Noisy Channel, N-grams \& Smoothing
Lecture \#4

Introduction to Natural Language Processing
CMPSCI 585, Spring 2004
University of Massachusetts Amherst

Andrew McCallum

585 Class Mailing list

- Send to majordomo@cs.umass.edu an email message with body containing
subscribe cs585
- Check previous mail on edlab accounts.
aepshtey Epshteyn Alexander
aoshea O'Shea Andrew P
aoshea O 'Shea Andrew P
catenasi Atenasio Chris M
cbarriea Barrieau Christopher M
dgucwa Gucwa David
dpolitze Politze Daniel P
cheung Cheung Matthew Y
gallagh Gallagher Michael
wang wang Bo

HW\#1 Help
 Accuracy Evaluation

Result of running classifier on a test set:
filename trueclass predclass p(predclass|doc)
filename trueclass predclass p(predclass|doc)
filename trueclass predclass p(predclass|doc)

	true spam	true ham
pred spam	TP	FP
pred ham	FN	TN

Accuracy $=(T P+T N) /(T P+T N+F P+F N)$
Precision = TP / (TP+FP)
Recall = TP / (TP+FN)
F1 = harmonic mean of Precision \& Recall

HW\#1 Help Precision-Recall Curve

HW\#1 Help Accuracy-Coverage Curve

- Getting back to $\mathrm{p}(\mathrm{c} \mid \mathrm{d})$
- Subtract a constant to make all non-positive
- exp()

HW\#1 Help
 The importance of test/train splits

Capacity
$C=\max _{p(X)} I(X ; Y)$

- Capacity = rate at which one can transmit
information through the channel with an
arbitrarily low probability of error in decoding.

Probabilistic Language Modeling

- Assigns probability $p(t)$ to a word sequence $\mathrm{t}=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \mathrm{w}_{4} \mathrm{w}_{5} \mathrm{w}_{6} \ldots$
- Chain rule and joint/conditional probabilities for text t :

$$
p(t)=p\left(w_{1} \ldots w_{n}\right)=p\left(w_{1}\right) \ldots p\left(w_{n} \mid w_{1}, \ldots w_{n-1}\right)
$$

$$
=\prod_{i=1}^{n} p\left(w_{i} \mid w_{1} \ldots w_{i-1}\right)
$$

where

$$
p\left(w_{k} \mid w_{1} \ldots w_{k-1}\right)=\frac{p\left(w_{1} \ldots w_{k}\right)}{p\left(w_{1} \ldots w_{k-1}\right)} \sim \frac{C\left(w_{1} \ldots w_{k}\right)}{C\left(w_{1} \ldots w_{k-1}\right)}
$$

The chain rule leads to a history-based model: we predict following things from past things.

Noisy Channel Model

- Optimize Encoder for throughput and accuracy - compression: remove all redundancy
- accuracy: adding controlled redundancy
- Capacity: rate at which can transmit information with arbitrarily low probability of error in W^{\prime}

$$
C=\max _{p(Y)} I(X ; Y)
$$

Noisy Channel in NLP				
	annel ylx) Output chan	$\underset{\text { tron }}{\substack{\text { trem }}}$		
$Y^{\prime}=\arg \max _{y} p(y$) \arg	$\frac{p(y) p(x)}{p(x)}$	$=\arg \operatorname{ma}_{y}$	$\begin{aligned} & \text { language } \begin{array}{c} \text { chamanel } \\ \text { poros. } \\ \text { poron. } \end{array} \mathrm{x}(y) p(x \mid y) \end{aligned}$
Appicatan	mput	output	P(1)	P(x)
${ }_{\text {M }}^{\substack{\text { Masaine } \\ \text { Trasaion }}}$	4 wors sequenees	12 wers sequeneses		tonasalon moder
	atual ext			${ }_{\text {modelal }}^{\substack{\text { ecra }}}$
	$\underset{\substack{\text { Postag } \\ \text { seumeses }}}{ }$		$\xrightarrow{\text { peob of pos }}$ Seumes	
	wordsequeneses	atemit		acousite model
$\substack{\text { Oocament } \\ \text { cossmation }}$	class bubel	Mod ememencein		

