Information Extraction
Lecture #21

Introduction to Natural Language Processing
CMPSCI 585, Spring 2004

University of Massachusetts Amherst

Andrew McCallum

Query to General-Purpose Search Engine:
+camp +basketball “north carolina” “two weeks”
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Main Points

* Why IE?
Components of the IE problem and solution
Approaches to IE segmentation and classification

Sliding window

Finite state machines
« |E for the Web
Semi-supervised IE

Domain-Specific Search
Engine

Next time: relation extraction and coreference
Optional class: CRFs for IE & coreference
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CAMP SEARCH®

THE SEARCH ENGINE FOR CAMPS
Eapty fields are ignored in the search.

»Where in United States of America do you want to go to
camp?
North Carolina = |
¥ What type of Camp do you want to go to?
GENDER: Co-ed

ORCANIZATION: Doesn't Matter
STAY TYPE: B

[Day Camp
I Residential Camp

ISpecialty Camp

|Family Camp

ITours & Adventures

IOutdoor Education

IConference Site

| Adult Camp

¥ How old are you?

¥ How much do you want to spend? (per week)
Doesn't Matter —I

¥ Aire you looking for a specialty camp?
[Footba E
Wi urﬁng
5
Canne_\ng |
Ice Hockey B

| Aquatic l

¥ How long do you want to go for?

2weeks |
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CAMP SEARCH®

THE SEARCH ENGINE FOR CAMPS
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Example: The Problem

Advanced Search  Preferences Language Tools  Search Tips
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Baker, a person

Genomics job
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Example: A Solution
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"cancer" that stifled technological innovation.

U.S. Job Supply Increases
# Amid Rising Unemployment

Today, Microsoft claims to "love” the open-
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,  The Job Opportunity Index™(JOI} increased for source concept, by which software code is
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What is “Information Extraction”

As a task: I Filling slots in a database from sub-segments of text. |

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill
Gates railed agai the ic phil phy
of open-source software with Orwellian fervor,
d ing its ing as a
"cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-
source concept, by which software code is
made public to encourage improvement and
development by outside programmers. Gates
himself says Microsoft will gladly disclose its
crown jewels--the coveted code behind the
Wind operating sy to select
customers.

"We can be open source. We love the concept
of shared source,” said Bill Veghte, a
Microsoft VP. "That's a super-important shift
for us in terms of code access.“

Richard Stallman, founder of the Free
Software Foundation, ed saying...

What is “Information Extraction”

NAME TITLE

What is “Information Extraction

L

As a family [|nformation Extraction =
of techniques: segmentation

Bill Gates CEO
Bill Veghte VP
Richard Stallman founder

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill
Gates railed inst the ic phil phy
of open-source software with Orwellian fervor,
denouncing its communal licensing as a
"cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-
source concept, by which software code is
made public to encourage improvement and
development by outside programmers. Gates
If says Microsoft will gladly discl its
crown jewels--the coveted code behind the
Windows operating system--to select
customers.

"We can be open source. We love the concept
of shared source," said Bill Veghte, a
Microsoft VP. "That's a super-important shift
for us in terms of code access.”

Richard Stallman, founder of the Free
Software Foundation, countered saying...

As a family [ntormation Extraction =
of techniques: segmentation + classification

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill

Gates railed against the ic philosophy
of open-source software with Orwellian fervor,
d ing its 1 li ing as a

"cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-
source concept, by which software code is
made public to encourage improvement and
development by outside programmers. Gates
hi If says Microsoft will gladly discl its
crown jewels--the coveted code behind the
Wind operating sy to select
customers.

"We can be open source. We love the concept
of shared source,” said Bill Veghte, a
Microsoft VP. "That's a super-important shift
for us in terms of code access.“

Richard Stallman, founder of the Free
Software Foundation, ed saying...

Microsoft Corporation
CEO

Bill Gates

Microsoft

Gates

Microsoft

Bill Veghte
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VP

Richard Stallman
founder

Free Software Foundation

Microsoft Corporation
CEO

Bill Gates

Microsoft

Gates

Microsoft

Bill Veghte
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Richard Stallman
founder

Free Software Foundation

What is “Information Extraction”
As a family [|nformation Extraction =
of techniques: segmentation + classification + association

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill
Gates railed inst the ic phil phy
of open-source software with Orwellian fervor,
denouncing its communal licensing as a
"cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-
source concept, by which software code is
made public to encourage improvement and
development by outside programmers. Gates
If says Microsoft will gladly discl its
crown jewels--the coveted code behind the
Windows operating system--to select
customers.

"We can be open source. We love the concept
of shared source," said Bill Veghte, a
Microsoft VP. "That's a super-important shift
for us in terms of code access.”

Richard Stallman, founder of the Free
Software Foundation, countered saying...

Microsoft Corporation
CEO
Bill Gates

Microsoft
Gates

Microsoft

Bill Veghte
Microsoft
VP

Richard Stallman
founder
Free Software Foundation




What is “Information Extraction”

As a family
of techniques:

Information Extraction =
segmentation + classification + association + clustering

October 14, 2002, 4:00 a.m. PT
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Pre-Web

IE History

* Mostly news articles
— De Jong’s FRUMP [1982]
* Hand-built system to fill Schank-style “scripts” from news wire
— Message Understanding Conference (MUC) DARPA ['87-'95],
TIPSTER ['92-'96]
* Most early work dominated by hand-built models
— E.g. SRI's FASTUS, hand-built FSMs.

