Information Extraction:

Coreference and Relation Extraction

Lecture \#22

Introduction to Natural Language Processing
CMPSCI 585, Spring 2004
University of Massachusetts Amherst

Andrew McCallum

What is "Information Extraction"
As a family
Information Extraction =
of techniques: segmentation + classification + association + clustering

IE in Context

Main Points

Co-reference

- How to cast as classification [Cardie]
- Measures of string similarity [Cohen]
- Scaling up [McCallum et al]

Relation extraction

- With augmented grammar [Miller et al 2000]
- With joint inference [Roth \& Yih]
- Semi-supervised [Brin]

Coreference Resolution

AKA "record linkage", "database record deduplication", "citation matching", "object correspondence", "identity uncertainty"

Input	Output
News article, with named-entity "mentions" tagged	Number of entities, $N=3$
Today Secretary of State Colin Powell met with	\#1 Secretary of State Colin Powell
...................................	
. . . . Mr Powell She	Mr. Powell
Powell President Bush	Powell
. Rice .	\#2
Bush	Condoleezza Rice she
	Rice
	\#3
	President Bush Bush

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

> | Queen Elizabeth set about transforming her husband, |
| :--- |
| King George VI, into a viable monarch. Logue, |
| a renowned speech therapist, was summoned to help |
| the King overcome his speech impediment... |

Inside the Traditional Solution

Pair-wise Affinity Metric

Mention (3)	Mention (4)	
\ldots Mr Powell . . .	Y/N?	

Two words in common
29
13
"Normalized" mentions are string identical 39
Capitalized word in common 17
> 50\% character tri-gram overlap 19

In same sentence -34
In same sentence
Within two sentences 8
Further than 3 sentences apart
"Hobbs Distance" < 3 11
Number of entities in between two mentions $=0 \quad 12$
Number of entities in between two mentions >4
Font matches 1
$\begin{array}{ll}\text { Default } & -19\end{array}$ \qquad

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help the King overcome his speech impediment...

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

> Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help the King overcome his speech impediment...

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

> | Queen Elizabeth set about transforming her husband, |
| :--- |
| King George VI, into a viable monarch. Logue, |
| a renowned speech therapist, was summoned to help |
| the King overcome his speech impediment... |

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity
Queen Elizabeth set about transforming her husband,
King George VI, into a viable monarch. Logue,
a renowned speech therapist, was summoned to help
the King overcome his speech impediment...
the King overcome his speech impediment...

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help the King overcome his speech impediment...

IE Example: Input Text

SAN SALVADOR, 15 JAN 90 (ACAN-EFE) -- [TEXT] ARMANDO CALDERON SOL, PRESIDENT OF THE NATIONALIST REPUBLICAN ALLIANCE (ARENA), THE RULING SALVADORAN PARTY, TODAY CALLED FOR AN INVESTIGATION INTO ANY POSSIBLE CONNECTION BETWEEN THE MILITARY PERSONNEL IMPLICATED IN THE ASSASSINATION OF JESUIT PRIESTS.
"IT IS SOMETHING SO HORRENDOUS, SO MONSTROUS, THAT WE MUST INVESTIGATE THE POSSIBILITY THAT THE FMLN (FARABUNDO MARTI NATIONAL LIBERATION FRONT) STAGED THESE MURDERS TO DISCREDIT THE GOVERNMENT," CALDERON SOL SAID.
SALVADORAN PRESIDENT ALFREDO CRISTIANI IMPLICATED FOUR OFFICERS, INCLUDING ONE COLONEL, AND FIVE MEMBERS OF THE ARMED FORCES IN THE ASSASSINATION OF SIX JESUIT PRIESTS AND TWO WOMEN ON 16 NOVEMBER AT THE CENTRAL AMERICAN UNIVERSITY.