n-gram models

the classic example of a statistical model of language

- Each word is predicted according to a conditional distribution based on limited context
- Conditional Probability Table (CPT): p (X|"both")
- p(of|both) $=0.066$
$-p($ to|both $)=0.041$
$-p($ in \mid both $)=0.038$
- a.k.a. Markov (chain) models
- sequences of random variables in which the future variable is determined by the present variable, but is independent of the way in which the present state arose from its predecessors

First-order Markov model, P(wlw)

- Simplest linear graphical model
- Words are random variables, arrows are direct dependencies between them (CPTs)
- These simple engineering models have been amazingly successful.

n-th order Markov models

- First order Markov assumption = bigram

$$
p\left(w_{k} \mid w_{1} \ldots w_{k-1}\right) \simeq p\left(w_{k} \mid w_{k-1}\right)=\frac{p\left(w_{k-1} w_{k}\right)}{p\left(w_{k-1}\right)}
$$

- Similarly, n-th order Markov assumption
- Most commonly, trigram (2nd order)
$p\left(w_{k} \mid w_{1} \ldots w_{k-1}\right) \simeq p\left(w_{k} \mid w_{k-2} w_{k-1}\right)=\frac{p\left(w_{k-2} w_{k-1} w_{k}\right)}{p\left(w_{k-2} w_{k-1}\right)}$

Andrei Andreyevich Markov

1856-1922

- Graduate of Saint Petersburg University (1878), where he began a professor in 1886.
- Mathematician, teacher political activist
- In 1913, when the government celebrated the 300th anniversary of the House of Romanov family, Markov organized a counter-celebration of the 200th anniversary of Bernoulli's discovery of the Law of Large Numbers.
- Markov was also interested in poetry and he made studies of poetic style.

Markov Approximations to English

- Zero-order approximation, P(c)
- XFOML RXKXRJFFUJ ZLPWCFWKCRJ FFJEYVKCQSGHYD QPAAMKBZAACIBZLHJQD
- First-order approximation, $\mathrm{P}(\mathrm{c} \mid \mathrm{c})$
- OCRO HLI RGWR NWIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
- Second-order approximation, $\mathrm{P}(\mathrm{c} \mid \mathrm{c}, \mathrm{c})$
- ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

Markov's Model

- Took 20,000 characters from Pushkin's Eugene Onegin to see if it could be approximated by a simple chain of characters.

	vowel	consonant
vowel	0.128	0.872
consonant	0.663	0.337

Markov Approximations to English (cont.)

- Third-order approximation, $\mathrm{P}(\mathrm{w} \mid \mathrm{w}, \mathrm{w}, \mathrm{w})$
- IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONSTURES OF THE REPTABIN IS REGOACTIONA OF CRE
- Markov Random Field with 1000 "features"
- WAS REASER IN THERE TO WILL WAS BY HOMES THING BE RELOVERATED THER WHICH CONSISTS AT FORES ANDITING WITH PROVERAL THE CHESTRAING FOR HAVE TO INTRALLY OF QUT DIVERAL THIS OFFECT INATEVER THIFER CONTRANDED STATER
[Della Pietra, Della Pietra \& Lafferty, 1997]

Character n-grams for language identification

n-gram models

- Core language model for the engineering task of better predicting the next word:
- Speech recognition
- OCR
- Context-sensitive spelling correction
- It has only recently that improvements have been made for these tasks []
- But linguistically, they are appallingly simple and naïve.