— But by 1990’s, some machine learning: Lehnert, Cardie, Grishman and
then HMMs: Elkan [Leek '97], BBN [Bikel et al '98]

Web

* AAAI 94 Spring Symposium on “Software Agents”

— Much discussion of ML applied to Web. Maes, Mitchell, Etzioni.
«  Tom Mitchell’s WebKB, ‘96

— Build KB’s from the Web.
*  Wrapper Induction

— Initially hand-build, then ML: [Soderland "96], [Kushmeric '97],...

IE in Context

Create ontology

Spider

Filter by relevance I

Segment
Classify

Associate
Cluster

Train extraction models

Label training data

Load DB

Query,
Search

Data mine

What makes IE from the Web Different?

Less grammar, but more formatting & linking

Newswire

Apple to Open lts First Retail Store
in New York City

MACWORLD EXPO, NEW YORK--July 17, 2002--
Apple's first retail store in New York City will open in
Manhattan's SoHo district on Thursday, July 18 at
8:00 a.m. EDT. The SoHo store will be Apple's
largest retail store to date and is a stunning example
of Apple's commitment to offering customers the
world's best computer shopping experience.

"Fourteen months after opening our first retail store,
our 31 stores are attracting over 100,000 visitors
each week," said Steve Jobs, Apple's CEO. "We
hope our SoHo store will surprise and delight both
Mac and PC users who want to see everything the
Mac can do to enhance their digital lifestyles."

The directory structure, link structure,

formatting & layout of the Web is its own

new grammar.

www.apple.com/retail

Web

Mn%m&mn Palisades Gr
Bitmore Wellington West Nyack
. \ational Roosevelt Field
www.apple.com/retail/soho Garden City 1o (o' anocles.
— —
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103 Prince Street

New York, NY 10012
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Landscape of IE Tasks (1/4):
Pattern Feature Domain

Text paragraphs
without formatting

Grammatical sentences

and some formatting & links

Astro Teller is the CEO and co-founder of
BodyMedia. Astro holds a Ph.D. in Artificial
Intelligence from Carnegie Mellon University,
where he was inducted as a national Hertz fellow.
His M.S. in symbolic and heuristic computation
and B.S. in computer science are from Stanford
University. His work in science, literature and
business has appeared in international media from
the New York Times to CNN to NPR.

Non-grammatical snippets,
rich formatting & links

Barto, Andrew G. (413) 545-2109  barto@cs.umass.edu
Professor.
Computational neuroscience, reinforcement learning, adaptive Blo)

motor control, artificial neural networks, adaptive and learning
control, motor development.
Berger, Emery D.
Assistant Professor.
Brock, Oliver

(413) 577-4211  emery@cs.umass.edu

(413)577-0334  oli@csumass.edu

Assistant Professor. @

Clarke, Lori A. (413) 545-1328  clarke@cs.umass.edu

Professor.
Software verification, testing, and analysis; software architecture || (@]
and design.

Cohen, Paul R. (413) 545-3638  cohen@cs.umassedu
Professor.

Planning, simulation, natural language, agent-based systems, (= @
intelligent data analysis. intellizent user interfaces

Dr. Steven Minton - Founder/CTO o Press
Dr. Minton s  fellow of the American
Association of Artificial Intelligence and was

the founder of the Journal of Artificial . fGE"em‘
Intelligence Research. Prior to founding Fetch, | Information
Minton was a faculty member at USC and a :"E[‘)f:dm“s

project leader at USC's Information Sciences
Institute. A graduate of Yale University and
Carnegie Mellon University, Minton has been a
Principal Investigator at NASA Ames and
taught at Stanford, UC Berkeley and USC.

Frank Huybrechts - COO
Mr. Huybrechts has over 20 years of

Tables

8:30-9:304M [Invited Talk: Plausibility Measures: A General Approach for Representing Uncertainty

Joseph Y. Halpem, Comell University
9:30-10:00AM _ Coffee Break
10:00- 11:30 AM_ Technical Paper Sessions:

Cognitive Logic Natural Language ())mpleﬁty Neural Games
Robotics Programming Generation /Anal Networks
739: A Logical | 116: A-System: 758: Tidle a17: Leugp 179 Knowledge |71: Tierative
Account of Causal Problem Generation for _Nats ctionand | Widening
and Topological ~ Solving MachineTranslaed Complexiy of | Compaison  Tristan
Documents from Local Cazenave
Emilio Remolina | Abduction  Rong Jin and Dlmmrcnplmn Function
and Benjomin  Marc Alexander G. and Networks
uipers enecker, | Hauptmann Abnormality | Kenned
Antonis Kakas, Theories YicGary, Sfan
‘and Bert Van. Marco Cadoli, | Wermter, a
Nffelen Themes B, |l e
and
Gortlob
549: BLA 246: Dealing with 470 A 353: Temporal
Online-E; Comparative i i

of ccGolog Plans  Study of Logic  between Content  Knowl

Honrik Grosskreutz Programs with | Planning and Compilation | Constrained | Applied toa

Landscape of IE Tasks (3/4):
Pattern Complexity

E.g. word patterns:

Closed set
U.S. states

‘ He was born in Alabama... ‘

| The big Wyoming sky... |

Complex pattern

U.S. postal addresses

University of Arkansas
P.O. Box 140

Hope, AR 71802

Headquarters:
1128 Main Street, 4th Floor
Cincinnati, Ohio 45210

Regular set

U.S. phone numbers
| Phone: (413) 545-1323 |

The CALD main office can be
reached at 412-268-1299

Ambiguous patterns,
needing context and
many sources of evidence

Person names

aton-Guided Diftrenes
Learningfor  Learnin

..was among the six houses
sold by Hope Feldman that year.

