Information Extraction: Coreference and Relation Extraction

Lecture \#20

Computational Linguistics
CMPSCI 591N, Spring 2006
University of Massachusetts Amherst

Andrew McCallum

Information Extraction: Coreference and Relation Extraction

Lecture \#20

Computational Linguistics
CMPSCI 591N, Spring 2006
University of Massachusetts Amherst

Andrew McCallum

What is "Information Extraction"

As a family of techniques:

Information Extraction =
 segmentation + classification + association + clustering

IE in Context

Create ontology

Main Points

Co-reference

- How to cast as classification [Cardie]
- Joint resolution [McCallum et al]
- Canopies (time permitting..)

Coreference Resolution

AKA "record linkage", "database record deduplication", "citation matching", "object correspondence", "identity uncertainty"

Input

News article, with named-entity "mentions" tagged

Today Secretary of State Colin Powell met with

. . . . Mr Powellshe
... President Bush.
...................... Rice
Bush

Output

Number of entities, $N=3$
\#1
Secretary of State Colin Powell he
Mr. Powell
Powell
\#2
Condoleezza Rice
she
Rice
\#3
President Bush
Bush

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help the King overcome his speech impediment...

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

> Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help the King overcome his speech impediment...

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help the King overcome his speech impediment...

Noun Phrase Coreference

Identify all noun phrases that refer to the same entity

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, a renowned speech therapist, was summoned to help the King overcome his speech impediment...

IE Example: Coreference

SAN SALVADOR, 15 JAN 90 (ACAN-EFE) -- [TEXT] ARMANDO CALDERON SOL, PRESIDENT OF THE NATIONALIST REPUBLICAN ALLIANCE (ARENA), THE RULING SALVADORAN PARTY, TODAY CALLED FOR AN INVESTIGATION INTO ANY POSSIBLE CONNECTION BETWEEN THE MILITARY PERSONNEL IMPLICATED IN THE ASSASSINATION OF JESUIT PRIESTS.
"IT IS SOMETHING SO HORRENDOUS, SO MONSTROUS, THAT WE MUST INVESTIGATE THE POSSIBILITY THAT THE FMLN (FARABUNDO MARTI NATIONAL LIBERATION FRONT) STAGED THESE MURDERS TO DISCREDIT THE GOVERNMENT," CALDERON SOL SAID.
SALVADORAN PRESIDENT ALFREDO CRISTIANI IMPLICATED FOUR OFFICERS, INCLUDING ONE COLONEL, AND FIVE MEMBERS OF THE ARMED FORCES IN THE ASSASSINATION OF SIX JESUIT PRIESTS AND TWO WOMEN ON 16 NOVEMBER AT THE CENTRAL AMERICAN UNIVERSITY.

Why It's Hard

Many sources of information play a role

- head noun matches
- IBM executives = the executives
- syntactic constraints
- John helped himself to...
- John helped him to...
- number and gender agreement
- discourse focus, recency, syntactic parallelism, semantic class, world knowledge, ...

Why It's Hard

- No single source is a completely reliable indicator
- number agreement
- the assassination = these murders
- Identifying each of these features automatically, accurately, and in context, is hard
- Coreference resolution subsumes the problem of pronoun resolution...

A Machine Learning Approach

- Classification
- given a description of two noun phrases, $N P_{i}$ and $N P_{j}$, classify the pair as coreferent or not coreferent

not coref?

```
Aone & Bennett [1995]; Connolly et al. [1994]; McCarthy & Lehnert [1995];
Soon et al. [2001]; Ng & Cardie [2002]; ...
```


A Machine Learning Approach

- Clustering
- coordinates pairwise coreference decisions

Machine Learning Issues

- Training data creation
- Instance representation
- Learning algorithm
- Clustering algorithm

Training Data Creation

- Creating training instances
- texts annotated with coreference information
- one instance $\operatorname{inst}\left(N P_{i}, N P_{j}\right)$ for each pair of NPs
- assumption: $N P_{j}$ precedes $N P_{j}$
- feature vector: describes the two NPs and context
- class value:
coref pairs on the same coreference chain
not coref otherwise

