
Crash Course in Data Stream Theory
Part 2: Graphs, Geometry, and Future Directions

Andrew McGregor
University of Massachusetts Amherst

1/21

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond. . .

2/21

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond. . .

3/21

Graph Streams and Geometric Streams

I Graph Streams: Stream of edges E = {e1, e2, . . . , em} describe a
graph G on n nodes. Estimate properties of G .

I Geometric Streams: Stream of points P = {p1, p2, . . . , pm} from
some metric space (X , d), e.g., Rt . Estimate properties of P.

4/21

Graph Streams and Geometric Streams

I Graph Streams: Stream of edges E = {e1, e2, . . . , em} describe a
graph G on n nodes. Estimate properties of G .

I Geometric Streams: Stream of points P = {p1, p2, . . . , pm} from
some metric space (X , d), e.g., Rt . Estimate properties of P.

4/21

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond. . .

5/21

Warm-Up: Connectivity

I Thm: Can determine if a graph is connected in O(n log n) space.

I Algorithm:

1. Maintain label `(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with `(u) 6= `(v),

`(w)← `(u) for all w with `(w) = `(v)

3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when `(u) 6= `(v) we maintain a spanning forest

I Can do something similar to determine if graph is bipartite

I Most graph problems require space roughly proportional to the
number of nodes. . . called the “semi-streaming space restriction”

6/21

Warm-Up: Connectivity

I Thm: Can determine if a graph is connected in O(n log n) space.

I Algorithm:

1. Maintain label `(u) for each node u where labels are initially distinct

2. On seeing edge (u, v) with `(u) 6= `(v),

`(w)← `(u) for all w with `(w) = `(v)

3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when `(u) 6= `(v) we maintain a spanning forest

I Can do something similar to determine if graph is bipartite

I Most graph problems require space roughly proportional to the
number of nodes. . . called the “semi-streaming space restriction”

6/21

Warm-Up: Connectivity

I Thm: Can determine if a graph is connected in O(n log n) space.

I Algorithm:

1. Maintain label `(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with `(u) 6= `(v),

`(w)← `(u) for all w with `(w) = `(v)

3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when `(u) 6= `(v) we maintain a spanning forest

I Can do something similar to determine if graph is bipartite

I Most graph problems require space roughly proportional to the
number of nodes. . . called the “semi-streaming space restriction”

6/21

Warm-Up: Connectivity

I Thm: Can determine if a graph is connected in O(n log n) space.

I Algorithm:

1. Maintain label `(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with `(u) 6= `(v),

`(w)← `(u) for all w with `(w) = `(v)

3. The graph is connected iff every node ends up with the same label

4. If we collect (u, v) when `(u) 6= `(v) we maintain a spanning forest

I Can do something similar to determine if graph is bipartite

I Most graph problems require space roughly proportional to the
number of nodes. . . called the “semi-streaming space restriction”

6/21

Warm-Up: Connectivity

I Thm: Can determine if a graph is connected in O(n log n) space.

I Algorithm:

1. Maintain label `(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with `(u) 6= `(v),

`(w)← `(u) for all w with `(w) = `(v)

3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when `(u) 6= `(v) we maintain a spanning forest

I Can do something similar to determine if graph is bipartite

I Most graph problems require space roughly proportional to the
number of nodes. . . called the “semi-streaming space restriction”

6/21

Warm-Up: Connectivity

I Thm: Can determine if a graph is connected in O(n log n) space.

I Algorithm:

1. Maintain label `(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with `(u) 6= `(v),

`(w)← `(u) for all w with `(w) = `(v)

3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when `(u) 6= `(v) we maintain a spanning forest

I Can do something similar to determine if graph is bipartite

I Most graph problems require space roughly proportional to the
number of nodes. . . called the “semi-streaming space restriction”

6/21

Warm-Up: Connectivity

I Thm: Can determine if a graph is connected in O(n log n) space.