IE Example: Output Template

1. DATE
2. LOCATION
3. TYPE
4. STAGE OF EXECUTION
5. INCIDENT CATEGORY
6. PERP: INDIVIDUAL ID
7. PERP: ORGANIZATION ID
8. PERP: CONFIDENCE
9. HUM TGT: DESCRIPTION
10. HUM TGT: TYPE
11. HUM TGT: NUMBER
12. EFFECT OF INCIDENT

16 NOV 90
EL SALVADOR:
CENTRAL AMERICAN UNIVERSITY
MURDER
ACCOMPLISHED
TERRORIST ACT
"FOUR OFFICERS"
"ONE COLONEL"
"FIVE MEMBERS OF THE ARMED FORCES"
"ARMED FORCES", "FMLN"
REPORTED AS FACT; ACCUSED BY GOVT
"JESUITS"
"WOMEN"
CIVILIAN: "JESUITS"
CIVILIAN: "WOMEN"
6: "JESUITS"
2: "WOMEN"
DEATH: "JESUITS"
DEATH: "WOMEN"

IE Example: Coreference

SAN SALVADOR, 15 JAN 90 (ACAN-EFE) -- [TEXT] ARMANDO CALDERON SOL, PRESIDENT OF THE NATIONALIST REPUBLICAN ALLIANCE (ARENA), THE RULING SALVADORAN PARTY, TODAY CALLED FOR AN INVESTIGATION INTO ANY POSSIBLE CONNECTION BETWEEN THE MILITARY PERSONNEL IMPLICATED IN THE ASSASSINATION OF JESUIT PRIESTS.
"IT IS SOMETHING SO HORRENDOUS, SO MONSTROUS, THAT WE MUST INVESTIGATE THE POSSIBILITY THAT THE FMLN (FARABUNDO MARTI NATIONAL LIBERATION FRONT) STAGED THESE MURDERS TO DISCREDIT THE GOVERNMENT," CALDERON SOL SAID.
SALVADORAN PRESIDENT ALFREDO CRISTIANI IMPLICATED FOUR OFFICERS, INCLUDING ONE COLONEL, AND FIVE MEMBERS OF THE ARMED FORCES IN THE ASSASSINATION OF SIX JESUIT PRIESTS AND TWO WOMEN ON 16 NOVEMBER AT THE CENTRAL AMERICAN UNIVERSITY

Why It's Hard

Many sources of information play a role

- head noun matches
- IBM executives = the executives
- syntactic constraints
- John helped himself to...
- John helped him to...
- number and gender agreement
- discourse focus, recency, syntactic parallelism, semantic class, world knowledge, ...

Why It's Hard

- No single source is a completely reliable indicator
- number agreement
- the assassination = these murders
- Identifying each of these features automatically, accurately, and in context, is hard
- Coreference resolution subsumes the problem of pronoun resolution...

A Machine Learning Approach

- Clustering
- coordinates pairwise coreference decisions

A Machine Learning Approach

- Classification
- given a description of two noun phrases, $N P_{i}$ and $N P_{j}$, classify the pair as coreferent or not coreferent

[Queen Elizabeth] set about transforming [her] [husband], ...

```
not coref?
```

Aone \& Bennett [1995]; Connolly et al. [1994]; McCarthy \& Lehnert [1995]; Soon et al. [2001]; Ng \& Cardie [2002];

Machine Learning Issues

- Training data creation
- Instance representation
- Learning algorithm
- Clustering algorithm

Supervised Inductive Learning

Training Data Creation

- Creating training instances
- texts annotated with coreference information
- one instance $\operatorname{inst}\left(N P_{i}, N P_{j}\right)$ for each pair of NPs
- assumption: $N P_{i}$ precedes $N P_{i}$
- feature vector: describes the two NPs and context
- class value: coref pairs on the same coreference chain not coref otherwise

Learning Algorithm

- RIPPER (Cohen, 1995)

C4.5 (Quinlan, 1994)

- rule learners
- input: set of training instances
- output: coreference classifier
- Learned classifier
- input: test instance (represents pair of NPs)
- output: classification confidence of classification

Clustering Algorithm

- Best-first single-link clustering

- Mark each $N P_{j}$ as belonging to its own class: $N P_{j} \in c_{j}$
- Proceed through the NPs in left-to-right order.
- For each NP, $N P_{j}$, create test instances, inst $\left(N P_{i}, N P_{j}\right)$, for all of its preceding NPs, $N P_{i}$.
- Select as the antecedent for $N P_{j}$ the highest-confidence coreferent NP, $N P_{i}$, according to the coreference classifier (or none if all have below .5 confidence); Merge c_{j} and c_{j}.