Pawel Opalinski, Software
Engineer at WhizBang Labs.

Landscape of IE Tasks (2/4):

Web site specific
Formatting
Amazon.com Book Pages

amazoncom. W view cast

BROWSE,
SEARCH | i

3¢~ amazoncom. o vewcar

Machine Learning
by Tom . el sowse Conron
soancn | BIOUSE | uesseuiens | wacazines | SOON

Learning in Graphica Models

by Michael Irein Jordan (Editor)
COKNSiDg, st Price: 15900
(o ey Prce: $60.00

T i
U @, i fom i for FREE it Supe

= Buy Now Pay | b availabilty: Usualy ships within 2t 3 d¢

" Used & new bon $20.00

Great Buy /-"‘,.

Edition: Paperback | Al ditions
Buy this book vith 0 |l perback |
; Uitvste (ki ) Soe more product dotails

Great Buy

Buy i book it tabiic e et suems
Together Today:3120.05
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Landscape of IE Tasks (4/4):
Pattern Combinations

Jack Welch will retire as CEO of General Electric tomorrow. The top role
at the Connecticut company will be filled by Jeffrey Immelt.

Single entit

Person: Jack Welch

Person: Jeffrey Immelt

Location: Connecticut

Binary relationship

Relation: Person-Title
Person: Jack Welch
Title: CEO

Relation: Company-Location
Company: General Electric

Location: Connecticut

“Named entity” extraction

N-ary record

Relation: Succession
Company: General Electric

Title:
Out:
In:

CEO
Jack Welsh
Jeffrey Immelt



Evaluation of Single Entity Extraction
TRUTH:

Michael Kearns and Sebastian Seung will start Monday’s tutorial, followed by Richard M. Karpe and Martin Cooke.
PRED:

Michael Kearns and Sebastian Seung will start Monday’s tutorial, followed by Richard M. Karpe and Martin Cooke.

# correctly predicted segments 2
Precision = =
# predicted segments 6
# correctly predicted segments 2
Recall = =
# true segments 4
1
F1 = Harmonic mean of Precision & Recall =

((1/P) + (1/R)) 1 2

Landscape of IE Techniques (1/1):
Models

Classify Pre-segmented
Lexicons Candidates Sliding Window

Abraham Lincoln was born in Kentucky.

Abraham Lincoln was born in Kentucky. Abraham Lincoln was born in Kentucky.

>
N
f member? Classifier

Classifier
Alabama which class?

Alaska ' 2 4 which class?
Wisconsin Try alternate

Wyoming window sizes: H_/
-
Boundary Models Finite State Machines Context Free Grammars
braham Lincoln} INas born in Kentucky. Abraham Lincoln was born in Kentucky. Abraham Lincoln was born in Kentucky.

BEGIN A > ®@ ® O OO © ®@ ® O OO ©

Most likely state sequence?

IS
NNP NNP V V P NP &

~_ 6&"’
Classifier PP &

~__~ VWP
BEGIN END BEGIN END

s
...and beyond
Any of these models can be used to capture words, formatting or both.

State of the Art Performance

Named entity recognition
— Person, Location, Organization, ...
— F1in high 80’s or low- to mid-90’s
Binary relation extraction

— Contained-in (Location1, Location2)
Member-of (Person1, Organization1)

— F1in60’sor70’s or 80’s
Wrapper induction

— Extremely accurate performance obtainable
— Human effort (~30min) required on each site

Sliding Windows



Extraction by Sliding Window

E.g.
Looking for
seminar
location

Extraction by Sliding Window
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location
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Machine learning has evolved from obscurity
in the 1970s into a vibrant and popular
discipline in artificial intelligence
during the 1980s and 1990s. As a result
of its success and growth, machine learning
is evolving into a collection of related
disciplines: inductive concept acquisition,
analytic learning in problem solving (e.g.
analogy, explanation-based learning),
learning theory (e.g. PAC learning),
genetic algorithms, connectionist learning,
hybrid systems, and so on.
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A “Naive Bayes” Sliding Window Model

[Freitag 1997]

00 : pm Place : Wean Hall Rm 5409 Speaker : Sebastian Thrun

W W w, w w w

t-m ttn t+n+l ttn+m

-

prefix contents suffix

P(“Wean Hall Rm 5409” = LOCATION) =

i
Prior probability Prior probability Probability Probability Probability
of start position of length prefix words contents words suffix words

Try all start positions and reasonable lengths Estimate these probabilities by (smoothed)

counts from labeled training data.

If P(“Wean Hall Rm 5409” = LOCATION) is above some threshold, extract it.

Other examples of sliding window: [Baluja et al 2000]
(decision tree over individual words & their context)

SRV: a realistic sliding-window-classifier

IE system
[Frietag AAAI ‘98]
* What windows to consider?
— all windows containing as many tokens as the shortest
example, but no more tokens than the longest example
* How to represent a classifier? It might:
— Restrict the length of window;

— Restrict the vocabulary or formatting used
before/after/inside window;

— Restrict the relative order of tokens;
— Etc...