Instance Representation

- 25 features per instance
- lexical (3)
- string matching for pronouns, proper names, common nouns
- grammatical (18)
- pronoun, demonstrative (the, this), indefinite (it is raining), ...
- number, gender, animacy
- appositive (george, the king), predicate nominative (a horse is a mammal)
- binding constraints, simple contra-indexing constraints, ...
- span, maximalnp, ...
- semantic (2)
- same WordNet class
- alias
- positional (1)
- distance between the NPs in terms of \# of sentences
- knowledge-based (1)
- naïve pronoun resolution algorithm

Learning Algorithm

- RIPPER (Cohen, 1995) C4.5 (Quinlan, 1994)
- rule learners
- input: set of training instances
- output: coreference classifier
- Learned classifier
- input: test instance (represents pair of NPs)
- output: classification confidence of classification

Clustering Algorithm

- Best-first single-link clustering
- Mark each $N P_{j}$ as belonging to its own class: $N P_{j} \in c_{j}$
- Proceed through the NPs in left-to-right order.
- For each NP, $N P_{j}$, create test instances, $\operatorname{inst}\left(N P_{i}, N P_{j}\right)$, for all of its preceding NPs, $N P_{i}$.
- Select as the antecedent for $N P_{j}$ the highest-confidence coreferent $\mathrm{NP}, N P_{i}$, according to the coreference classifier (or none if all have below .5 confidence); Merge c_{j} and c_{j}.

Evaluation

- MUC-6 and MUC-7 coreference data sets
- documents annotated w.r.t. coreference
- $30+30$ training texts (dry run)
- $30+20$ test texts (formal evaluation)
- scoring program
- recall
- precision
- F-measure: 2PR/(P+R)
- Types
- MUC
- ACE
- Bcubed
- Pairwise

Baseline Results

		MUC-6			MUC-7			
	R	P	F	R	P	F		
Baseline	40.7	73.5	52.4	27.2	86.3	41.3		
Worst MUC System	36	44	40	52.5	21.4	30.4		
Best MUC System	59	72	65	56.1	68.8	61.8		

Problem 1

- Coreference is a rare relation
- skewed class distributions (2\% positive instances)
- remove some negative instances

Problem 2

- Coreference is a discourse-level problem
- different solutions for different types of NPs
- proper names: string matching and aliasing
- inclusion of "hard" positive training instances
- positive example selection: selects easy positive training
instances (crf. Harabagiu et tal. (2001))
King George VI, into a viable monarch. Logue,
the renowned speech therapist, was summoned to help
the King overcome his speech impediment...

Problem 3

- Coreference is an equivalence relation
- loss of transitivity
- need to tighten the connection between classification and clustering
- prune learned rules w.r.t. the clustering-level coreference scoring function

Results

	MUC-6			MUC-7		
	R	P	F	R	P	F
Baseline	40.7	73.5	52.4	27.2	86.3	41.3
NEG-SELECT	46.5	67.8	55.2	37.4	59.7	46.0
POS-SELECT	53.1	80.8	64.1	41.1	78.0	53.8
NEG-SELECT + POS-SELECT	63.4	76.3	69.3	59.5	55.1	57.2
NEG-SELECT + POS-SELECT + RULE-SELECT	63.3	76.9	69.5	54.2	76.3	63.4

- Ultimately: large increase in F-measure, due to gains in recall

Comparison with Best MUC Systems

	MUC -6			MUC -7		
	R	P	F	R	P	F
NEG-SELECT + POS -SELECT + RULE -SELECT	63.3	76.9	69.5	54.2	76.3	63.4
Best MUC S ystem	59	72	65	56.1	68.8	61.8

Main Points

Co-reference

- How to cast as classification [Cardie]
- Joint resolution [McCallum et al]

Joint co-reference among all pairs Affinity Matrix CRF

... Mr Powell . . .
"Entity resolution"

Inference:
Correlational clustering graph partitioning
[McCallum, Wellner, IJCAI WS 2003, NIPS 2004]

Coreference Resolution

AKA "record linkage", "database record deduplication", "citation matching", "object correspondence", "identity uncertainty"

Input

News article,
with named-entity "mentions" tagged

Today Secretary of State Colin Powell met with

.... Mr Powell
Powell
. . . President Bush
Rice
....... Bush

Output

Number of entities, $\mathbf{N}=3$
\#1
Secretary of State Colin Powell
he
Mr. Powell
Powell
\#2
Condoleezza Rice
she
Rice
\#3
President Bush
Bush

Inside the Traditional Solution

Pair-wise Affinity Metric

The Problem

Pair-wise merging decisions are being made independently from each other

They should be made in relational dependence with each other.