I Algorithm:

1. Maintain label `(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with `(u) 6= `(v),

`(w)← `(u) for all w with `(w) = `(v)

3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when `(u) 6= `(v) we maintain a spanning forest

I Can do something similar to determine if graph is bipartite

I Most graph problems require space roughly proportional to the
number of nodes. . . called the “semi-streaming space restriction”

6/21

Sparsify the graph as it arrives

I When an edge arrives, only store it if it satisfies some condition

I Graph Sparsfiers: Condition maintains Õ(nε−2) edges but the
resulting graph preserves all cuts up to a 1 + ε factor

I Matchings: Condition maintains Õ(n) edges preserves the maximum
weight matching up to a constant factor

I Graph Spanners: Condition maintains Õ(n1+1/t) edges but the
resulting graph preserves all graph distances up to a factor 2t − 1

7/21

Sparsify the graph as it arrives

I When an edge arrives, only store it if it satisfies some condition

I Graph Sparsfiers: Condition maintains Õ(nε−2) edges but the
resulting graph preserves all cuts up to a 1 + ε factor

I Matchings: Condition maintains Õ(n) edges preserves the maximum
weight matching up to a constant factor

I Graph Spanners: Condition maintains Õ(n1+1/t) edges but the
resulting graph preserves all graph distances up to a factor 2t − 1

7/21

Sparsify the graph as it arrives

I When an edge arrives, only store it if it satisfies some condition

I Graph Sparsfiers: Condition maintains Õ(nε−2) edges but the
resulting graph preserves all cuts up to a 1 + ε factor

I Matchings: Condition maintains Õ(n) edges preserves the maximum
weight matching up to a constant factor

I Graph Spanners: Condition maintains Õ(n1+1/t) edges but the
resulting graph preserves all graph distances up to a factor 2t − 1

7/21

Sparsify the graph as it arrives

I When an edge arrives, only store it if it satisfies some condition

I Graph Sparsfiers: Condition maintains Õ(nε−2) edges but the
resulting graph preserves all cuts up to a 1 + ε factor

I Matchings: Condition maintains Õ(n) edges preserves the maximum
weight matching up to a constant factor

I Graph Spanners: Condition maintains Õ(n1+1/t) edges but the
resulting graph preserves all graph distances up to a factor 2t − 1

7/21

Spanners and Distance Estimation

I The edges define a shortest path graph metric dG : V × V → N.

I An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

I Thm: Can construct a 2t − 1 spanner in Õ(n1+1/t) space.

I Algorithm:

1. Let E ′ be initially empty
2. On seeing (u, v), E ′ ← E ′ ∪ (u, v) if dH(u, v) > 2t − 1

I Analysis:

1. Every distance has grown by at most a factor 2t − 1
2. |E ′| = Õ(n1+1/t) because it’s a graph with no cycles of length ≤ 2t

I Above algorithm is rather slow but faster algorithms exist

8/21

Spanners and Distance Estimation

I The edges define a shortest path graph metric dG : V × V → N.

I An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

I Thm: Can construct a 2t − 1 spanner in Õ(n1+1/t) space.

I Algorithm:

1. Let E ′ be initially empty
2. On seeing (u, v), E ′ ← E ′ ∪ (u, v) if dH(u, v) > 2t − 1

I Analysis:

1. Every distance has grown by at most a factor 2t − 1
2. |E ′| = Õ(n1+1/t) because it’s a graph with no cycles of length ≤ 2t

I Above algorithm is rather slow but faster algorithms exist

8/21

Spanners and Distance Estimation

I The edges define a shortest path graph metric dG : V × V → N.

I An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

I Thm: Can construct a 2t − 1 spanner in Õ(n1+1/t) space.

I Algorithm:

1. Let E ′ be initially empty
2. On seeing (u, v), E ′ ← E ′ ∪ (u, v) if dH(u, v) > 2t − 1

I Analysis:

1. Every distance has grown by at most a factor 2t − 1
2. |E ′| = Õ(n1+1/t) because it’s a graph with no cycles of length ≤ 2t

I Above algorithm is rather slow but faster algorithms exist

8/21

Spanners and Distance Estimation

I The edges define a shortest path graph metric dG : V × V → N.

I An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

I Thm: Can construct a 2t − 1 spanner in Õ(n1+1/t) space.

I Algorithm:

1. Let E ′ be initially empty

2. On seeing (u, v), E ′ ← E ′ ∪ (u, v) if dH(u, v) > 2t − 1

I Analysis:

1. Every distance has grown by at most a factor 2t − 1
2. |E ′| = Õ(n1+1/t) because it’s a graph with no cycles of length ≤ 2t

I Above algorithm is rather slow but faster algorithms exist

8/21

Spanners and Distance Estimation

I The edges define a shortest path graph metric dG : V × V → N.

I An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

I Thm: Can construct a 2t − 1 spanner in Õ(n1+1/t) space.

