Crash Course in Data Stream Theory
 Part 2: Graphs, Geometry, and Future Directions

Andrew McGregor
University of Massachusetts Amherst

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond. . .

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond.

Graph Streams and Geometric Streams

- Graph Streams: Stream of edges $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ describe a graph G on n nodes. Estimate properties of G.

Graph Streams and Geometric Streams

- Graph Streams: Stream of edges $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ describe a graph G on n nodes. Estimate properties of G.
- Geometric Streams: Stream of points $P=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ from some metric space (\mathcal{X}, d), e.g., \mathbb{R}^{t}. Estimate properties of P.

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond.

Warm-Up: Connectivity

- Thm: Can determine if a graph is connected in $O(n \log n)$ space.

Warm-Up: Connectivity

- Thm: Can determine if a graph is connected in $O(n \log n)$ space.
- Algorithm:

1. Maintain label $\ell(u)$ for each node u where labels are initially distinct

Warm-Up: Connectivity

- Thm: Can determine if a graph is connected in $O(n \log n)$ space.
- Algorithm:

1. Maintain label $\ell(u)$ for each node u where labels are initially distinct
2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$,

$$
\ell(w) \leftarrow \ell(u) \text { for all } w \text { with } \ell(w)=\ell(v)
$$

Warm-Up: Connectivity

- Thm: Can determine if a graph is connected in $O(n \log n)$ space.
- Algorithm:

1. Maintain label $\ell(u)$ for each node u where labels are initially distinct
2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$,

$$
\ell(w) \leftarrow \ell(u) \quad \text { for all } w \text { with } \ell(w)=\ell(v)
$$

3. The graph is connected iff every node ends up with the same label

Warm-Up: Connectivity

- Thm: Can determine if a graph is connected in $O(n \log n)$ space.
- Algorithm:

1. Maintain label $\ell(u)$ for each node u where labels are initially distinct
2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$,

$$
\ell(w) \leftarrow \ell(u) \quad \text { for all } w \text { with } \ell(w)=\ell(v)
$$

3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when $\ell(u) \neq \ell(v)$ we maintain a spanning forest

Warm-Up: Connectivity

- Thm: Can determine if a graph is connected in $O(n \log n)$ space.
- Algorithm:

1. Maintain label $\ell(u)$ for each node u where labels are initially distinct
2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$,

$$
\ell(w) \leftarrow \ell(u) \quad \text { for all } w \text { with } \ell(w)=\ell(v)
$$

3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when $\ell(u) \neq \ell(v)$ we maintain a spanning forest

- Can do something similar to determine if graph is bipartite

Warm-Up: Connectivity

- Thm: Can determine if a graph is connected in $O(n \log n)$ space.
- Algorithm:

1. Maintain label $\ell(u)$ for each node u where labels are initially distinct
2. On seeing edge (u, v) with $\ell(u) \neq \ell(v)$,

$$
\ell(w) \leftarrow \ell(u) \quad \text { for all } w \text { with } \ell(w)=\ell(v)
$$

3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when $\ell(u) \neq \ell(v)$ we maintain a spanning forest

- Can do something similar to determine if graph is bipartite
- Most graph problems require space roughly proportional to the number of nodes. . . called the "semi-streaming space restriction"

Sparsify the graph as it arrives

- When an edge arrives, only store it if it satisfies some condition

Sparsify the graph as it arrives

- When an edge arrives, only store it if it satisfies some condition
- Graph Sparsfiers: Condition maintains $\tilde{O}\left(n \epsilon^{-2}\right)$ edges but the resulting graph preserves all cuts up to a $1+\epsilon$ factor

Sparsify the graph as it arrives

- When an edge arrives, only store it if it satisfies some condition
- Graph Sparsfiers: Condition maintains $\tilde{O}\left(n \epsilon^{-2}\right)$ edges but the resulting graph preserves all cuts up to a $1+\epsilon$ factor
- Matchings: Condition maintains $\tilde{O}(n)$ edges preserves the maximum weight matching up to a constant factor

