

Grading

• 32% Homework (4 programs & writeup)

Final Exam

- 25% Final project
- Midterm Exam • 10%
- 15%
- 5%
- Classroom participation • 3% + E.C. "Pen/Pencil Quizzes"

Probability Theory

- · Probability theory deals with predicting how likely it is that something will happen.
 - Toss 3 coins.
 - how likely is it that all come up heads? - See phrase "more lies ahead",
 - how likely is it that "lies" is noun?
 - See "Nigerian minister of defense" in email, how likely is it that the email is spam?
 - See "Le chien est noir", how likely is it that the correct translation is "The dog is black"?

Experiments and Sample Spaces

Experiment (or trial)

- repeatable process by which observations are made e.g. tossing 3 coins

- Observe basic outcome from
- sample space, Ω , (set of all possible basic outcomes), e.g. one coin toss, sample space Ω = { H, T }; basic outcome = H or T
- three coin tosses, $\Omega = \{ HHH, HHT, HTH, ..., TTT \}$
- Part-of-speech of a word, Ω = { CC₁, CD₂, CT₃, ..., WRB₃₆}
- lottery tickets, |Ω| = 10⁷
- next word in Shakespeare play, $|\Omega|$ = size of vocabulary
- next word in Snakespeare pray, $|s_{4}| = 322$ or vocation $|s_{4}| = 1$ and $|s_{4}| = 1$ and $|s_{4}| = 1$ and $|s_{4}| = 1$
- number of words in your FILD, around a contrary in countary in
 length of time of "a" sounds when I said "sample" continuous, uncountably infinite

Events and Event Spaces

• An event, A, is a set of basic outcomes, i.e., a subset of the sample space, Ω .

- Intuitively, a question you could ask about an outcome.
- $-\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
- e.g. basic outcome = THH
- e.g. event = "has exactly 2 H's", A={THH, HHT, HTH}
- A= Ω is the certain event, A= \emptyset is the impossible event.
- For "not A", we write \overline{A}
- A common event space, F, is the power set of the sample space, Ω . (power set is written 2^{Ω})
 - Intuitively: all possible questions you could ask about a basic outcome.

Probability

- A probability is a number between 0 and 1.
 0 indicates impossibility
 - 1 indicates certainty
- A probability function, P, (or probability distribution) distributes probability mass of 1 throughout the event space, F.
 - P : F \rightarrow [0,1]
 - P(Ω) = 1
 - Countable additivity: For disjoint events A_j in F P($\cup_j A_j$) = $\Sigma_j P(A_j)$
- We call P(A) "the probability of event A".
- Well-defined *probability space* consists of
 - sample space Ω
 - event space F
 - probability function P

Probability (more intuitively)

- Repeat an *experiment* many, many times. (Let T = number of times.)
- Count the number of *basic outcomes* that are a member of *event* A.
 (Let C = this count.)
- The ratio C/T will approach (some unknown) but constant value.
- Call this constant "the probability of event A"; write it P(A).

Why is the probability this ratio of counts? Stay tuned! Maximum likelihood estimation at end.

Example: Counting

- "A coin is tossed 3 times. What is the likelihood of 2 heads?"
 Experiment: Toss a coin three times, Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
 Event: basic outcome has exactly 2 H's A = {THH, HTH, HHT}
- Run experiment 1000 times (3000 coin tosses)
- · Counted 373 outcomes with exactly 2 H's
- Estimated P(A) = 373/1000 = 0.373

Example: Uniform Distribution

- "A fair coin is tossed 3 times. What is the likelihood of 2 heads?"

 Experiment: Toss a coin three times, Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
 - Event: basic outcome has exactly 2 H's
 A = {THH, HTH, HHT}
- <u>Assume</u> a *uniform distribution* over outcomes
 Each basic outcome is equally likely
- $P({HHH}) = P({HHT}) = ... = P({TTT})$
- P(A) = |A| / |Ω| = 3 / 8 = 0.375

Probability (again)

- A probability is a number between 0 and 1.
 0 indicates impossibility
 1 indicates certainty
- A probability function, P, (or probability distribution) distributes probability mass of 1 throughout the event space, F.
 - P : F \rightarrow [0,1]
 - P(Ω) = 1
 - Countable additivity: For disjoint events A_j in F
 P(∪_j A_j) = Σ_j P(A_j)
 - _____
- The above are axioms of probability theory
- Immediate consequences:
 P(∅) = 0, P(A) = 1 P(A), A ⊆ B -> P(A) ≤ P(B), Σ_{a ∈Ω} P(a) = 1, for a = basic outcome.