Baseline Results

	MUC-6			MUC-7			
	R	P	F	R	P	F	
Baseline	40.7	73.5	52.4	27.2	86.3	41.3	
Worst MUC System	36	44	40	52.5	21.4	30.4	
Best MUC System	59	72	65	56.1	68.8	61.8	

Evaluation

- MUC-6 and MUC-7 coreference data sets
- documents annotated w.r.t. coreference
- $30+30$ training texts (dry run)
- $30+20$ test texts (formal evaluation)
- scoring program
- recall
- precision
- F-measure: $2 P R /(\mathrm{P}+\mathrm{R})$

Problem 1

- Coreference is a rare relation
- skewed class distributions (2\% positive instances)
- remove some negative instances

Problem 2

Problem 3

- Coreference is a discourse-level problem
- different solutions for different types of NPs
- proper names: string matching and aliasing
- inclusion of "hard" positive training instances
- positive example selection: selects easy positive training instances (cf. Harabagiu et al. (2001))
Queen Elizabeth set about transforming her husband, $\nrightarrow\urcorner$ \rightarrow King George VI, into a viable monarch. Logue,
the renowned speech therapist, was summoned to help \rfloor

Results

	MUC-6			MUC-7			
	R	P	F	R	P	F	
Baseline	40.7	73.5	52.4	27.2	86.3	41.3	
NEG-SELECT	46.5	67.8	55.2	37.4	59.7	46.0	
POS-SELECT	53.1	80.8	64.1	41.1	78.0	53.8	
NEG-SELECT + POS-SELECT	63.4	76.3	69.3	59.5	55.1	57.2	
NEG-SELECT + POS-SELECT + RULE-SELECT	63.3	76.9	69.5	54.2	76.3	63.4	

- Ultimately: large increase in F-measure, due to gains in recall
- Coreference is an equivalence relation
- loss of transitivity
- need to tighten the connection between classification and clustering
- prune learned rules w.r.t. the clustering-level coreference scoring function
coref? coref?
[Queen Elizabeth] set about transforming [her] [husband], ...
not coref?

Comparison with Best MUC Systems

	MUC $\mathbf{- 6}$			MUC -7			
	R	P	F	R	P	F	
NEG-SELECT + POS -SELECT + RULE -SELECT	63.3	76.9	69.5	54.2	76.3	63.4	
Best MUC S ystem	59	72	65	56.1	68.8	61.8	

Supervised ML for NP Coreference

- Good performance compared to other systems, but...lots of room for improvement
- Common nouns < pronouns < proper nouns
- Tighter connection between classification and clustering is possible
- Rich Caruana's ensemble methods
- Statistical methods for learning probabilistic relational models (Getoor et al., 2001; Lafferty et al., 2001; Taskar et al., 2003; McCallum and Wellner, 2003)
- Need additional data sets
- New release of ACE data from Penn's LDC
- General problem: reliance on manually annotated data..

Record linkage: definition

- Record linkage: determine if pairs of data records describe the same entity
- l.e., find record pairs that are co-referent
- Entities: usually people (or organizations or...)
- Data records: names, addresses, job titles, birth dates, ...
- Main applications:
- Joining two heterogeneous relations
- Removing duplicates from a single relation

Main Points

Co-reference

- How to cast as classification [Cardie]
- Measures of string similarity [Cohen]
- Scaling up [McCallum et al]

Relation extraction

- With augmented grammar [Miller et al 2000]
- With joint inference [Roth \& Yih]
- Semi-supervised [Brin]

Record linkage: terminology

- The term "record linkage" is possibly coreferent with:
- For DB people: data matching, merge/purge, duplicate detection, data cleansing, ETL (extraction, transfer, and loading), de-duping
- For AI/ML people: reference matching, database hardening, object consolidation,
- In NLP: co-reference/anaphora resolution
- Statistical matching, clustering, language modeling,

The data integration problem

- Start with citation:

> " Experience With a Learning Personal Assistant", T.M. Mitchell, R. Caruana, D. Freitag, J. McDermott, and D. Zabowski, Communications of the ACM, Vol. 37, No. 7, pp. 81-91, July 1994.