I Algorithm:

1. Let E ′ be initially empty
2. On seeing (u, v), E ′ ← E ′ ∪ (u, v) if dH(u, v) > 2t − 1

I Analysis:

1. Every distance has grown by at most a factor 2t − 1
2. |E ′| = Õ(n1+1/t) because it’s a graph with no cycles of length ≤ 2t

I Above algorithm is rather slow but faster algorithms exist

8/21

Spanners and Distance Estimation

I The edges define a shortest path graph metric dG : V × V → N.

I An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

I Thm: Can construct a 2t − 1 spanner in Õ(n1+1/t) space.

I Algorithm:

1. Let E ′ be initially empty
2. On seeing (u, v), E ′ ← E ′ ∪ (u, v) if dH(u, v) > 2t − 1

I Analysis:

1. Every distance has grown by at most a factor 2t − 1

2. |E ′| = Õ(n1+1/t) because it’s a graph with no cycles of length ≤ 2t

I Above algorithm is rather slow but faster algorithms exist

8/21

Spanners and Distance Estimation

I The edges define a shortest path graph metric dG : V × V → N.

I An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

I Thm: Can construct a 2t − 1 spanner in Õ(n1+1/t) space.

I Algorithm:

1. Let E ′ be initially empty
2. On seeing (u, v), E ′ ← E ′ ∪ (u, v) if dH(u, v) > 2t − 1

I Analysis:

1. Every distance has grown by at most a factor 2t − 1
2. |E ′| = Õ(n1+1/t) because it’s a graph with no cycles of length ≤ 2t

I Above algorithm is rather slow but faster algorithms exist

8/21

Spanners and Distance Estimation

I The edges define a shortest path graph metric dG : V × V → N.

I An α-spanner of a graph G = (V ,E) is a subgraph H = (V ,E ′)
such that for all u, v ,

dG (u, v) ≤ dH(u, v) ≤ αdG (u, v)

I Thm: Can construct a 2t − 1 spanner in Õ(n1+1/t) space.

I Algorithm:

1. Let E ′ be initially empty
2. On seeing (u, v), E ′ ← E ′ ∪ (u, v) if dH(u, v) > 2t − 1

I Analysis:

1. Every distance has grown by at most a factor 2t − 1
2. |E ′| = Õ(n1+1/t) because it’s a graph with no cycles of length ≤ 2t

I Above algorithm is rather slow but faster algorithms exist

8/21

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond. . .

9/21

k-center

I Given a stream of distinct points X = {p1, . . . , pn} from a metric
space (X , d), find the set of k points Y ⊂ X that minimizes:

max
i

min
y∈Y

d(pi , y)

I Can find 2 approx. in Õ(k) space if you know opt ahead of time.

I Can find (2 + ε) approx. in Õ(kε−1 log(a/b)) space if you know

a ≤ opt ≤ b

I Thm: (2 + ε) approx. in Õ(kε−1 log ε−1) space.

10/21

k-center

I Given a stream of distinct points X = {p1, . . . , pn} from a metric
space (X , d), find the set of k points Y ⊂ X that minimizes:

max
i

min
y∈Y

d(pi , y)

I Can find 2 approx. in Õ(k) space if you know opt ahead of time.

I Can find (2 + ε) approx. in Õ(kε−1 log(a/b)) space if you know

a ≤ opt ≤ b

I Thm: (2 + ε) approx. in Õ(kε−1 log ε−1) space.

10/21

k-center

I Given a stream of distinct points X = {p1, . . . , pn} from a metric
space (X , d), find the set of k points Y ⊂ X that minimizes:

max
i

min
y∈Y

d(pi , y)

I Can find 2 approx. in Õ(k) space if you know opt ahead of time.

I Can find (2 + ε) approx. in Õ(kε−1 log(a/b)) space if you know

a ≤ opt ≤ b

I Thm: (2 + ε) approx. in Õ(kε−1 log ε−1) space.

10/21

k-center

I Given a stream of distinct points X = {p1, . . . , pn} from a metric
space (X , d), find the set of k points Y ⊂ X that minimizes:

max
i

min
y∈Y

d(pi , y)

I Can find 2 approx. in Õ(k) space if you know opt ahead of time.

I Can find (2 + ε) approx. in Õ(kε−1 log(a/b)) space if you know

a ≤ opt ≤ b

I Thm: (2 + ε) approx. in Õ(kε−1 log ε−1) space.