Affinity measures are noisy and imperfect.

A Markov Random Field for Co-reference

 (MRF)[McCallum \& Wellner, 2003, ICML]

A Markov Random Field for Co-reference

 (MRF)[McCallum \& Wellner, 2003]

A Markov Random Field for Co-reference

 (MRF)[McCallum \& Wellner, 2003]

. . . Mr Powell . . .

-infinity

$$
P(\stackrel{\rightharpoonup}{y} \mid \vec{x})=\frac{1}{Z_{\bar{x}}} \exp \left(\sum_{i, j} \sum_{l} \lambda_{l} f_{l}\left(x_{i}, x_{j}, y_{i j}\right)+\sum_{i, j, k} \lambda^{\prime} f^{\prime}\left(y_{i j}, y_{j k}, y_{i k}\right)\right)
$$

A Markov Random Field for Co-reference

 (MRF)[McCallum \& Wellner, 2003]

. . . Mr Powell . . .

$$
P(\stackrel{\rightharpoonup}{y} \mid \vec{x})=\frac{1}{Z_{\vec{x}}} \exp \left(\sum_{i, j} \sum_{l} \lambda_{l} f_{l}\left(x_{i}, x_{j}, y_{i j}\right)+\sum_{i, j, k} \lambda^{\prime} f^{\prime}\left(y_{i j}, y_{j k}, y_{i k}\right)\right)
$$

Inference in these MRFs = Graph Partitioning

[Boykov, Vekler, Zabih, 1999], [Kolmogorov \& Zabih, 2002], [Yu, Cross, Shi, 2002]

$$
\log (P(\stackrel{y}{y} \mid \stackrel{\rightharpoonup}{x})) \propto \sum_{i, j} \sum_{l} \lambda_{l} f_{l}\left(x_{i}, x_{j}, y_{i j}\right)=\sum_{\substack{i, j w / i n \\ \text { paritions }}} \mathrm{w}_{\mathrm{ij}}-\sum_{\substack{i, j \text { across } \\ \text { paritions }}} \mathrm{w}_{\mathrm{ij}}
$$

Inference in these MRFs = Graph Partitioning

[Boykov, Vekler, Zabih, 1999], [Kolmogorov \& Zabih, 2002], [Yu, Cross, Shi, 2002]

$$
\log (P(\stackrel{\rightharpoonup}{y} \mid \vec{x})) \propto \sum_{i, j} \sum_{l} \lambda_{l} f_{l}\left(x_{i}, x_{j}, y_{i j}\right)=\sum_{\substack{i, j \mathrm{w} / \mathrm{in} \\ \text { paritions }}} \mathrm{w}_{\mathrm{ij}}-\sum_{\substack{i, j \text { across } \\ \text { paritions }}} \mathrm{w}_{\mathrm{ij}}=-22
$$

Inference in these MRFs = Graph Partitioning

[Boykov, Vekler, Zabih, 1999], [Kolmogorov \& Zabih, 2002], [Yu, Cross, Shi, 2002]

$\log (P(\stackrel{\rightharpoonup}{y} \mid \vec{x})) \propto \sum_{i, j} \sum_{l} \lambda_{l} f_{l}\left(x_{i}, x_{j}, y_{i j}\right)=\sum_{\substack{i, j \mathrm{w} / \mathrm{in} \\ \text { paritions }}} \mathrm{w}_{\mathrm{ij}}+\sum_{\substack{i, j \text { across } \\ \text { paritions }}} \mathrm{w}_{\mathrm{ij}}^{\prime}=314$

Co-reference Experimental Results

[McCallum \& Wellner, 2003]
Proper noun co-reference
DARPA ACE broadcast news transcripts, 117 stories