What does it le	ook like "u	under the	hood"?		
P(precipitation	tempera	ture)			
i (procipitation	· •	,			
	sun	rain	sleet	snow	
10s	0.09	0.00	0.00	0.01	
205	0.08	0.00	0.00	0.02	
30s	0.05	0.01	0.01	0.03	
40s	0.06	0.03	0.01	0.00	
50s	0.06	0.04	0.00	0.00	
60s	0.06	0.04	0.00	0.00	
70s	0.07	0.03	0.00	0.00	
80s	0.07	0.03	0.00	0.00	
90s	0.08	0.02	0.00	0.00	
100s	0.08	0.02	0.00	0.00	
					akes 40 numb

What do					ility T	
what uu		K IIKE L		e noou ?		
P(precipit	tation I	tempera	ature)			
		sun	rain	sleet	snow	
	10s	0.9	0.0	0.0	0.1	
	20s	0.8	0.0	0.0	0.2	
	30s	0.5	0.1	0.1	0.3	
	40s	0.6	0.3	0.1	0.0	
	50s	0.6	0.4	0.0	0.0	
	60s	0.6	0.4	0.0	0.0	
	70s	0.7	0.3	0.0	0.0	
	80s	0.7	0.3	0.0	0.0	
	90s	0.8	0.2	0.0	0.0	
	100s	0.8	0.2	0.0	0.0	
					it ta	kes 40 number

Same year Mozart wrote his symphony #1 in E-flat.

Independence • Can we compute P(A,B) from P(A) and P(B)? · Recall: P(A,B) = P(B|A) p(A) (multiplication rule) • We are almost there: How does P(B|A) relate to P(B)? P(B|A) = P(B) iff B and A are independent! · Examples:

- Two coin tosses
- Color shirt I'm wearing today, what a Bill Clinton had for breakfast. Two events A, B are *independent* from each other if P(A,B) = P(A) P(B) Equivalent to P(B) = P(B|A) (if $P(A) \neq 0$)
- Otherwise they are dependent.

Random Variables

- A random variable is a function $X : \Omega \rightarrow Q$
 - in general Q= $\Re^n,$ but more generally simply Q= \Re - makes it easier to talk about numerical values related to event space
- Random variable is *discrete* if Q is countable.
- Example: coin Q={0,1}, die Q=[1,6]
- Called an *indicator variable* or *Bernoulli trial* if $Q \in \{0,1\}$
- · Example:
 - Suppose event space comes from tossing two dice.
 - We can define a random variable X that is the sum of their faces
 - $\hspace{0.1 cm} X: \Omega \rightarrow \{2,..12\}$

Because a random variable has a numeric range, we can often do math more easily by working with values of the random variable than directly with events.

Probability Mass Function

- $p(X=x) = P(A_x)$ where $A_x = \{a \in \Omega : X(a)=x\}$
- Often written just p(x), when X is clear from context. Write X ~ p(x) for "X is distributed according to p(x)". In English:
 - Probability mass function, p...
 - maps some value x (of random variable X) to ...
 - the probability random variable X taking value x
 - equal to the probability of the event A_x

 - this event is the set of all basic outcomes, a, for which the random variable X(a) is equal to x.
- · Example, again:
 - Event space = roll of two dice; e.g. a=<2,5>, $|\Omega|$ =36 - Random variable X is the sum of the two faces
 - $p(X=4) = P(A_4), A_4 = \{<1,3>, <2,2>, <3,1>\}, P(A_4) = 3/36$

Random variables will be used throughout the Introduction to Information Theory, coming next class.