- Find author's institution (w/ INSPEC)
- Find web host (w/ NETFIND)
- Find author's home page and (hopefully) the paper by browsing

String distance metrics: overview

- Term-based (e.g. TF/IDF as in WHIRL)
- Distance depends on set of words contained in both s and t.
- Edit-distance metrics
- Distance is shortest sequence of edit commands that transform s to t.
- Pair HMM based metrics
- Probabilistic extension of edit distance
- Other metrics

internet host	institution
cs.ucsd.edu	computer science department, university of california, san diego
cs.stanford.edu	computer science department, stanford university, palo alto, california
(INSPEC)	Dept. of Comput. Sci., California Univ., San Diego, La Jolla, CA, USA.
	Dept. of Comput. Sci. Stanford Univ., CA, USA.

String distance metrics: term-based

- Term-based (e.g. TFIDF as in WHIRL)
- Distance between s and t based on set of words appearing in both s and t.
- Order of words is not relevant
- E.g, "Cohen, William" = "William Cohen" and "James Joyce = Joyce James"
- Words are usually weighted so common words count less
- E.g. "Brown" counts less than "Zubinsky"
- Analogous to Felligi-Sunter's Method 1

Jaccard Distance

S		William	Cohen	CM	Univ		Pgh
T	Dr.	William	Cohen	CM		University	
$\|S \cup T\|$	Dr.	William	Cohen	CM	Univ	University	Pgh
$\|S \cap T\|$		William	Cohen	CM			

Jaccard Score $=\frac{|S \cap T|}{|S \cup T|}=\frac{3}{7}$

String distance metrics: term-based

- Advantages:
- Exploits frequency information
- Efficiency: Finding $\{t: \operatorname{sim}(t, s)>k\}$ is sublinear!
- Alternative word orderings ignored (William Cohen vs Cohen, William)
- Disadvantages:
- Sensitive to spelling errors (Willliam Cohon)
- Sensitive to abbreviations (Univ. vs University)
- Alternative word orderings ignored (James Joyce vs Joyce James, City National Bank vs National City Bank)

Levenshtein distance - example

- distance("William Cohen", "Willliam Cohon")

Computing Levenshtein distance - 1

$\mathrm{D}(\mathrm{i}, \mathrm{j})=$ score of best alignment from $s 1 .$. si to $t 1 . . t j$

$$
=\min \begin{cases}\mathrm{D}(\mathrm{i}-1, \mathrm{j}-1), \text { if } \mathrm{si}=\mathrm{tj} & \text { //copy } \\ \mathrm{D}(\mathrm{i}-1, \mathrm{j}-1)+1, \text { if si }!=\mathrm{tj} & \text { //substitute } \\ \mathrm{D}(\mathrm{i}-1, \mathrm{j})+1 & \text { /insert } \\ \mathrm{D}(\mathrm{i}, \mathrm{j}-1)+1 & \text { //delete }\end{cases}
$$

Computing Levenshtein distance - 3

$$
\mathrm{D}(\mathrm{i}, \mathrm{j})=\min \begin{cases}\mathrm{D}(\mathrm{i}-1, \mathrm{j}-1)+\mathrm{d}(\mathrm{si}, \mathrm{j}) & \text { //subst/copy } \\ \mathrm{D}(\mathrm{i}-1, \mathrm{j})+1 & \text { //insert } \\ \mathrm{D}(\mathrm{i}, \mathrm{j}-1)+1 & \text { //delete }\end{cases}
$$

	\mathbf{C}	\mathbf{O}	\mathbf{H}	\mathbf{E}	\mathbf{N}
\mathbf{M}	1	2	3	4	5
\mathbf{C}	1	2	3	4	5
\mathbf{C}	2	2	3	4	5
\mathbf{O}	3	2	3	4	5
\mathbf{H}	4	3	2	3	4
\mathbf{N}	5	4	3	3	3

