Collocations Lecture #5

Introduction to Natural Language Processing CMPSCI 585, Spring 2004

University of Massachusetts Amherst

Andrew McCallum

Words and their meaning

In the next three lectures:

- · Word disambiguation
 - one word, multiple meanings
- Word clustering
 - multiple words, "same" meaning
- Collocations
 - multiple words together, different meaning than than the sum of its parts
 - Simple measures on text, yielding interesting, insights into language, meaning, culture.

Collocations

- An expression consisting of two or more words that correspond to some conventional way of saying things.
- · Characterized by limited compositionality.
 - compositional: meaning of expression can be predicted by meaning of its parts.
 - "strong tea", "rich in calcium"
 - "weapons of mass destruction"
 - "kick the bucket", "hear it through the grapevine"

Collocations important for...

- · Terminology extraction
 - Finding special phrases in technical domains
- · Natural language generation
 - To make natural output
- · Computational lexicography
 - To automatically identify phrases to be listed in a dictionary
- Parsing
 - To give preference to parses with natural collocations
- · Study of social phenomena
 - Like the reinforcement of cultural stereotypes through language (Stubbs 1996)

Contextual Theory of Meaning

- In contrast with "structural linguistics", which emphasizes abstractions, properties of sentences
- Contextual Theory of Meaning emphasizes the importance of context
 - context of the social setting (not idealized speaker)
 - context of discourse (not sentence in isolation)
 - context of surrounding words
 Firth: "a word is characterized by the company it keeps"
- Example [Halliday]
 - "strong tea", coffee, cigarettes
 - "powerful drugs", heroin, cocaine
 - Important for idiomatically correct English, but also social implications of language use

Method #1 Frequency

80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
13899	in	а
13689	of	а
13361	by	the
13183	with	the
12622	from	the
11428	New	Yor
10007	he	said

Andrew McCollege LiMes Araba

Method #1 Frequency with POS Filter AN, NN, AAN, ANN, NAN, NNN, NPN

-			
11487	New	York	ΑN
7261	United	States	ΑN
5412	Los	Angeles	ΑN
3301	last	year	NΝ
3191	Saudi	Arabia	ΝN
2699	last	week	ΑN
2514	vice	president	ΑN
2378	Persian	Gulf	ΑN
2161	San	Francisco	NΝ
2106	President	Bush	ΝN
2001	Middle	East	ΑN
1942	Saddam	Hussein	NN
1867	Soviet	Union	ΑN
1850	White	House	ΑN
1633	United	Nations	ΑN
1328	oil	prices	NN
1210	next	year	ΑN
1074	chief	executive	ΑN
1073	real	estate	ΑN

Method #2 Mean and Variance

- Some collocations are not of adjacent words, but words in more flexible distance relationship
 - she knocked on his door
 - they knocked at the door
 - 100 women knocked on Donaldson's door
 - a man knocked on the metal front door
- · Not a constant distance relationship
- But enough evidence that "knock" is better than "hit", "punch", etc.

Method #2 Mean and Variance

Sentence:

Stocks crash as rescue plan teeters.

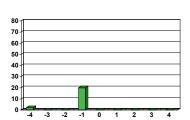
Time-shifted bigrams:

stocks crash stocks as stocks rescue crash as crash rescue crash plan as teeters

 To ask about relationship between "stocks" and "crash", gather many such pairs, and calculate the mean and variance of their offset.

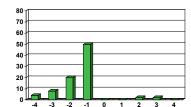
mean =
$$\bar{o} = \frac{1}{n} \sum_{i=1}^{n} o_i$$
 variance = $s = \frac{\sum_{i=1}^{n} (o_i - \bar{o})^{\frac{c}{2}}}{n-1}$

Method #2 Mean and Variance



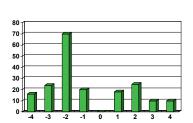
Position of "strong" versus "opposition" (mean=-1.15, deviation=0.67)

Method #2 Mean and Variance



Position of "strong" versus "support" (mean=-1.45, deviation=1.07)

Method #2 Mean and Variance



Position of "strong" versus "for" (mean=-1.12, deviation=2.15)

Method #2 **Mean and Variance** dev mean count Word1 Word2 11657 0.43 0.97 New York 0.48 1.83 24 previous games 46 0.15 2.98 minus points 0.49 3.87 131 hundreds dollars 36 4.03 0.44 editorial Atlanta 4.03 0.00 78 ring New 3.96 0.19 119 point hundredth 3.96 0.29 106 subscribers by