10/21

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center

I If instantiation for guess ` goes bad when processing (j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small error
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

11/21

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center

I If instantiation for guess ` goes bad when processing (j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small error
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

11/21

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center

I If instantiation for guess ` goes bad when processing (j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small error
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

11/21

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center

I If instantiation for guess ` goes bad when processing (j + 1)-th point

I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small error
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

11/21

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center

I If instantiation for guess ` goes bad when processing (j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.

I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small error
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

11/21

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center

I If instantiation for guess ` goes bad when processing (j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .

I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small error
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

11/21

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center

I If instantiation for guess ` goes bad when processing (j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small error
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

11/21

k-center: Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a on opt.

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center

I If instantiation for guess ` goes bad when processing (j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from a qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most opt + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small error
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.

11/21

Other computational geometry problems

I Fixed-dimensional linear programming

I Minimum enclosing balls

I Convex hulls

I Diameter

I Clustering with other objective functions

12/21

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond. . .

13/21

Triangles

I Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + ε) with probability 1− δ given promise that T3 > t.

I Thm: Ω(n2) space required to determine if t = 0 (with δ = 1/3).

I Thm: Õ(ε−2(nm/t)) space is sufficient.

14/21

Triangles

I Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + ε) with probability 1− δ given promise that T3 > t.

I Thm: Ω(n2) space required to determine if t = 0 (with δ = 1/3).

I Thm: Õ(ε−2(nm/t)) space is sufficient.

14/21

Triangles

I Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + ε) with probability 1− δ given promise that T3 > t.

I Thm: Ω(n2) space required to determine if t = 0 (with δ = 1/3).

I Thm: Õ(ε−2(nm/t)) space is sufficient.

14/21

Lower Bound

I Thm: Ω(n2) space required to determine if T3 6= 0

I Analysis:

1. Suppose Alice has n × n binary matrix A, Bob has n × n binary
matrix B. Is Aij = Bij = 1 for some (i , j)?

2. Problem requires Ω(n2) bits of communication
3. Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

4. Alice emulates streams algorithm on G and edges {(ui ,wj) : Aij = 1}
5. Sends the memory state of the algorithm to Bob
6. Bob continues algorithm on edges {(vi ,wj) : Bij = 1}
7. Memory is Ω(n2) bits since T3 > 0 iff Aij = Bij = 1 for some i , j

15/21

Lower Bound

I Thm: Ω(n2) space required to determine if T3 6= 0

I Analysis:

1. Suppose Alice has n × n binary matrix A, Bob has n × n binary
matrix B. Is Aij = Bij = 1 for some (i , j)?

2. Problem requires Ω(n2) bits of communication
3. Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

4. Alice emulates streams algorithm on G and edges {(ui ,wj) : Aij = 1}
5. Sends the memory state of the algorithm to Bob
6. Bob continues algorithm on edges {(vi ,wj) : Bij = 1}
7. Memory is Ω(n2) bits since T3 > 0 iff Aij = Bij = 1 for some i , j

15/21

Lower Bound

I Thm: Ω(n2) space required to determine if T3 6= 0

I Analysis:

1. Suppose Alice has n × n binary matrix A, Bob has n × n binary
matrix B. Is Aij = Bij = 1 for some (i , j)?

2. Problem requires Ω(n2) bits of communication

3. Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

4. Alice emulates streams algorithm on G and edges {(ui ,wj) : Aij = 1}
5. Sends the memory state of the algorithm to Bob
6. Bob continues algorithm on edges {(vi ,wj) : Bij = 1}
7. Memory is Ω(n2) bits since T3 > 0 iff Aij = Bij = 1 for some i , j

15/21

Lower Bound

I Thm: Ω(n2) space required to determine if T3 6= 0

I Analysis:

1. Suppose Alice has n × n binary matrix A, Bob has n × n binary
matrix B. Is Aij = Bij = 1 for some (i , j)?

2. Problem requires Ω(n2) bits of communication
3. Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

4. Alice emulates streams algorithm on G and edges {(ui ,wj) : Aij = 1}
5. Sends the memory state of the algorithm to Bob
6. Bob continues algorithm on edges {(vi ,wj) : Bij = 1}
7. Memory is Ω(n2) bits since T3 > 0 iff Aij = Bij = 1 for some i , j

15/21

Lower Bound

I Thm: Ω(n2) space required to determine if T3 6= 0

I Analysis:

