

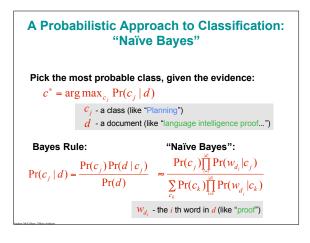
Work out Naïve Bayes formulation interactively on the board

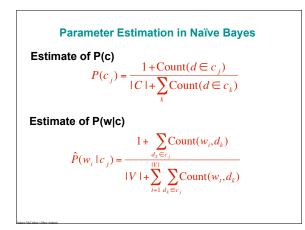
Recipe for Solving a NLP Task Statistically

- 1) Data: Notation, representation
- 2) Problem: Write down the problem in notation
- 3) Model: Make some assumptions, define a parametric model
- 4) Inference: How to search through possible answers to find the best one
- 5) Learning: How to estimate parameters
- **6) Implementation**: Engineering considerations for an efficient implementation

(Engineering) Components of a Naïve Bayes Document Classifier

- · Split documents into training and testing
- · Cycle through all documents in each class
- Tokenize the character stream into words
- · Count occurrences of each word in each class
- Estimate P(w|c) by a ratio of counts (+1 prior)
- For each test document, calculate P(c|d) for each class
- Record predicted (and true) class, and keep accuracy statistics





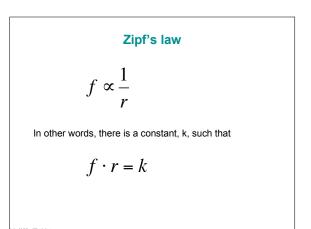
		words in Tom Sawyer (71,370 words)
Word	Freq	<u>Use</u>
the	3332	determiner (article)
and	2972	conjunction
а	1775	determiner
to	1725	preposition, verbal infinitive marker
of	1440	preposition
was	1161	auxiliary verb
it	1027	(personal/expletive) pronoun
in	906	preposition
that	877	complementizer, demonstrative
he	877	(personal) pronoun
I	783	(personal) pronoun
his	772	(possessive) pronoun
you	686	(personal) pronoun
Tom	679	proper noun
with	642	preposition

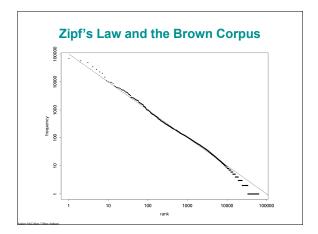
Frequencies of frequencies in Tom Sawyer

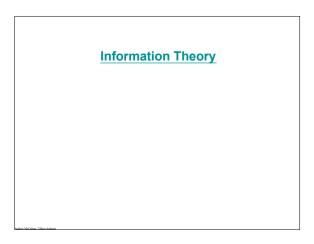
Frequency	Frequency	71,730 word tokens
1	3993	8,018 word types
2	1292	
3	664	
4	410	
5	243	
6	199	
7	172	
8	131	
9	82	
10	91	
11-50	540	
51-100	99	
>100	102	

		Zipii	s law Tom Sawyer	
Word	Freq. (f)	Rank (r)	f*r	
the	3332	1	3332	
and	2972	2	5944	
а	1775	3	5235	
he	877	10	8770	
but	710	20	8400	
be	294	30	8820	
there	222	40	8880	
one	172	50	8600	
about	158	60	9480	
more	138	60	9480	
never	124	80	9920	
Oh	116	90	10440	
two	104	100	10400	

Ziph's law Tom Sawyer					
Word	Freq. (f)	Rank (r)	f*r		
turned	51	200	10200		
you'll	30	300	9000		
name	21	400	8400		
comes	16	500	8000		
group	13	600	7800		
lead	11	700	7700		
friends	10	800	8000		
begin	9	900	8100		
family	8	1000	8000		
brushed	4	2000	8000		
sins	2	3000	6000		
Could	2	4000	8000		
Applausive	1	8000	8000		

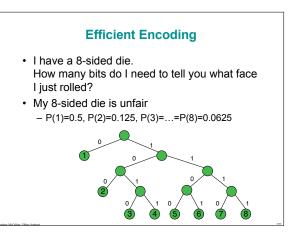






What is Information?

- "The sun will come up tomorrow."
- "Greenspan was shot and killed this morning."