Sparsify the graph as it arrives

- When an edge arrives, only store it if it satisfies some condition
- Graph Sparsfiers: Condition maintains $\tilde{O}\left(n \epsilon^{-2}\right)$ edges but the resulting graph preserves all cuts up to a $1+\epsilon$ factor
- Matchings: Condition maintains $\tilde{O}(n)$ edges preserves the maximum weight matching up to a constant factor
- Graph Spanners: Condition maintains $\tilde{O}\left(n^{1+1 / t}\right)$ edges but the resulting graph preserves all graph distances up to a factor $2 t-1$

Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$.

Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$.
- An α-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that for all u, v,

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)
$$

Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$.
- An α-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that for all u, v,

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)
$$

- Thm: Can construct a $2 t-1$ spanner in $\tilde{O}\left(n^{1+1 / t}\right)$ space.

Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$.
- An α-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that for all u, v,

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)
$$

- Thm: Can construct a $2 t-1$ spanner in $\tilde{O}\left(n^{1+1 / t}\right)$ space.
- Algorithm:

1. Let E^{\prime} be initially empty

Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$.
- An α-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that for all u, v,

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)
$$

- Thm: Can construct a $2 t-1$ spanner in $\tilde{O}\left(n^{1+1 / t}\right)$ space.
- Algorithm:

1. Let E^{\prime} be initially empty
2. On seeing $(u, v), E^{\prime} \leftarrow E^{\prime} \cup(u, v)$ if $d_{H}(u, v)>2 t-1$

Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$.
- An α-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that for all u, v,

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)
$$

- Thm: Can construct a $2 t-1$ spanner in $\tilde{O}\left(n^{1+1 / t}\right)$ space.
- Algorithm:

1. Let E^{\prime} be initially empty
2. On seeing $(u, v), E^{\prime} \leftarrow E^{\prime} \cup(u, v)$ if $d_{H}(u, v)>2 t-1$

- Analysis:

1. Every distance has grown by at most a factor $2 t-1$

Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$.
- An α-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that for all u, v,

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)
$$

- Thm: Can construct a $2 t-1$ spanner in $\tilde{O}\left(n^{1+1 / t}\right)$ space.
- Algorithm:

1. Let E^{\prime} be initially empty
2. On seeing $(u, v), E^{\prime} \leftarrow E^{\prime} \cup(u, v)$ if $d_{H}(u, v)>2 t-1$

- Analysis:

1. Every distance has grown by at most a factor $2 t-1$
2. $\left|E^{\prime}\right|=\tilde{O}\left(n^{1+1 / t}\right)$ because it's a graph with no cycles of length $\leq 2 t$

Spanners and Distance Estimation

- The edges define a shortest path graph metric $d_{G}: V \times V \rightarrow \mathbb{N}$.
- An α-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ such that for all u, v,

$$
d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)
$$

- Thm: Can construct a $2 t-1$ spanner in $\tilde{O}\left(n^{1+1 / t}\right)$ space.
- Algorithm:

1. Let E^{\prime} be initially empty
2. On seeing $(u, v), E^{\prime} \leftarrow E^{\prime} \cup(u, v)$ if $d_{H}(u, v)>2 t-1$

- Analysis:

1. Every distance has grown by at most a factor $2 t-1$
2. $\left|E^{\prime}\right|=\tilde{O}\left(n^{1+1 / t}\right)$ because it's a graph with no cycles of length $\leq 2 t$

- Above algorithm is rather slow but faster algorithms exist

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond.