Word-based Approximations

- First-order approximation
- representing and speedily is an good apt or come can different natural here he the a in came the to of to expert gray come to furnishes the line message had be
- Second-order approximation
- the head and in frontal attack on an english writer that the character of this point is therefore another method for the letters that the time of who ever told the problem for an unexpected

Shannon's comment (1948): "It would be interesting if further approximations could be constructed, but the labor involvefd becomes enormous at the next stage."

Why might n -gram models not work?

- Relationships (say between subject and verb) can be arbitrarily distant and convoluted, as linguists love to point out:
- The man I was watching through the window without pausing to look at what was happening down the street, and quite oblivious to the situation that was about to befall him confidently strode into the center of the road.

Why do they work?

- That kind of thing doesn't happen much
- Collins (1997)
- 74% of dependencies (in the Penn Treebank, WSJ) are with an adjacent word (95% with one less than 5 words away), once one treats simple NPs as units

Evaluation of language models

- Best evaluation of probability model is task-based!
- As substitute for evaluating one component, standardly use corpus per-word cross entropy:

$$
H(X, p)=-\frac{1}{n} \sum_{i=1}^{n} \log _{2} p\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right)
$$

- Or perplexity
- units = average number of choices, scaled for uniform distr.
- high = unpredictable

$$
P P(X, p)=2^{H(X, p)}=\left[\prod_{i=1}^{n} p\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right)\right]^{-1 / n}
$$

Parameter Estimation

Limitations of the Maximum Likelihood Estimator

- Problem: often infinitely surprised when unseen word appears, P (unseen) $=0$
- Problem: this happens commonly
- Probabilities of zero-count words are too low
- Probabilities of nonzero-count words are too high
- Estimates for high count words are fairly accurate
- Estimates for low count words are unstable
- We need "smoothing"

Severity of the sparse data problem

count	2-grams	3-grams
$\mathbf{1}$	$8,045,024$	$53,737.350$
$\mathbf{2}$	$2,065,469$	$9,229,958$
$\mathbf{3}$	970,434	$3,654,791$
$\mathbf{> 4}$	$3,413,290$	$8,728,789$
$\mathbf{> 0}$	$14,494,217$	$75,349,888$
possible	6.8×10^{10}	1.7×10^{16}

Vocab size 260,741 words, 365M words training

Maximum Likelihood Estimate

- Relative frequency
- Makes training data a probable as possible
- Overfits

$$
p\left(w_{2} \mid w_{1}\right)=\frac{C\left(w_{1}, w_{2}\right)}{C\left(w_{1}\right)}
$$

Sparsity

- How often does an every day word like "kick" occur in a million words of text?
- "kick": about 10 [depends vastly on genre, of course]
- "wrist": about 5
- Normally we want to know about something bigger than a single word, like how often you "kick a ball", or how often the dative alternation "he kicked the baby a toy" occurs.
- How often can we expect that to occur in 1 million words?
- Almost never
- "There's no data like more data"
- Must be of the right domain

The Zero Problem

- Necessarily some zeros
- trigram model: 1.7×10^{16} parameters
- but only 2.6×10^{6} words of training data
- How should we distribute some probability mass over all possibilities in the mode
- optimal situation: even the least frequent trigram would occur several times, in order to distinguish its probability versus other trigrams
- optimal situation cannot happen, unfortunately (how much data would we need?)
- Two kinds of zeros: $p(w \mid h)=0$, or even $p(h)=0$

$$
\begin{gathered}
\text { Laplace smoothing } \\
p\left(w_{2} \mid w_{1}\right)=\frac{C\left(w_{1}, w_{2}\right)+1}{C\left(w_{1}\right)+V}
\end{gathered}
$$

- V is the vocabulary size (assume fixed, closed vocabulary)
- This is the Bayesian maximum a posteriori estimator you get by assuming a uniform prior on events (a Dirichlet prior)