Computing Levenshtein distance - 2

$\mathrm{D}(\mathrm{i}, \mathrm{j})=$ score of best alignment from $s 1 . . s i$ to $t 1 . . t j$
$=\min \begin{cases}\mathrm{D}(\mathrm{i}-1, \mathrm{j}-1)+\mathrm{d}(\mathrm{si}, \mathrm{tj}) & \text { //subst/copy } \\ \mathrm{D}(\mathrm{i}-1, \mathrm{j})+1 & \text { //insert } \\ \mathrm{D}(\mathrm{i}, \mathrm{j}-1)+1 & \text { //delete }\end{cases}$
(simplify by letting $\mathrm{d}(\mathrm{c}, \mathrm{d})=0$ if $\mathrm{c}=\mathrm{d}, 1$ else)
also let $\mathrm{D}(\mathrm{i}, 0)=\mathrm{i}$ (for i inserts) and $\mathrm{D}(0, \mathrm{j})=\mathrm{j}$

Computing Levenshtein distance - 4

$$
\mathrm{D}(\mathrm{i}, \mathrm{j})=\min \begin{cases}\mathrm{D}(\mathrm{i}-1, \mathrm{j}-1)+\mathrm{d}(\mathrm{si}, \mathrm{t}) & \text { //subst/copy } \\ \mathrm{D}(\mathrm{i}-1, \mathrm{j})+1 & \text { //insert } \\ \mathrm{D}(\mathrm{i}, \mathrm{j}-1)+1 & \text { //delete }\end{cases}
$$

A trace indicates where the min value came from, and can be used to find edit operations and/or a best alignment (may be more than 1)

	\mathbf{C}	\mathbf{O}	\mathbf{H}	\mathbf{E}	\mathbf{N}
\mathbf{M}	$\mathbf{1}_{\mathbf{A}}$	2	3	4	5
\mathbf{C}	$\mathbf{1}$	2	3	4	5
\mathbf{C}	$\mathbf{2}_{1}$	3	3	4	5
\mathbf{O}	3	$\mathbf{2}$	3	4	5
\mathbf{H}	4	3	$\mathbf{2}$	$\mathbf{3}$	4
\mathbf{N}	5	4	3	3	$\mathbf{3}$

Needleman-Wunch distance

$\mathrm{d}(\mathrm{c}, \mathrm{d})$ is an arbitrary
distance function on
characters (e.g. related
to typo frequencies,
amino acid

substitutibility, etc)

Smith-Waterman distance

$D(i, j)=\max$	$\begin{aligned} & \mathbf{0} \\ & \mathrm{D}(\mathrm{i}-1, \mathrm{j}-1)-\mathrm{d}(\mathrm{si}, \mathrm{t}) \\ & \mathrm{D}(\mathrm{i}-1, \mathrm{j})-\mathrm{G} \\ & \mathrm{D}(\mathrm{i}, \mathrm{j}-1)-\mathrm{G} \end{aligned}$				//start over //subst/copy //insert //delete	
$\begin{aligned} & G=1 \\ & d(c, c)=-2 \\ & d(c, d)=+1 \end{aligned}$		C	0	H	E	N
	M	0	0	0	0	0
	C	+2	0	0	0	0
	C	+2	0	0	0	0
	0	0	+4	+3	0	0
	H	0	+3	+6	+5	+3
	N	0	+2	+5	+5	+7

Smith-Waterman distance

- Instead of looking at each sequence in its entirety, this compares segments of all possible lengths and chooses whichever maximise the similarity measure.
- For every cell the algorithm calculates all possible paths leading to it. These paths can be of any length and can contain insertions and deletions.

Smith-Waterman distance: Monge \& Elkan's WEBFIND (1996)

internet host	institution
cs.ucsd.edu	computer science department, university of california, san diego
cs.stanford.edu	computer science department, stanford university, palo alto, california
(INSPEC)	Dept. of Comput. Sci., California Univ., San Diego, La Jolla, CA, USA.
(INSPEC)	Dept. of Comput. Sci. Stanford Univ., CA, USA.

Table 1: Example of netfind and inspec fields.

Smith-Waterman distance in Monge \& Elkan's WEBFIND (1996)

Used a standard version of Smith-Waterman with hand-tuned weights for inserts and character substitutions.

Split large text fields by separators like commas, etc, and found minimal cost over all possible pairings of the subfields (since $\mathrm{S}-\mathrm{W}$ assigns a large cost to large transpositions)

Result competitive with plausible competitors.

