Interested in the probability that r of the n experiments yield 1.
- Careful! It's not a uniform distribution.
- $p(R=r \mid n, q)=\binom{n}{r} q^{r}(1-q)^{n-r}$
where $\binom{n}{r}=\frac{n!}{(n-r)!r!}$

Multinomial Distribution

- A discrete distribution with m outcomes $\Omega=\{0,1,2, \ldots \mathrm{~m}\}$
- Make n experiments.
- Examples: "Roll a m-sided die n times."
"Assuming each word is independent from the next, generate an n-word sentence from a vocabulary of size m."
- Interested in the probability of obtaining counts
$\mathbf{c}=c_{1}, c_{2}, \ldots c_{m}$ from the n experiments.
$p(\mathbf{c} \mid n, \mathbf{q})=\left(\frac{n!}{c_{1}!c_{2}!\ldots c_{m}!}\right) \prod_{i=1 . . m}\left(q_{i}\right)^{c_{i}}$
Unigram language model

Maximum Likelihood Parameter Estimation Example: Binomial

- Toss a coin 100 times, observe r heads
- Assume a binomial distribution
- Order doesn't matter, successive flips are independent
- One parameter is q (probability of flipping a head)
- Binomial gives $p(r \mid n, q)$. We know r and n.
- Find $\arg \max _{\mathrm{q}} \mathrm{p}(\mathrm{r} \mid \mathrm{n}, \mathrm{q})$

Maximum Likelihood Parameter Estimation Example: Binomial

- Toss a coin 100 times, observe r heads
- Assume a binomial distribution
- Order doesn't matter, successive flips are independent
- One parameter is q (probability of flipping a head)
- Binomial gives $p(r \mid n, q)$. We know r and n.
- Find arg $\max _{q} p(r \mid n, q)$
(Notes for board)
likelihood $=p(R=r \mid n, q)=\left(\begin{array}{l}n \\ r\end{array} q^{r}(1-q)^{n-r}\right.$
$\log -$ likelihood $=L=\log (p(r \mid n, q)) \propto \log \left(q^{r}(1-q)^{n-r}\right)=r \log (q)+(n-r) \log (1-q)$
$\frac{\partial L}{\partial q}=\frac{r}{q}-\frac{n-r}{1-q} \Rightarrow r(1-q)=(n-r) q \Rightarrow q=\frac{r}{n}$
Our familiar ratio-of-counts is the maximum likelihood estimate!

Bayesian Parameter Estimation

- We've been finding the parameters that maximize - p(data|parameters), not the parameters that maximize
$-p$ (parameters|data) (parameters are random variables!)
- $p(q \mid n, r)=p(r \mid n, q) p(q \mid n)=p(r \mid n, q) p(q)$
$\mathrm{p}(\mathrm{r} \mid \mathrm{n}) \quad$ constant
- $p(q)=6 q(1-q)$

Bayesian Decision Theory

- We can use such techniques for choosing among models:
- Which among several models best explains the data?
- Likelihood Ratio
$\mathrm{P}($ model1 | data) $)=\mathrm{P}($ data|model1) $\mathrm{P}($ model1 $)$
P(model2 | data) $\quad \mathrm{P}$ (data|model2) P(model2)

Binomial Parameter Estimation Examples

- Make 1000 coin flips, observe 300 Heads - P(Heads) = 300/1000
- Make 3 coin flips, observe 2 Heads - $P($ Heads $)=2 / 3$??
- Make 1 coin flips, observe 1 Tail $-\mathrm{P}($ Heads $)=0$???
- Make 0 coin flips
- $\mathrm{P}($ Heads $)=$???
- We have some "prior" belief about P(Heads) before we see any data.
- After seeing some data, we have a "posterior" belief.

> Maximum A Posteriori Parameter Estimation Example: Binomial
> posterior $=p(r \mid n, q) p(q)=\binom{n}{r} q^{r}(1-q)^{n-r}(6 q(1-q))$
> $\log -\operatorname{posterior}=L \propto \log \left(q^{r+1}(1-q)^{n-r+1}\right)=(r+1) \log (q)+(n-r+1) \log (1-q)$ $\frac{\partial L}{\partial q}=\frac{(r+1)}{q}-\frac{(n-r+1)}{1-q} \Rightarrow(r+1)(1-q)=(n-r+1) q \Rightarrow q=\frac{r+1}{n+2}$

A Probabilistic Approach to Classification: "Naïve Bayes"

Pick the most probable class, given the evidence:
$c^{*}=\arg \max _{c_{j}} \operatorname{Pr}\left(c_{j} \mid d\right)$
c_{j} - a class (like "Planning")
d - a document (like "language intelligence proof...")

Bayes Rule:

"Naïve Bayes":
$\operatorname{Pr}\left(c_{j} \mid d\right)=\frac{\operatorname{Pr}\left(c_{j}\right) \operatorname{Pr}\left(d \mid c_{j}\right)}{\operatorname{Pr}(d)} \approx \frac{\operatorname{Pr}\left(c_{j}\right) \prod_{i=1}^{\mid k \|} \operatorname{Pr}\left(w_{d_{i}} \mid c_{j}\right)}{\sum_{c_{k}} \operatorname{Pr}\left(c_{k}\right) \prod_{i=1}^{|n|} \operatorname{Pr}\left(w_{d_{i}} \mid c_{k}\right)}$

$$
w_{d_{i}} \text { - the } i \text { th word in } d \text { (like "proof") }
$$