Dirichlet Distribution

- "Multinomial" is a die: a distribution over a finite alphabet of outcomes
- "Dirichlet" is a dice generator: a distribution over multinomials!
$p(q) \sim \operatorname{Dirichlet}\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{K}\right)=\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k} q_{k}^{\alpha_{k}-1}$
- It is a conjugate prior for multinomials

mples

For $\alpha_{1}=\sigma_{2}=\alpha$

Laplace Smoothing

- Problem: gives too much probability mass to unseens
- Not good for large vocabulary, comparatively little data (NLP!)
- e.g. 10,000 word vocab, 1,000,000 words of training data, but "comes across" occurs 10 times. Of those, 8 times next word is "as"
- $\mathrm{P}_{\text {MLE }}($ as \mid comes across $)=0.8$
- $\mathrm{P}_{\text {Laplace }}($ as \mid comes across $)=(8+1) /(10+10000)=0.0009$
- Quick fix: Lidstone's law (Mitchell's 1997 " m-estimate"):

$$
p\left(w_{2} \mid w_{1}\right)=\frac{C\left(w_{1}, w_{2}\right)+\lambda}{C\left(w_{1}\right)+\lambda V}
$$

for $\lambda<1$, e.g. $1 / 2$ or 0.05

Held Out Estimator

- How do you know how likely you are to see a new word type in the future (in a certain context)? a little, and reallocate this probability mass to unseens
- By subtracting a fixed count, probability estimates for commonly seen things are scarcely affected, while probabilities of rare things are greatly affected
- If the discount is around $\delta=0.75$, then seeing something once is not so different than not having seen it at all

$$
p\left(w_{2} \mid w_{1}\right)=\left(C\left(w_{1}, w_{2}\right)-\delta / C\left(w_{1}\right) \text { if } C\left(w_{1}, w_{2}\right)>0\right.
$$

$p\left(w_{2} \mid w_{1}\right)=\left(V-N_{0}\right) \delta / N_{0} C\left(w_{1}\right)$ otherwise

- Examine some further text and find out (empirical held-out estimators = validation)
- Divide data into two pots: training data, validation data
- $\mathrm{N}=$ number of word tokens in training
$-N_{r}=$ number of unique bigrams with freq r in training
$-\mathrm{T}_{\mathrm{r}}=$ number of times that all bigrams appearing r times in the training data appeared in the validation data.
$p_{h o}\left(w_{1} w_{2}\right)=\frac{T_{r}}{N_{r} N}$ where $r=C\left(w_{1} w_{2}\right)$

Pots of data for estimating and testing models

- Major error: testing on your training data
- Overfitting: expect future events to be too much like the events on which it was trained, rather than allowing sufficiently for other possibilities.
- Training data
- Validation data
- Testing data
- Development test data
- Final test data
- Don't report results on just one test set, but average of many, and report variance... use a test of statistical significance

Held-out Estimator with Cross-validation

- Reshuffle the data several times into pots of training and validation data
- Calculate $\mathrm{p}_{\mathrm{ho}}\left(\mathrm{w}_{1} \mathrm{w}_{2}\right)$ for each split, then average them.
$p_{h o}\left(w_{1} w_{2}\right)=\frac{T_{r}^{01}+T_{r}^{10}}{\left(N_{r}^{0} N_{r}^{1}\right) N}$ where $r=C\left(w_{1} w_{2}\right)$
- Extreme case of cross-validation: leave-one-out cross validation
- Train on $\mathrm{N}-1$ of the words, validate on 1 word
- How much probability mass would be reserved for the unseen words in this case?