“A token followed
<title>Course Information for CS213</title> | by a 3-char numeric

<h1>CS 213 C++ Programming</h1> oen just after the

“Naive Bayes” Sliding Window Results

Domain: CMU UseNet Seminar Announcements

GRAND CHALLENGES FOR MACHINE LEARNING

Jaime Carbonell
School of Computer Science
Carnegie Mellon University

3:30 pm
7500 Wean Hall

Machine learning has evolved from obscurity
in the 1970s into a vibrant and popular
discipline in artificial intelligence during
the 1980s and 1990s. As a result of its
success and growth, machine learning is
evolving into a collection of related
disciplines: inductive concept acquisition,
analytic learning in problem solving (e.g.
analogy, explanation-based learning),
learning theory (e.g. PAC learning), genetic
algorithms, connectionist learning, hybrid
systems, and so on.

Field F1
Person Name: 30%
Location: 61%

Start Time: 98%

SRV: a rule-learner for sliding-window

classification

* Top-down rule learning:
let RULES =;;

while (there are uncovered positive examples) {

// construct a rule R to add to RULES
let R be a rule covering all examples;

while (R covers too many negative examples) {
let C = argmax; VALUE( R, R £ C, uncoveredExamples)
over some set of candidate conditions C

letR=REC;

}
let RULES = RULES [ {R};



SRV: a rule-learner for sliding-window
classification

Search metric: SRV algorithm greedily adds
conditions to maximize “information gain” of R

VALUE(R,R’,Data) = IData|*p (p log p — p’ log p’)
where p (p’) is fraction of data covered by R (R))

To prevent overfitting:

rules are built on 2/3 of data, then their false positive
rate is estimated with a Dirichlet on the 1/3 holdout
set.

Candidate conditions: ...

SRV: a rule-learner for sliding-window
classification

 Primitive predicates used by SRV:

— token(X,W), allLowerCase(W), numerical(W), ...
— nextToken(W,U), previousToken(W,V)

» HTML-specific predicates:

— inTitleTag(W), inH1Tag(W), inEmTag(W), ...
— emphasized(W) = “inEmTag(W) or inBTag(W) or ...”

— tableNextCol(W,U) = “U is some token in the column
after the column W is in”

— tablePreviousCol(W,V), tableRowHeader(W,T), ...

Learning “first-order” rules

» A sample “zero-th” order rule set:

(tok1InTitle /E :tok1StartsPara £ tok2triple)
C (prevtok2EqCourse A previok1EqNumber) € ...

First-order “rules” can be learned the same
way—with additional search to find best “condition”
phrase(X) A firstToken(X,A), :startPara(A),
nextToken(A,B), triple(B)
phrase(X) A firstToken(X,A), prevToken(A,C), eq(C,'’number’),
prevToken(C,D), eq(D, course’)

Semantics:
“p(X) A q(X),r(X,Y),s(Y) = “{X:9Y:q(X)£E r(X,)Y) Es(Y)}

SRV: a rule-learner for sliding-window
classification

* Non-primitive “conditions” used by SRV:

—every(+X, f,c) =8 W2X: f(W)=c
« variables tagged “+” must be used in earlier conditions

+ underlined values will be replaced by constants, e.g.,
“every(X, isCapitalized, true)”

— some(+X, W, <f,,...f,>, g, ©)= 9 W: g(fi(...(F,(W)...))=c
- e.g., some(X, W, [prevTok,prevTok],inTitle,false)
* set of “paths” <f,,...,f,> considered grows over time.

— tokenLength(+X, relop, c):

— position(+W,direction,relop, c):
* e.g., tokenLength(X,>,4), position(W,fromEnd,<,2)



Utility of non-primitive conditions in
greedy rule search

Greedy search for first-order rules is hard because
useful conditions can give no immediate benefit:

phrase(X) A token(X,A), prevToken(A,B),inTitle(B),
nextToken(A,C), tripleton(C)

“A token followed
by a 3-char numeric
<title>Course Information for CS213</title> token just after the

<h1>CS 213 C++ Programming</h1> title”

courseNumber(X) A o
tokenLength(X,=,2), Non-;_)l_'lmltlve
every(X, inTitle, false), conditions
some(X, A, <previousToken>, inTitle, true), make greedy
some(X, B, <>. tripleton, true) search easier

<title>Course Information for CS213</title>
<h1>CS 213 C++ Programming</h1> ... Differences dropped

courseNum(window1) Z{ token(window1,’CS’)I [doubleton(‘CS’),
prevToken(‘CS’,’CS213’), inTitle , nextTok("CS7, 2137}, :
numeric(‘213’), tripleton(‘213’), nextTok(‘213’,’C++’), :
tripleton(‘C++), .... : :

Eng 214

courseNum(X) A |token(X,A), |

prevToken(A, B), inTitle(B), nextTok(A,C)), Common

numeric(C), tripleton(C), nextTok(C,D), ... zg:lr‘ij;;o:vser to

generalization

Rapier: an alternative approach

[Califf & Mooney, AAAI ‘99]

A bottom-up rule learner:

initialize RULES to be one rule per example;
repeat {
randomly pick N pairs of rules (R, R);
let {G, ,G,} be the consistent pairwise generalizations;
let G* = argming; COST(G,RULES);
let RULES = RULES [ {G*} - {R’: G* | R’}
}

where COST(G,RULES) = size of RULES-{R’: G {{ R’} and
“GY[ R” means every example matching G matches R

Rapier: an alternative approach

- Combines top-down and bottom-up learning
- Bottom-up to find common restrictions on content
- Top-down greedy addition of restrictions on context

- Use of part-of-speech and semantic features
(from WORDNET).