1. Suppose Alice has n × n binary matrix A, Bob has n × n binary
matrix B. Is Aij = Bij = 1 for some (i , j)?

2. Problem requires Ω(n2) bits of communication
3. Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

4. Alice emulates streams algorithm on G and edges {(ui ,wj) : Aij = 1}

5. Sends the memory state of the algorithm to Bob
6. Bob continues algorithm on edges {(vi ,wj) : Bij = 1}
7. Memory is Ω(n2) bits since T3 > 0 iff Aij = Bij = 1 for some i , j

15/21

Lower Bound

I Thm: Ω(n2) space required to determine if T3 6= 0

I Analysis:

1. Suppose Alice has n × n binary matrix A, Bob has n × n binary
matrix B. Is Aij = Bij = 1 for some (i , j)?

2. Problem requires Ω(n2) bits of communication
3. Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

4. Alice emulates streams algorithm on G and edges {(ui ,wj) : Aij = 1}
5. Sends the memory state of the algorithm to Bob

6. Bob continues algorithm on edges {(vi ,wj) : Bij = 1}
7. Memory is Ω(n2) bits since T3 > 0 iff Aij = Bij = 1 for some i , j

15/21

Lower Bound

I Thm: Ω(n2) space required to determine if T3 6= 0

I Analysis:

1. Suppose Alice has n × n binary matrix A, Bob has n × n binary
matrix B. Is Aij = Bij = 1 for some (i , j)?

2. Problem requires Ω(n2) bits of communication
3. Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

4. Alice emulates streams algorithm on G and edges {(ui ,wj) : Aij = 1}
5. Sends the memory state of the algorithm to Bob
6. Bob continues algorithm on edges {(vi ,wj) : Bij = 1}

7. Memory is Ω(n2) bits since T3 > 0 iff Aij = Bij = 1 for some i , j

15/21

Lower Bound

I Thm: Ω(n2) space required to determine if T3 6= 0

I Analysis:

1. Suppose Alice has n × n binary matrix A, Bob has n × n binary
matrix B. Is Aij = Bij = 1 for some (i , j)?

2. Problem requires Ω(n2) bits of communication
3. Consider graph G = (V ,E) with

V = {v1, . . . , vn, u1, . . . , un,w1, . . . ,wn} and E = {(vi , ui) : i ∈ [n]}

4. Alice emulates streams algorithm on G and edges {(ui ,wj) : Aij = 1}
5. Sends the memory state of the algorithm to Bob
6. Bob continues algorithm on edges {(vi ,wj) : Bij = 1}
7. Memory is Ω(n2) bits since T3 > 0 iff Aij = Bij = 1 for some i , j

15/21

An Algorithm

I Thm: Õ(ε−2(nm/t)) space is sufficient if T3 ≥ t.

I Algorithm:
I Pick an edge ei = (u, v) uniformly at random from the stream.
I Pick w uniformly at random from V \ {u, v}
I If ej = (u,w), ek = (v ,w) for j , k > i exist return 3m(n − 2); else 0.

I Analysis:
I Expected outcome of algorithm is T3

I Repeat O(ε−2(mn/t)) times in parallel and average

16/21

An Algorithm

I Thm: Õ(ε−2(nm/t)) space is sufficient if T3 ≥ t.

I Algorithm:
I Pick an edge ei = (u, v) uniformly at random from the stream.

I Pick w uniformly at random from V \ {u, v}
I If ej = (u,w), ek = (v ,w) for j , k > i exist return 3m(n − 2); else 0.

I Analysis:
I Expected outcome of algorithm is T3

I Repeat O(ε−2(mn/t)) times in parallel and average

16/21

An Algorithm

I Thm: Õ(ε−2(nm/t)) space is sufficient if T3 ≥ t.

I Algorithm:
I Pick an edge ei = (u, v) uniformly at random from the stream.
I Pick w uniformly at random from V \ {u, v}

I If ej = (u,w), ek = (v ,w) for j , k > i exist return 3m(n − 2); else 0.

I Analysis:
I Expected outcome of algorithm is T3

I Repeat O(ε−2(mn/t)) times in parallel and average

16/21

An Algorithm

I Thm: Õ(ε−2(nm/t)) space is sufficient if T3 ≥ t.

I Algorithm:
I Pick an edge ei = (u, v) uniformly at random from the stream.
I Pick w uniformly at random from V \ {u, v}
I If ej = (u,w), ek = (v ,w) for j , k > i exist return 3m(n − 2); else 0.