"Coding" Interpretation of Entropy

- Given some distribution over events P(X)...
- What is the average number of bits needed to encode a message (a event, string, sequence)
- = Entropy of P(X):

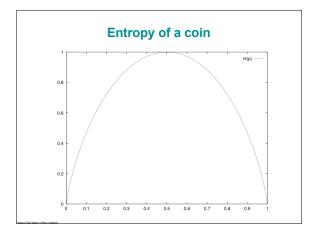
$$H(p(X)) = -\sum_{x \in X} p(x) \log_2(p(x))$$

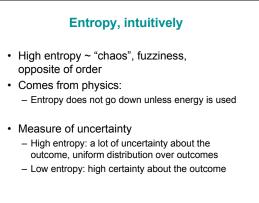
• Notation: $H(X) = H_p(X)=H(p)=H_X(p)=H(p_X)$

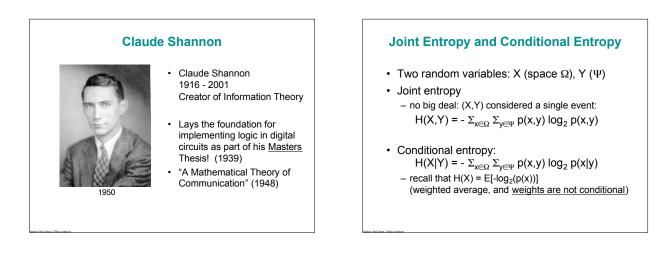
What is the entropy of a fair coin? A fair 32-sided die? What is the entropy of an unfair coin that always comes up heads? What is the entropy of an unfair 6-sided die that always {1,2} Upper and lower bound? (Prove lower bound?)

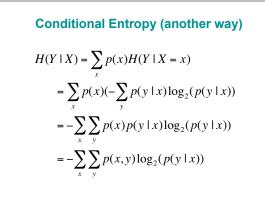
Entropy and Expectation

- Recall E[X] = $\sum_{x \in X(\Omega)} x \cdot p(x)$
- Then $\mathsf{E}[\text{-log}_2(p(x))] = \Sigma_{x \, \in \, \mathsf{X}(\Omega)} \, \text{-log}_2(p(x)) \, \cdot \, p(x)$
 - = H(X)









• Since, like random variables, entropy is based on an expectation..

H(X, Y) = H(X|Y) + H(X)

H(X, Y) = H(Y|X) + H(Y)

Cross Entropy

- What happens when you use a code that is sub-optimal for your event distribution?
 - I created my code to be efficient for a fair 8-sided die.
 - But the coin is unfair and always gives 1 or 2 uniformly.
 - How many bits on average for the optimal code?
 How many bits on average for the sub-optimal code?

$$H(p,q) = -\sum_{x \in X} p(x) \log_2(q(x))$$

KL Divergence

• What are the average number of bits that are wasted by encoding events from distribution *p* using distribution *q*?

$$\begin{split} D(p \, \| \, q) &= H(p,q) - H(p) \\ &= -\sum_{x \in \mathbb{X}} p(x) \log_2(q(x)) + \sum_{x \in \mathbb{X}} p(x) \log_2(p(x)) \\ &= \sum_{x \in \mathbb{X}} p(x) \log_2(\frac{p(x)}{q(x)}) \end{split}$$

A sort of "distance" between distributions *p* and *q*, but It is not symmetric! It does not satisfy the triangle inequality!

Mutual Information

- Recall: H(X) = average # bits for me to tell you which event occurred from distribution P(X).
 Now, first I tell you event y ∈ Y, H(X|Y) = average # bits
- Now, first I tell you event y ∈ Y, H(X|Y) = average # bits necessary to tell you which event occurred from distribution P(X)?
- By how many bits does knowledge of Y lower the entropy of X?

$$\begin{split} I(X;Y) &= H(X) - H(X \mid Y) \\ &= H(X) + H(Y) - H(X,Y) \end{split}$$

$$= \sum_{x} p(x) \log_2 \frac{1}{p(x)} + \sum_{y} p(y) \log_2 \frac{1}{p(y)} - \sum_{x,y} p(x,y) \log_2 p(x,y)$$

$$\sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

Mutual Information

- Symmetric, non-negative.
- Measure of independence.
- I(X;Y) = 0 when X and Y are independent
- I(X;Y) grows both with degree of dependence and entropy of the variables.
- · Sometimes also called "information gain"

· Used often in NLP

- clustering words
- word sense disambiguation
- feature selection...

Pointwise Mutual Information

- Previously measuring mutual information between two random variables.
- Could also measure mutual information between two random variables

$$I(x,y) = \log \frac{p(x,y)}{p(x)p(y)}$$