- Special “pattern-language” based on sequences
of tokens, each of which satisfies one of a set of

given constraints
- < <tok2{‘ate’,’hit’},POS2{‘'vb’}>, <tok2{‘the’}>, <POS2{‘nn’>>



Frecision

Rapier: results — precision/recall

I

I
RSt
e

Rapier —-e—
Rapier-words and tags ===
Rapier-words only -8--
Naive Baﬁf_:;f;--u---**"

1 L
100 150 200 250 300
Training Examples

Rule-learning approaches to sliding-
window classification: Summary

* SRV, Rapier, and WHISK [soderland KDD 97]

— Representations for classifiers allow restriction of
the relationships between tokens, etc

— Representations are carefully chosen subsets of
even more powerful representations based on
logic programming (ILP and Prolog)

— Use of these “heavyweight” representations is
complicated, but seems to pay off in results

» Can simpler representations for classifiers

work?

Rapier — results

vs. SRV

System stime etime loc speaker
Prec  Rec | Prec Rec | Prec Rec | Prec  Rec
RAPIER | 93.9 929 | 95.8 946 | 91.0 60.5| 80.9 394
Rap-wT | 96.5 953 | 949 944 | 91.0 615 | 79.0 40.0
Rap-w | 965 959 [ 96.8 96.6 | 90.0 54.8 | 76.9 29.1
NABaAY | 98.2 982 | 495 95.7 | 57.3 588 | 345 256
SRV 98.6 984 | 67.3 926 | 745 T0.1 | 544 584
Wuisk | 86.2 1000 [ 85.0 &7.2 | 83.6 554 | 52.6 1l1.1
Wu-pr | 96.2 100.0 | 89.5 872 | 93.8 361 | 0.0 0.0

BWI: Learning to detect boundaries

[Freitag & Kushmerick, AAAI 2000]

* Another formulation: learn three probabilistic
classifiers:

— START(i) = Prob( position i starts a field)

— END(j) = Prob( position j ends a field)

— LEN(k) = Prob( an extracted field has length k)
* Then score a possible extraction (i,j) by

START(i) * END(j) * LEN(j-i)

» LEN(k) is estimated from a histogram




BWI: Learning to detect boundaries BWI: Learning to detect boundaries

100

* BWI uses boosting to find “detectors” for
START and END

» Each weak detector has a BEFORE and
AFTER pattern (on tokens before/after

80 1

I
o Y

position i). 0 o

» Each “pattern” is a sequence of tokens and/or ok Atine o
wildcards like: anyAlphabeticToken, anyToken, ¥ o Sh-ctime
anyUpperCaseletter, anyNumber, ... 0/ SA-speaker ——

« Weak learner for “patterns” uses greedy o =TT
search (+ lookahead) to repeatedly extend a " Person Name: 30%
pair of empty BEFORE,AFTER patterns 0 ; o0 " | Location:  61%

0 100 20 300 .
Boosting iterations T Start Time: 98%

Problems with Sliding Windows
and Boundary Finders

» Decisions in neighboring parts of the input
are made independently from each other.

— Naive Bayes Sliding Window may predict a . . .
“seminar end time” before the “seminar start time”. Finite State Machines

— Itis possible for two overlapping windows to both
be above threshold.

— In a Boundary-Finding system, left boundaries are
laid down independently from right boundaries,
and their pairing happens as a separate step.



Hidden Markov Models

HMMs are the standard sequence modeling tool in
genomics, music, speech, NLP, ...

Finite state model Graphical model
Ses S, S transitions
i i i observations
Generates: 0‘ B o, 0.,
State 1a|
seqence O O @ @ O @ O O PG.5) < [P, |5 )P0 |5)
Observation S,0 S, |S o, S
sequence %1 92 03 04 05 05 0O; Oy 2 H t 121 t 19t

Parameters: for all states S={s,,s,,...}

Start state probabilities: P(s,)

Transition probabilities: P(s,|s, ;)

Observation (emission) probabilities: P(0,[s,) s ﬁxrzg";ilr“)%?:’elf’ver
Training:

Maximize probability of training observations (w/ prior)

HMMs for IE:
A richer model, with backoff

IE with Hidden Markov Models

Given a sequence of observations:

Yesterday Lawrence Saul spoke this example sentence.

and a trained HMM:

Find the most likely state sequence: (Viterbi)

© e e O O O O

Lawrence Saul

Any words said to be generated by the designated “person name”
state extract as a person name:

Person name: Lawrence Saul

HMM Example: “Nymble”

[Bikel, et al 1998],

Task: Named Entity Extraction [BBN “IdentiFinder”]

Transition Observation
probabilities probabilities
end-of-
start-of- sentence P(st | st—I’ ot-I) P(Ot | Sy S,_I)

sentence

or P(o,| s,, 0,.;)

Back-off to: Back-off to:
P(s,|5..1) P(o,|s,)
Train on 450k words of news wire text. P (St) P (0,)
Results: Case Language F1 .
Mixed English 93%
Upper English 91%
Mixed Spanish 90%

Other examples of shrinkage for HMMs in IE: [Freitag and McCallum ‘99]



HMMs for IE:
Augmented finite-state structures
with linear interpolation

More rich prefix and suffix structures

* In order to represent more context, add more
state structure to prefix, target and suffix.