Affine gap distances

- Smith-Waterman fails on some pairs that seem quite similar:

William W. Cohen
William W. 'Don’t call me Dubya' Cohen

Intuitively, single long insertions are "cheaper"
than a lot of short insertions

Results: S-W from Monge \& Elkan

Affine gap distances - 2

- Idea:
- Current cost of a "gap" of n characters: $n G$
- Make this cost: $A+(n-1) B$, where A is cost of "opening" a gap, and B is cost of "continuing" a gap.

Affine gap distances - 3

$$
\begin{aligned}
& \mathrm{D}(\mathrm{i}, \mathrm{j})=\max \left\{\begin{array}{l}
\mathrm{D}(\mathrm{i}-1, \mathrm{j}-1)+\mathrm{d}(\mathrm{si}, \mathrm{t}) \\
\mathrm{IS}(\mathrm{I}-1, \mathrm{j}-1)+\mathrm{d}(\mathrm{si}, \mathrm{tj}) \\
\mathrm{IT}(\mathrm{I}-1, \mathrm{j}-1)+\mathrm{d}(\mathrm{si}, \mathrm{j})
\end{array}\right. \\
& \mathrm{IS}(\mathrm{i}, \mathrm{j})=\max \begin{cases}\mathrm{D}(\mathrm{i}-1, \mathrm{j})-A & \text { Best score in which si} \\
\mathrm{IS}(\mathrm{i}-1, \mathrm{j})-B & \text { is aligned with a 'gap }\end{cases} \\
& \mathrm{IT}(\mathrm{i}, \mathrm{j})=\max \begin{cases}\mathrm{D}(\mathrm{i}, \mathrm{j}-1)-A & \text { Best score in which } t \mathrm{j} \\
\mathrm{IT}(\mathrm{i}, \mathrm{j}-1)-B & \text { is aligned with a 'gap }\end{cases}
\end{aligned}
$$

Affine gap distances as automata

Affine gap distances - 4

Generative version of affine gap automata (Bilenko\&Mooney, TechReport 02)

HMM emits pairs: (c, d) in state M, pairs ($c,-$) in state D, and pairs $(-, d)$ in state I.

For each state there is a multinomial distribution on pairs.
The HMM can trained with EM from a sample of pairs of matched strings (s, t)

E-step is forward-backward; M-step uses some ad hoc smoothing

Affine gap edit-distance learning: experiments results (Bilenko \& Mooney)

Table 2: Sample duplicate records from the Restaurant database

name	address	city	phone	cuisine
Second Avenue Deli	156 2nd Ave. at 10th St.	New York	$212 / 677-0606$	Delicatessen
Second Avenue Deli	156 Second Ave.	New York City	$212-677-0606$	Delis

Table 3: Sample duplicate records from the MAILING database

first	last	street address	city
Tsy C	Dodgson	18 Lilammal Ave 3k1	Christina MT 59423
Tessy	Dodgeson	PO Box 3879	Christina MT 59428

Experimental method: parse records into fields; append a few key fields together; sort by similarity; pick a threshold T and call all pairs with distance $(s, t)<T$ "duplicates"; picking T to maximize F-measure.

Affine gap edit-distance learning: experiments results (Bilenko \& Mooney)

Precision/recall for MAILING dataset duplicate detection

Affine gap edit-distance learning: experiments results (Bilenko \& Mooney)

Distance metric	CORA title	RESTAURANT name
Levenshtein	0.870	0.843
Learned Levenshtein	0.902	$\mathbf{0 . 8 8 6}$
Affine	0.917	0.883
Learned Affine	$\mathbf{0 . 9 7 1}$	$\mathbf{0 . 9 6 7}$

Distance met	RESTAURANT address	MAILING name	MAILING address
Levenshtein	0.950	0.867	0.878
Learned Levi	0.975	$\mathbf{0 . 8 9 9}$	0.897
Affine	0.870	0.923	0.886
Learned Affi	$\mathbf{0 . 9 2 9}$	$\mathbf{0 . 9 5 9}$	0.892

Affine gap distances - experiments (from McCallum,Nigam,Ungar KDD2000)

- Goal is to match data like this:

Fahlman, Scott \& Lebiere, Christian 1989). The cascadecorrelation learning architectrue. In Touretzky, D., editor, Advances in Neural Information Processing Systems (volume 2), (pp. 524-532), San Mateo, CA. Morgan Kaufmann.
Fahlman, S.E. and Lebiere, C., "The Cascade Correlation Learning Architecture," NIPS, vel. 2, pp. 524-532, Morgan Kaufmann, 1990.