Good-Turing Smoothing

- Derivation reflects leave-one-out estimation
- For each word token in data, call it the test set; remaining data is training set
- See how often word in test set has r counts in training set
- This will happen every time word left out has $r+1$ counts in original data
- So total count mass of r count words is assigned from mass of $r+1$ count words $=N_{r+1} \times(r+1)$
- Apply to low counts; not needed (harmful!) for high count words

Good-Turing smoothing

- All words with same count get same probability (as before)
- Count mass of words with $r+1$ occurrences assigned to words with r occurrences.
- r^{*} is corrected frequency estimates for a word occurring r times

$$
r^{*}=(r+1) \frac{E\left[N_{r+1}\right]}{E\left[N_{r}\right]}
$$

$$
p_{g t}\left(w_{1} w_{2}\right)=\frac{r^{*}}{N}
$$

Estimated frequencies in AP newswire
(Church \& Gale 1991)

$r=\mathrm{f}_{\text {MLE }}$	$\mathrm{f}_{\text {emprical }}$	$\mathrm{f}_{\text {Lap }}$	$\mathrm{f}_{\text {del }}$	$\mathrm{f}_{\text {GT }}$
0	0.000027	0.000137	0.000037	0.000027
1	0.4480	.000274	0.396	0.446
2	1.25	0.000411	1.24	1.26
3	2.24	0.000548	2.23	2.24
4	3.23	0.000685	3.22	3.24
5	4.21	0.000822	4.22	4.22
6	5.23	0.000959	5.20	5.19
7	6.21	0.00109	6.21	6.21
8	7.21	0.00123	7.18	7.24

Differentiating based on history

- So far the methods considered have all used nothing but the raw frequency of an n-gram.
- "the large" P(large|the)
- "the mauve" P (mauve|the)
- if C("the large") $=\mathrm{C}$ ("the mauve") $($ e.g. $=0)$ then P (large|the) $=\mathrm{P}$ (mauve|the)
- This doesn't seem right
- Also use frequency of its ($n-1$)-gram
- p(large)
- p(mauve)

Linear Interpolation

- Estimate probability of an n-gram from a weighted average of low-order...high order n-grams.
$P_{l i}\left(w_{n} \mid w_{n-2}, w_{n-1}\right)=\lambda_{0} \frac{1}{V}+\lambda_{1} P_{1}\left(w_{n}\right)+\lambda_{2} P_{2}\left(w_{n} \mid w_{n-1}\right)+\lambda_{3} P_{3}\left(w_{n} \mid w_{n-1}, w_{n-2}\right)$
- where λ 's sum to 1
- set λ 's by hand or from held-out data
- they can be functions of (equivalence-classed histories)
- Also known as "shrinkage" [Stein 1957]
- Works surprisingly well!

Smoothing: Rest of the story

- Other methods:
- backoff (Katz 1987): Try four-gram, if zero-count, try tri-gram, if zero-count, try bi-gram,...
- Kneser and Ney (1995): Backoff n-gram counts not proportional to frequency of n-gram in training data but to expectation of how often it should occur in novel trigram (since one only uses backoff estimate when trigam not found)
- Witten-Bell discounting
- Smoothed maximum entropy models
- See (Chen and Goodman 1998) for a survey.

Assigning Probability to the "Unseen" Event

- At test time, see word, u, that wasn't seen at training time
- $\mathrm{P}(u)=$?
- Replace all singleton word tokens in training data with special token, <UNK>
- Progress in the field is often dominated, not by the need to create fancier more complex models,
- but by the need to do a good job of estimating parameters for the simpler models we already have.

Progress in the field is often dominated, not by the need to create fancier more complex models,

- but by the need to do a good job of estimating parameters for the simpler models we already have.
- Real benefit comes from targeted enhancements, and sharp toolset of excellent estimation techniques

Distinctiveness of NLP as an ML problem

- Most structure is hidden
- Relational, constraint satisfaction nature
- Long pipelines, with cascading errors
- Large and strange, sparse discrete distributions
- Large scale
- Feature-driven; performance driven

Large, sparse, discrete distributions

- Both features and assigned classes regularly involve multinomial distributions over huge numbers of values (often in the tens of thousands).
- The distributions are very uneven, and have fat tails.
- Enormous problems with data sparseness: much work on smoothing distributions...
- We normally have inadequate (labeled) data to estimate probabilities.
- Unknown/ unseen things are usually a central problem
- (Generally dealing with discrete distributions, though)