« But now overfitting becomes more of a
problem.

R

Figure 11 Two example HMM structures. Circle nodes
represent non-target states; hexagon nodes represent target
states.

Simple HMM structure for IE

* 4 state types:
— Background (generates words not of interest),
— Target (generates words to be extracted),
— Prefix (generates typical words preceding target)
— Suffix (words typically following target)

[

* Properties: Q \/ e

— Extracts one type of target (e.g. target = person name), we will build one
model for each extracted type.

— Models different Markov-order n-grams for different predicted state
contexts.

— even thought there are multiple states for “Background”, state-path given
labels is unambiguous. Therefore model parameters can all be computed
using counts from labeled training data

Linear interpolation
across states

interpolation of the estimates in
all distributions from the leaf to

ist root context ;L :
prefix ; - q%w. ffix
SR O 4

O OO OO0

Is defined in terms of some ¢ Shrinkage smoothes the
hlerar(t:h(sj/ that_lre_r:resetnts the distribution of a state towards
expecled simrarity between that of states that are more
parameter estimates, with the " data-rich

estimates at the leaves uniform |:| ) L
Shrinkage based parameter A » It uses a linear combination of
estimate in a leaf of the lobal D probabilities

hierarchy is a linear & 7T




Evaluation of linear interpolation

+ Data set of seminar announcements.

speaker

location | stime | etime

None 0.513

0.735 | 0.991 | 0.814

Uniform 0.614

0.776 | 0.991 | 0.933

Global 0.711

0.839 | 0.991 | 0.595

Hier. 0.672

0.850 | 0.987 | 0.584

Table 4: Effect on F1 performance of different shrink-
age configurations on four seminar announcement fields,
given a topology with a window size of four and four
parallel length-differentiated target paths.

Information Extraction
from Research Papers

References
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Reinforcement Learning: A Survey

LPK@CS.BROWN.EDU
Michael L. Littman MLITTMAN@CS BROWN.EZDU
Computer Science Department, Box 1910, Broun University
Providonce, RI 02910-1910 USA

Andrew W._Moaore AWMECS.CMU.EDU
Smith Hall 221, Carncgic Mcllon Universily, 5000 Forbes Avenuc
Pittsburgh, PA 15213 USA

Abstract

This paper surveys the ficld of reinforcement learning from a computer-scicnee per-
spective. It is written to be accessible to rescarchers familiar with machine learning. Both
the historical basis of the field and a broad sclection of current work are summarized.
Reinforcement learning s the problem faced by an agent that learns behavior through
trial-and-crror interactions with a dynamic environment. The work deseribed here has a

to work in , but differs consi in the details and in the use
of the word “reinforcement.” The paper discusses central issues of reinforcement learning,
including trading off exploration and exploitation, cstabliching the foundations of the ficld
via Markov decision theory, learning from delayed reinforcement, constructing cmpirical
models to accclerate learning, making use of gencralization and hicrarchy, and coping with
hidden state. It concludes with a survey of some implemented systems and an asscssment
of the practical utility of current methods for reinforcement learning.

1. Introduction

Rcinforcement learning dates back to the carly days of cybernctics and work in statistics,

IE with HMMs:
Learning Finite State Structure

Information Extraction with HMMs
[Seymore & McCallum ‘99]




Importance of HMM Topology Structure Learning

+ Certain structures better capture the Two approaches
observed phenomena in the prefix, target and Bavesian Model Merdi
: + Bayesian Model Merging
suffix sequences Neighbor-Merging

« Building structures by hand does not scale to V-Merging

large corpora

« Human intuitions don’t always correspond to * Stochastic Optimization
y P Hill Climbing in the possible structure space

structu_res that make the best use of HMM by spiltting states and gauging performance
potential on a validation set

Bayesian Model Merging Bayesian Model Merging

+ Maximally Spesific Model
* lterates merging states until an optimal tradeoff

between fit to the data and model size has been
reached

W P(M | D) ~P(D | M) P(M) M = Model
* Neighbor-merging D = Data
’ CAD_’ B C D CAD_»B D CCD_»

* V-merging

models

Y .> m P(D | M) can be calculated with the Forward algorithm
P(M) model prior can be formulated to reflect a preference for smaller



HMM Emissions

OO m) [OML1997..

submission to...
to appearin...

carnegie mellon university...

stochastic optimization...
reinforcement learning...
model building mobile robot...

2 million words of BibTeX data from the Web

Stochastic Optimization

+ Start with a simple model

» Perform hill-climbing in the space of possible
structures

* Make several runs and take the average to avoid
local optima

Background
. — Simple Model
Prefix Suffix P
T Target
6 b —» Complex Model with
prefix/suffix length of 4

HMM Information Extraction Results

Per-word error rate

Headers References
Labeled data only | 0-095
Labotedl dutnonty | 0.087 (8% better)
One statelciass 0.076 (20% better)
T;ifo*;'e';"(erging 0.071 (25% better)  0.066

State Operations

* Lengthen a prefix

+ Split a prefix

* Lengthen a suffix

» Split a suffix

* Lengthen a target string
» Split a target string

* Add a background state




LearnStructure Algorithm

procedure LearnStructure(LabeledSet, Ops)