Expected Value

- ... is a weighted average, or mean, of a random variable $\mathsf{E}[\mathsf{X}] = \Sigma_{\mathsf{x} \in \mathsf{X}(\Omega)} \mathsf{x} \cdot \mathsf{p}(\mathsf{x})$
- Example:
- X = value of one roll of a fair six-sided die: E[X] = (1+2+3+4+5+6)/6 = 3.5
- - X = sum of two rolls...E[X] = 7
- If Y ~ p(Y=y) is a random variable, then any function g(Y) defines a new random variable, with expected value $\mathsf{E}[\mathsf{g}(\mathsf{Y})] = \Sigma_{\mathsf{y} \in \mathsf{Y}(\Omega)} \mathsf{g}(\mathsf{y}) \cdot \mathsf{p}(\mathsf{y})$
- · For example,
 - let g(Y) = aY+b, then E[g(Y)] = a E[Y] + b
 - E[X+Y] = E[X] + E[Y]
 - if X and Y are independent, E[XY] = E[X] E[Y]

Variance

- Variance, written σ^2
- · Measures how consistent the value is over multiple trials
 - "How much on average the variable's value differs from the its mean."
- Var[X] = E[(X-E[X])²]
- Standard deviation = $\sqrt{Var[X]} = \sigma$

Joint and Conditional Probabilities with Random Variables

- Joint and Conditional Probability Rules Analogous to probability of events!
- Joint probability p(x,y) = P(X=x, Y=y)
- *Marginal distribution* p(x) obtained from the joint p(x,y) $p(x) = \Sigma_y p(x,y)$ (by the total probability rule)
- Bayes Rule
- p(x|y) = p(y|x) p(x) / p(y)· Chain Rule
 - p(w,x,y,z) = p(z) p(y|z) p(x|y,z) p(w|x,y,z)

Parameterized Distributions

- Common probability mass functions with same mathematical form...
- ...just with different constants employed.
- A family of functions, called a *distribution*.
- Different numbers that result in different members of the distribution, called parameters.
- p(a;b)

Multinomial Distribution

- A discrete distribution with *m* outcomes $\Omega = \{0, 1, 2, \dots m\}$
- Make *n* experiments.
- Examples: "Roll a *m*-sided die *n* times." "Assuming each word is independent from the next, generate an *n*-word sentence from a vocabulary of size *m*."
- Interested in the probability of obtaining counts $\mathbf{c} = c_1, c_2, \dots, c_m$ from the *n* experiments.

 $\left(\frac{n!}{c_1!c_2!...c_m}\right)$ $p(\mathbf{c} \mid n, \mathbf{q}) =$ $\prod (q_i)^{c_i}$ Unigram language model

Parameter Estimation

- We have been assuming that P is given, but most of the time it is unknown.
- So we <u>assume</u> a parametric family of distributions and <u>estimate</u> its parameters...
- ...by finding parameter values most likely to have generated the observed data (evidence).
- ...treating the parameter value as a random variable!
 - Not the only way of doing parameter estimation. This is *maximum likelihood* parameter estimation.

Maximum Likelihood Parameter Estimation Example: Binomial

- Toss a coin 100 times, observe r heads
- Assume a binomial distribution
 - Order doesn't matter, successive flips are independent
 - One parameter is q (probability of flipping a head)
 - Binomial gives p(r|n,q). We know r and n.
 - Find arg max_q p(r|n, q)

Maximum A Posteriori Parameter Estimation Example: Binomial

 $\begin{aligned} \text{posterior} &= p(r \mid n, q) p(q) = \binom{n}{r} q^{r} (1 - q)^{n - r} (6q(1 - q)) \\ \text{log} &- \text{posterior} = L \propto \log(q^{r+1}(1 - q)^{n - r+1}) = (r + 1)\log(q) + (n - r + 1)\log(1 - q) \\ \frac{\partial L}{\partial q} &= \frac{(r + 1)}{q} - \frac{(n - r + 1)}{1 - q} \Rightarrow (r + 1)(1 - q) = (n - r + 1)q \Rightarrow q = \frac{r + 1}{n + 2} \end{aligned}$