	Partition F1	Pair F1
Single-link threshold	16%	18%
Best prev match [Morton]	83%	89%
MRFs	88%	92%
	$\Delta e r r o r=30 \%$	Δ error $=28 \%$

DARPA MUC-6 newswire article corpus, 30 stories

	Partition F1	Pair F1
Single-link threshold	11%	7%
Best prev match [Morton]	$\mathbf{7 0} \%$	76%
MRFs	$\mathbf{7 4} \%$	80%
	Δ error=13\%	Δ error $=17 \%$

Joint Co-reference for Multiple Entity Types
 [Culotta \& McCallum 2005]

People

Stuart Russell

S. Russel

Joint Co-reference for Multiple Entity Types

People

Stuart Russell

S. Russel

Organizations

University of California at Berkeley

Stuart Russell

Berkeley

Joint Co-reference for Multiple Entity Types

[Culotta \& McCallum 2005]

People

 OrganizationsStuart Russell
University of California at Berkeley

The Canopies Approach

- Two distance metrics: cheap \& expensive
- First Pass
- very inexpensive distance metric
- create overlapping canopies
- Second Pass
- expensive, accurate distance metric
- canopies determine which distances calculated

Main Points

- Important IE task
- Coreference as classification
- Coreference as CRF
- Joint resolution of different object type

Reference Matching

- Fahlman, Scott \& Lebiere, Christian (1989). The cascade-correlation learning architecture. In Touretzky, D., editor, Advances in Neural Information Processing Systems (volume 2), (pp. 524-532), San Mateo, CA. Morgan Kaufmann.
- Fahlman, S.E. and Lebiere, C., "The Cascade Correlation Learning Architecture," NIPS, Vol. 2, pp. 524-532, Morgan Kaufmann, 1990.
- Fahlman, S. E. (1991) The recurrent cascade-correlation learning architecture. In Lippman, R.P. Moody, J.E., and Touretzky, D.S., editors, NIPS 3, 190-205.

The Citation Clustering Data

- Over 1,000,000 citations
- About 100,000 unique papers
- About 100,000 unique vocabulary words
- Over 1 trillion distance calculations

The Canopies Approach

- Two distance metrics: cheap \& expensive
- First Pass
- very inexpensive distance metric
- create overlapping canopies
- Second Pass
- expensive, accurate distance metric
- canopies determine which distances calculated

Illustrating Canopies

Overlapping Canopies

Creating canopies with two thresholds

- Put all points in D
- Loop:
- Pick a point X from D
- Put points within
- $\mathrm{K}_{\text {loose }}$ of X in canopy
- Removef xafrodinuithin

Using canopies with Greedy Agglomerative Clustering

- Calculate expensive distances between points in the same canopy
- All other distances default to infinity
- Sort finite distances and iteratively merge closest

Computational Savings

- inexpensive metric << expensive metric
- \# canopies per data point: f (small, but > 1)
- number of canopies: c (large)
- complexity reduction:

$$
O\left(\frac{f^{2}}{c}\right)
$$

The Experimental Dataset

- All citations for authors:
- Michael Kearns
- Robert Schapire
- Yoav Freund
- 1916 citations
- 121 unique papers
- Similar dataset used for parameter tuning

Inexpensive Distance Metric for Text

- Word-level matching (TFIDF)
- Inexpensive using an inverted index

Expensive Distance Metric for Text

- String edit distance
- Compute with Dynamic Programming
- Costs for character:
- insertion
- deletion
- substitution

	S		e	C	a	t
	0.0	0.7	1.4	2.1	2.8	3.5
S	0.7	0.0	0.7	1.1	1.4	1.8
c	1.4	0.7	1.0	0.7	1.4	1.8
0	2.1	1.1	1.7	1.4	1.7	2.4
t	2.8	1.4	2.1	1.8	2.4	1.7
t	3.5	1.8	2.4	2.1	2.8	2.4

do Fahlman vs Falman

Experimental Results

	F1	Minutes
Canopies GAC	0.838	7.65
Complete GAC	0.835	134.09
Old Cora	0.784	0.03
Author/Year	0.697	0.03

Add precision, recall along side F1

Main Points

Co-reference

- How to cast as classification [Cardie]
- Measures of string similarity [Cohen]
- Scaling up [McCallum et al]