ValidSet « 1/3 of LabeledSet
TrainSet «+ LabeledSet — ValidSet
CurModel + the simple model
Keepers + {CurModel}
I —u
while J < 20 and CurModel has fewer than 25 states
Candidates « {M|M € op(CurModel) A op € Ops}
for M € Candidates
score( M) +— average of 3 runs framned on
TrainSet and scored for F1 on ValidSet
CurModel + M e Candidates with highest score
Keepers «+ Keepers U {CurModel}
I—T+1
for M € Keepers
score{ M) « average F1 from
3-fold cross-validation on LabeledSet
return M € Keepers with highest score

Accuracy of Automatically-Learned

Structures

speaker | location | acquired | diramt | title | company | conf | deadline || Average
Grown HMM 76.9 87.5 41.3 54.4 58.3 65.4 27.2 46.5 57.2
vs. SRV +19.8 +16.0 +1.1 -1.6 — — — — +8.8
vs. Rapier +23.9 +14.8 +12.5 +15.1 | -11.7 +24.9 — — +13.3
vs. Simple HMM +24.3 +5.6 +14.3 +5.6 +5.7 +11.1 +15.7 +6.7 +11.1
vs. Complex HMM 2.1 +6.7 +7.5 -0.3 -0.3 +19.1 +0.0 -6.8 +3.0

Table 2: Difference in F1 performance between the HMM using a learned structure and other methods. The +

numbers indicate how much better our Grown HMM did than the alternative method.

Part of Example Learned Structure

043 028
.waan hall
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y Soberty )TN ML
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0s3 [ /ot
Locations / N / /
(= Pm <cR> , <UNE:
20 | da Jin = n 030
\ | <cr> hs
A oar
.
054 .56
porter /hall
ik

Speakers

Limitations of HMM/CRF models

« HMM/CRF models have a linear structure

* Web documents have a hierarchical
structure
— Are we suffering by not modeling this structure
more explicitly?
* How can one learn a hierarchical extraction
model?

— Coming up: STALKER, a hierarchical wrapper-
learner

— But first: how do we train wrapper-learners?



+ Extracting from one web site

— Use site-specific formatting information: e.g., “the JobTitle is a bold-
faced paragraph in column 2”

— For large well-structured sites, like parsing a formal language

» Extracting from many web sites:

Need general solutions to entity extraction, grouping into records,
etc.

Primarily use content information

Must deal with a wide range of ways that users present data.
Analogous to parsing natural language

Tree-based Models

* Problems are complementary:
— Site-dependent learning can collect training data for a site-
independent learner
— Site-dependent learning can boost accuracy of a site-independent
learner on selected key sites
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STALKER: Hierarchical boundary finding

[Muslea,Minton & Knoblock 99]

* Main idea:

— To train a hierarchical extractor, pose a series of
learning problems, one for each node in the
hierarchy

— At each stage, extraction is simplified by knowing
about the “context.”
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Stalker: hierarchical decomposition of two
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Learning Formatting Patterns “On the Fly”:

Home

Jobs - Home

Bellows Fallz, ¥T
{Distribution Center - map &

@ Route Sales Driver

Seuth Burlington,
(Contral Sﬂm'r ieg
& direotions)

® Brond Manager - Franchised Retail

it
ey

NATIONAL ACCOUNT SALES MANAGER {NY)

“Scoped Learning”

: | [Bagnell, Blei, McCallum, 2002]
LEAD GENERATION (NY) I

International Cake Scientist I

Lead Senior Research Scientist,

wplied Research -- Freezing

Meat Technologist

Qpportunity in Ohio for a food
scientist with experience in further
processing of deli meats. Will
tnanage projects and work with
cross-functional tearns, Requires a
BS or MS in Food Science or meat
science, with three to five years of
industry experience. Recent MS
qgrads will be considered if
acadernic work was focused on
processed meat,

Cantact Moira: e-mail
1-800-488-2611

Solutions - MD

SALES ENGINEER (FEDERAL SECTOR) {NY)
WITH SECURITY CLEARANCE
Job Description: WEVETPY YTy I i
The Sales Enginedl (01152002 Reseptionist espl A
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Responsibilities: Philadelphia BSih n
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o Responsible fol} 104112002 AVP, Sales & Marketing Solutions - tehng\ a
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Formatting is regular on each site, but there are too many different sites to wrap.
Can we get the best of both worlds?

Stalker: summary and results

Rule format:
— “landmark automata” format for rules
* E.g.: <a>W. Cohen</a> CMU: Web IE </li>
» STALKER: BEGIN = SkipTo(<, /, a, >), SkipTo(:)
Top-down rule learning algorithm

— Carefully chosen ordering between types of rule
specializations

Very fast learning: e.g. 8 examples vs. 274
A lesson: we often control the IE training data!