Fahlmann, S. E. and Lebiere, C. (1989). The cascadecorrelation learning architecture. In Adxances in Neural Information Processing Systems 2 (NIPS-2), Denver, Colorado.

Figure 2: Three sample citations to the same paper.

Affine gap distances - experiments (from McCallum,Nigam,Ungar KDD2000)

- Hand-tuned edit distance
- Lower costs for affine gaps
- Even lower cost for affine gaps near a "."
- HMM-based normalization to group title, author, booktitle, etc into fields

String distance metrics: outline

- Term-based (e.g. TF/IDF as in WHIRL)
- Distance depends on set of words contained in both s and t.
- Edit-distance metrics
- Distance is shortest sequence of edit commands that transform s to t.
- Pair HMM based metrics
- Probabilistic extension of edit distance
- Other metrics

Affine gap distances - experiments

		TFIDF	Edit Distance
Cora	0.751	$\mathbf{0 . 8 3 9}$	$\mathbf{0 . 9 4 5}$
	0.721		$\mathbf{0 . 9 6 4}$
OrgName1	$\mathbf{0 . 9 2 5}$	0.633	0.923
	0.366	$\mathbf{0 . 9 5 0}$	0.776
Orgname2	$\mathbf{0 . 9 5 8}$	0.571	$\mathbf{0 . 9 5 8}$
	0.778	0.912	$\mathbf{0 . 9 8 4}$
Restaurant	0.981	0.827	$\mathbf{1 . 0 0 0}$
	$\mathbf{0 . 9 6 7}$	0.867	0.950
Parks	0.976	0.967	$\mathbf{0 . 9 8 4}$
	$\mathbf{0 . 9 6 7}$	0.967	$\mathbf{0 . 9 6 7}$

Jaro metric

- Jaro metric is (apparently) tuned for personal names:
- Given (s, t) define c to be common in s, t if it $s i=c, t j=c$, and $\mid i$ $j \mid<\min (|s|,|t|) / 2$.
- Define c, d to be a transposition if c, d are common and c, d appear in different orders in s and t.
- Jaro(s,t) = average of \#common/sl, \#common/t|, and 0.5\#transpositions/\#common
- Variant: weight errors early in string more heavily
- Easy to compute - note edit distance is $\mathrm{O}(|s||t|)$

NB. This is my interpretation of Winkler's description

Jaro metric

Illustration of the Jaro metric. Boxed entries are on the main diagonal, and every character in a row (column) which contains a boldfaces one is considered to be "in common" with the string "WILLIAM" "WILLLAIM").

$$
\begin{aligned}
& \operatorname{Jaro}(s, t)=\frac{1}{3} \cdot\left(\frac{\left|s^{\prime}\right|}{|s|}+\frac{\left|t^{\prime}\right|}{|t|}+\frac{\left|s^{\prime}\right|-T_{s^{\prime}, t^{\prime}}}{\left|s^{\prime}\right|}\right) \\
& \left|s^{\prime}\right|=\left|t^{\prime}\right|=\text { no. of characters common to } s \text { and } t . \\
& T_{s^{\prime}, t^{\prime}}=\text { no. of transpositions for } s^{\prime} \text { and } t^{\prime}
\end{aligned}
$$

Soundex metric

- Soundex is a coarse phonetic indexing scheme, widely used in genealogy.
- Every Soundex code consists of a letter and three numbers between 0 and 6 , e.g. B-536 for "Bender". The letter is always the first letter of the surname. The numbers hash together the rest of the name.
- Vowels are generally ignored: e.g. Lee, Lu => L-000. Later later consonants in a name are ignored.
- Similar-sounding letters (e.g. B, P, F, V) are not differentiated, nor are doubled letters.
- There are lots of Soundex variants...