I Analysis:
I Expected outcome of algorithm is T3

I Repeat O(ε−2(mn/t)) times in parallel and average

16/21

An Algorithm

I Thm: Õ(ε−2(nm/t)) space is sufficient if T3 ≥ t.

I Algorithm:
I Pick an edge ei = (u, v) uniformly at random from the stream.
I Pick w uniformly at random from V \ {u, v}
I If ej = (u,w), ek = (v ,w) for j , k > i exist return 3m(n − 2); else 0.

I Analysis:
I Expected outcome of algorithm is T3

I Repeat O(ε−2(mn/t)) times in parallel and average

16/21

An Algorithm

I Thm: Õ(ε−2(nm/t)) space is sufficient if T3 ≥ t.

I Algorithm:
I Pick an edge ei = (u, v) uniformly at random from the stream.
I Pick w uniformly at random from V \ {u, v}
I If ej = (u,w), ek = (v ,w) for j , k > i exist return 3m(n − 2); else 0.

I Analysis:
I Expected outcome of algorithm is T3

I Repeat O(ε−2(mn/t)) times in parallel and average

16/21

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond. . .

17/21

Random Order Streams and Space-Efficient Sampling

I Past work assumes stream is ordered by an all-powerful adversary

I Can we design smaller-space algorithms if we assume random order?

I Perform average-case analysis to understand performance in practice

I What about processing stochastically generated streams such as a
stream of i.i.d. samples? Learning algorithms. . .

18/21

Random Order Streams and Space-Efficient Sampling

I Past work assumes stream is ordered by an all-powerful adversary

I Can we design smaller-space algorithms if we assume random order?

I Perform average-case analysis to understand performance in practice

I What about processing stochastically generated streams such as a
stream of i.i.d. samples? Learning algorithms. . .

18/21

Random Order Streams and Space-Efficient Sampling

I Past work assumes stream is ordered by an all-powerful adversary

I Can we design smaller-space algorithms if we assume random order?

I Perform average-case analysis to understand performance in practice

I What about processing stochastically generated streams such as a
stream of i.i.d. samples? Learning algorithms. . .

18/21

Random Order Streams and Space-Efficient Sampling

I Past work assumes stream is ordered by an all-powerful adversary

I Can we design smaller-space algorithms if we assume random order?

I Perform average-case analysis to understand performance in practice

I What about processing stochastically generated streams such as a
stream of i.i.d. samples? Learning algorithms. . .

18/21

Probabilistic Data

I Previous work assumes all input is specified exactly

I What if each data item has some inherent uncertainty

I Can we compute the expected value or distribution of aggregates?

19/21

Probabilistic Data

I Previous work assumes all input is specified exactly

I What if each data item has some inherent uncertainty

I Can we compute the expected value or distribution of aggregates?

19/21

Probabilistic Data

I Previous work assumes all input is specified exactly

I What if each data item has some inherent uncertainty

I Can we compute the expected value or distribution of aggregates?

19/21

Annotations and Stream Verification

I Suppose we have help processing the stream by a third party who
“annotates” the stream

〈x1, x2, x3, x4, . . . , xm〉 → 〈x1, x2, a2, x3, x4, . . . , xm, am〉

I Can we reduce our space use if assisted by an honest helper but not
be misled by a malicious helper?

20/21

Annotations and Stream Verification

I Suppose we have help processing the stream by a third party who
“annotates” the stream

〈x1, x2, x3, x4, . . . , xm〉 → 〈x1, x2, a2, x3, x4, . . . , xm, am〉

I Can we reduce our space use if assisted by an honest helper but not
be misled by a malicious helper?

20/21

Thanks!

I Blog: http://polylogblog.wordpress.com

I Lectures: Piotr Indyk, MIT

http://stellar.mit.edu/S/course/6/fa07/6.895/

I Books:

“Data Streams: Algorithms and Applications”
S. Muthukrishnan (2005)

“Algorithms and Complexity of Stream Processing”
A. McGregor, S. Muthukrishnan (forthcoming)

21/21

http://polylogblog.wordpress.com
http://stellar.mit.edu/S/course/6/fa07/6.895/

	Basic Definitions
	Graph Spanners and Sparsifiers
	Clustering
	Counting Triangles
	Research Directions: To Infinity and Beyond…