Scoped Learning Generative Model

For each of the D documents:
a) Generate the multinomial formatting

feature parameters ¢ from p(¢|a)

For each of the N words in the
document:

a) Generate the nth category ¢, from
p(c,).

b) Generate the nth word (global feature)
from p(w,|c,, 6)

c) Generate the nth formatting feature
(local feature) from p(f,|c,, @)

N

N

D

p(p, ¢, w, ) = pa(@) [] plen)ps(wnlea)p(falen, 4)

n=1




Inference

Given a new web page, we would like to classify each word
resulting in ¢ = {c,, C,,..., C}

pletw. ) = —d Ty P@nlen)p(nlcn, $)p(en)p(é)do
STV 5. p(Wala)p(Falcns )p(ca)p(9)de

This is not feasible to compute because of the integral and
sum in the denominator. We experimented with two
approximations:

- MAP point estimate of ¢

- Variational inference
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Global Extractor: Precision = 46%, Recall = 75%

MAP Point Estimate

If we approximate ¢ with a point estimate, ¢, then the integral
disappears and c decouples. We can then label each word with:

én = argnéaxp(wn|cn)p(fn|cm é)p(cn)

A natural point estimate is the posterior mode: a maximum likelihood
estimate for the local parameters given the document in question:

E-step:

¢ = arg max p(¢|f, w)

p(t+1) (Cn|wn7 fni (b) x p(t) (fn|cn; ¢)p(wn |Cn)p(cn)

M-step:

$os =P (fle) D
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Scoped Learning Extractor: Precision = 58%, Recall = 75%
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Broader View

Now touch on some other issues
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(3) Automatically Inducing an Ontology

Stage 1

preclassified fexts

Sentence~, S Word Trade Center  AufoSlog ™

Concept Nodes:

~ : was bombed o <x> was bombed
~Analyzer PP: by tertorists \Heuristics - bombed by <y>
preclassified texts Stage 2
e  Concept Node REL%
Sentence . <O Was bombed  87%
" Concept Node . Analyzer bombed by <y> 84%
Dictonary: - <w>waskilled __63%

<> 49%
<w> was killed 2 s ’

<x> was bombed
bombed by <y>
| <z> saw

[Riloff, ‘95]

Subject/Verb/Object
patterns that occur
more often in the
relevant documents
than the irrelevant
ones.

(3) Automatically Inducing an Ontology

Two inputs:

(1)

preclassified texts

(2)

[Riloff, ‘95]

Heuristic “interesting” meta-patterns.

Linguistic Pattern

Example

—

<subject> active-verb

<subject> active-verb direct-object®
<subject> passive-verb

<subject> verb infinitive

<subject> auxiliary noun

Lol ol o o

active-verb <direct-object>
passive-verb <direct-object>*
infinitive <direct-object>

verb infinitive <direct-object>
10. gerund <direct-object>

11. noun auxiliary <direct-object>

® NS

©

12. noun preposition <noun-phrase>

13. active-verb preposition <noun-phrase>
14. passive-verb preposition <noun-phrase>
15. infinitive preposition <noun-phrase>®

<perpetrator> bombed
<perpetrator> claimed responsibility
<victim> was murdered
<perpetrator> attempted to kill
<victim> was yictim

bombed <target>

killed <victim>

to kill <victim>

threatened to attack <target>
killing <victim>

fatality was <victim>

bomb against <target>
killed with <instrument>
was aimed at <target>
to fire at <victim>

Broader View

Now touch on some other issues

@ Create ontology
Spider

Filter by relevance

Segment
Classify

D @ Associate
D @ Cluster

Label training data

Load DB

Query,
Search

@ Data mine




(4) Training IE Models using Unlabeled Data

[Collins & Singer, 1999]

‘ ...says Mr. Cooper, a vice president of ... ‘
NNP NNP  appositive phrase, head=president

Use two independent sets of features:

Contents: full-string=Mr._Cooper, contains(Mr.), contains(Cooper)
Context: context-type=appositive, appositive-head=president

1. Start with just seven rules: and ~1M sentences of NYTimes

full-string=New_York \ Location 2. Alternately train & label
fill-string=California \ Location using each feature set.
full-string=U.S. \ Location

contains(Mr.) \ Person 3. Obtain 83% accuracy at finding
contains(Incorporated) \ Organization person, location, organization
full-string=Microsoft \ Organization & other in appositives and
full-string=1.B.M. \ Organization prepositional phrases!

See also [Brin 1998], [Riloff & Jones 1999]

(5) Data Mining: Working with IE Data

» Some special properties of IE data:
— Itis based on extracted text

— ltis “dirty”, (missing extraneous facts, improperly normalized
entity names, etc.

— May need cleaning before use

* What operations can be done on dirty, unnormalized
databases?

— Query it directly with a language that has “soft joins” across
similar, but not identical keys. [Cohen 1998]

— Construct features for learners [Cohen 2000]

— Infer a “best” underlying clean database
[Cohen, Kautz, MacAllester, KDD2000]

Broader View
Now touch on some other issues

@ Create ontology

Spider

Filter by relevance
4 IE
D Tokenize
D Segment

Classify
D @ Associate
D @ Cluster
Query, - b
Search e -

Label training data

Load DB

@ Train extraction models

(5) Data Mining: Mutually supportive
IE and Data Mining

Extract a large database
Learn rules to predict the value of each field from the other fields.
Use these rules to increase the accuracy of IE.

[Nahm & Mooney, 2000]

Example DB record Sample Learned Rules

Filled Job Template platform:AIX & lapplication:Sybase &
title: Senior DBMS Consultant application:DB2
salary: Up to $355K \application:Lotus Notes
state: TX language:C++ & language:C &
city: Dallas application:Corba &
. title=SoftwareEngineer
country: US h
. . . latform:Windows
language: Powerbuilder, Progress, C, C++, Visual Basic \p
platform: UNIX, NT language:HTML & platform:WindowsNT &

application:ActiveServerPages

application: SQL Server, Oracle \ area:Database

area: Electronic Commerce, Customer Service
required years of experience: 3

desired years of experience: 5

required degree: BS

Language:Java & area:ActiveX &
area:Graphics
\ area:Web