Method #3 **Likelihood Ratios**

- Determine which of two probabilistic models is more appropriate for the data.
 - H1 = hypothesis of model 1H2 = hypothesis of model 2

likelihood ratio =
$$\log \left(\frac{L(H_1)}{L(H_2)} \right)$$

- Hypothesis 1: $p(w2|w1) = p = p(w2|\sim w1)$
- Hypothesis 2: p(w2|w2) = p1 ≠ p2 = p(w2|~w1)
- Data
 - N = total count of all words
 - c1 = count of word 1
 - c2 = count of word 2
 - c12 = count of bigram word1word2

Method #3 **Likelihood Ratios**

· Determine which of two probabilistic models is more appropriate for the data.

	Н1	H2
P(w2 w1)	p=c2/N	p1=c12/c1
P(w2 ~w1)	p=c2/N	p2=(c2-c12)/(N-c1)
c12 out of c1 bigrams are w1w2	b(c12; c1,p)	b(c12;c1,p1)
c2-c12 out of N-c1 bigrams are ~w1w2	b(c2-c12; N-c1, p)	b(c2-c12; N-c1,p2)

likelihood ratio =
$$\log \left(\frac{L(H_1)}{L(H_2)} \right) = \log \left(\frac{b(c_{12},c_{1},p)b(c_{2}-c_{12},N-c_{1},p)}{b(c_{12},c_{1},p_{1})b(c_{2}-c_{12},N-c_{1},p_{2})} \right)$$

Method #3 Likelihood Ratio example data

-2log 2	<u>c1</u>	<u>c2</u>	<u>c12</u>	<u>w1</u>	<u>w2</u>
1291	12593	932	150	most	powerful
99	379	932	10	politically	powerful
82	932	934	10	powerful	computers
80	932	3424	13	powerful	force
57	932	291	6	powerful	symbol
51	932	40	4	powerful	lobbies
51	171	932	5	economically	powerful
51	932	43	4	powerful	magnet
50	4458	932	10	less	powerful
50	6252	932	11	very	powerful
49	932	2064	8	powerful	position
48	932	591	6	powerful	machines
47	932	2339	8	powerful	computer
43	932	396	5	powerful	magnets

Collocation studies helping lexicography

- Want to help dictionary-writers bring out differences between "strong" and "powerful"
 - Understand meaning of a word by the company it keeps.
- Church and Hanks (1989) through statistical analysis concluded that it is a matter of intrinsic vs extrinsic quality
- "strong" support from a demographic group, means committed, but may not have capability.
- "powerful" supporter is one who actually has capability to change things.
- But also additional subtleties, helps us analyze cultural attitudes
 - "strong tea" versus "powerful drugs"

Method #1 "strong" versus "powerful"

	outong		pomone	•••
w	C(strong,w)	<u>w</u>	C(powerfu	ıl,w)
support	t 50	forc	e 13	3
safely	22	com	puters 10)
sales	21	pos	ition 8	
opposit	ion 19	mer		
showing	g 18	com	puter 8	
sense	18	mar	n 7	
messag	ge 15	sym	ibol 6	
defense	e 14	milit		
gains	13	cou	ntry 6	
criticisn	n 13	wea	ipons 5	
possibil		pos		
feelings		peo	ple 5	
deman	d 11	forc		
challen	ges 11	chip		
challen	ge 11	nati		
case	10	Ger	many 5	
support	ter 10	sen	ators 4	
signal	9	neig	jhbor 4	

Likelihood Ratios across different corpora from different times

- Model1 = model for NYTimes 1989
 Model2 = model for NYTimes 1990

Ratio	<u>w1</u>	<u>w2</u>
0.024	Karim	Obeid
0.037	East	Berliners
0.037	Miss	Manners
0.039	17	earthquake
0.041	HUD	officials
0.048	East	Germans
0.051	Prague	Spring

1989: Muslim cleric Sheik Abdul Krim Obeid abducted, disintegration of communist Eastern Europe, scandal in HUD, October 17 earthquake in San Francisco, Miss Manners no longer carried by NYTimes in 1990

Additional TA Office Hours

• Aron Culotta will be available Friday 1-2pm.