N -gram metric

- Idea: split every string s into a set of all character ngrams that appear in s, for $n<=k$. Then, use termbased approaches.
- e.g. "COHEN" =>
\{C, O, H, E,N,CO,OH,HE,EN,COH,OHE,HEN\}
- For $n=4$ or 5 , this is competitive on retrieval tasks. It doesn't seem to be competitive with small values of n on matching tasks (but it's useful as a fast approximate matching scheme)

Main Points

Co-reference

- How to cast as classification [Cardie]
- Measures of string similarity [Cohen]
- Scaling up [McCallum et al]

Relation extraction

- With augmented grammar [Miller et al 2000]
- With joint inference [Roth]
- Semi-supervised [Brin]

Reference Matching

- Fahlman, Scott \& Lebiere, Christian (1989). The cascade-correlation learning architecture. In Touretzky, D., editor, Advances in Neural Information Processing Systems (volume 2), (pp. 524-532), San Mateo, CA. Morgan Kaufmann.
- Fahlman, S.E. and Lebiere, C., "The Cascade Correlation Learning Architecture," NIPS, Vol. 2, pp. 524-532, Morgan Kaufmann, 1990.
- Fahlman, S. E. (1991) The recurrent cascade-correlation learning architecture. In Lippman, R.P. Moody, J.E., and Touretzky, D.S., editors, NIPS 3, 190-205.

The Canopies Approach

- Two distance metrics: cheap \& expensive
- First Pass
- very inexpensive distance metric
- create overlapping canopies
- Second Pass
- expensive, accurate distance metric
- canopies determine which distances calculated

The Citation Clustering Data

- Over 1,000,000 citations
- About 100,000 unique papers
- About 100,000 unique vocabulary words
- Over 1 trillion distance calculations

Illustrating Canopies

Overlapping Canopies

Using canopies with Greedy Agglomerative Clustering

- Calculate expensive distances between points in the same canopy
- All other distances default to infinity
- Sort finite distances and iteratively merge closest

Creating canopies with two thresholds

- Put all points in D
- Loop:
- Pick a point X from D
- Put points within K loose of X in canopy
- Remove points within $\mathrm{K}_{\text {tight }}$ of X from D

Computational Savings

- inexpensive metric << expensive metric
- \# canopies per data point: f (small, but > 1)
- number of canopies: c (large)
- complexity reduction:

$$
O\left(\frac{f^{2}}{c}\right)
$$

The Experimental Dataset

- All citations for authors:
- Michael Kearns
- Robert Schapire
- Yoav Freund
- 1916 citations
- 121 unique papers
- Similar dataset used for parameter tuning

Expensive Distance Metric

for Text

- String edit distance

do Fahlman vs Falman

Inexpensive Distance Metric for Text

- Word-level matching (TFIDF)
- Inexpensive using an inverted index

Extracting Fields using HMMs

Fahlman, S.E. and Lebiere, C., "The Cascade Correlation Learning Architecture," NIPS, Vol. 2, pp. 524-532, Morgan Kaufmann, 1990.

Author: Fahlman, S.E. and Lebiere, C.
Title: The Cascade Correlation Learning Architecture
Venue: nips
Year: 1990

Experimental Results

	F1	Minutes
Canopies GAC	0.838	7.65
Complete GAC	0.835	134.09
Existing Cora	0.784	0.03
Author/Year	0.697	0.03

Add precision, recall along side F1

Main Points

Co-reference

- How to cast as classification [Cardie]
- Measures of string similarity [Cohen]
- Scaling up [McCallum et al]

Relation extraction

- With augmented grammar [Miller et al 2000]
- With joint inference [Roth \& Yih]
- Semi-supervised [Brin]

Co-reference

- How to cast as classification [Cardie]
- Measures of string similarity [Cohen]
- Scaling up [McCallum et al]

Relation extraction

- With augmented grammar [Miller et al 2000]
- With joint inference [Roth \& Yih]
- Semi-supervised [Brin]

(1) Association using Parse Tree

Simultaneously POS tag, parse, extract \& associate! [Miller et al 2000]

(1) Association with Graphical Models

Capture arbitrary-distance
[Roth \& Yih 2002]

Inference with loopy belief propagation.

(1) Association with Graphical Models

Also capture long-distance
[Roth \& Yih 2002]

Inference with loopy belief propagation.

(1) Association with Graphical Models

Inference with loopy belief propagation.