k-center

- Given a stream of distinct points $X=\left\{p_{1}, \ldots, p_{n}\right\}$ from a metric space (\mathcal{X}, d), find the set of k points $Y \subset X$ that minimizes:

$$
\max _{i} \min _{y \in Y} d\left(p_{i}, y\right)
$$

k-center

- Given a stream of distinct points $X=\left\{p_{1}, \ldots, p_{n}\right\}$ from a metric space (\mathcal{X}, d), find the set of k points $Y \subset X$ that minimizes:

$$
\max _{i} \min _{y \in Y} d\left(p_{i}, y\right)
$$

- Can find 2 approx. in $\tilde{O}(k)$ space if you know opt ahead of time.

k-center

- Given a stream of distinct points $X=\left\{p_{1}, \ldots, p_{n}\right\}$ from a metric space (\mathcal{X}, d), find the set of k points $Y \subset X$ that minimizes:

$$
\max _{i} \min _{y \in Y} d\left(p_{i}, y\right)
$$

- Can find 2 approx. in $\tilde{O}(k)$ space if you know opt ahead of time.
- Can find $(2+\epsilon)$ approx. in $\tilde{O}\left(k \epsilon^{-1} \log (a / b)\right)$ space if you know

$$
a \leq \mathrm{OPT} \leq b
$$

k-center

- Given a stream of distinct points $X=\left\{p_{1}, \ldots, p_{n}\right\}$ from a metric space (\mathcal{X}, d), find the set of k points $Y \subset X$ that minimizes:

$$
\max _{i} \min _{y \in Y} d\left(p_{i}, y\right)
$$

- Can find 2 approx. in $\tilde{O}(k)$ space if you know opt ahead of time.
- Can find $(2+\epsilon)$ approx. in $\tilde{O}\left(k \epsilon^{-1} \log (a / b)\right)$ space if you know

$$
a \leq \mathrm{OPT} \leq b
$$

- Thm: $(2+\epsilon)$ approx. in $\tilde{O}\left(k \epsilon^{-1} \log \epsilon^{-1}\right)$ space.

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on opt.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- If instantiation for guess ℓ goes bad when processing $(j+1)$-th point

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- If instantiation for guess ℓ goes bad when processing $(j+1)$-th point
- Let q_{1}, \ldots, q_{k} be centers chosen so far.

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- If instantiation for guess ℓ goes bad when processing $(j+1)$-th point
- Let q_{1}, \ldots, q_{k} be centers chosen so far.
- Then p_{1}, \ldots, p_{j} are all at most 2ℓ from a q_{i}.

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on opt.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- If instantiation for guess ℓ goes bad when processing $(j+1)$-th point
- Let q_{1}, \ldots, q_{k} be centers chosen so far.
- Then p_{1}, \ldots, p_{j} are all at most 2ℓ from a q_{i}.
- Optimum for $\left\{q_{1}, \ldots, q_{k}, p_{j+1}, \ldots, p_{n}\right\}$ is at most opt $+2 \ell$.

k-center: Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a on OPT.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- If instantiation for guess ℓ goes bad when processing $(j+1)$-th point
- Let q_{1}, \ldots, q_{k} be centers chosen so far.
- Then p_{1}, \ldots, p_{j} are all at most 2ℓ from a q_{i}.
- Optimum for $\left\{q_{1}, \ldots, q_{k}, p_{j+1}, \ldots, p_{n}\right\}$ is at most opt $+2 \ell$.
- Hence, for an instantiation with guess $2 \ell / \epsilon$ only incurs a small error if we use $\left\{q_{1}, \ldots, q_{k}, p_{j+1}, \ldots, p_{n}\right\}$ rather than $\left\{p_{1}, \ldots, p_{n}\right\}$.

Other computational geometry problems

- Fixed-dimensional linear programming
- Minimum enclosing balls
- Convex hulls
- Diameter
- Clustering with other objective functions

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond.

Triangles

- Given a stream of edges, estimate the number of triangles T_{3} up to a factor $(1+\epsilon)$ with probability $1-\delta$ given promise that $T_{3}>t$.

Triangles

- Given a stream of edges, estimate the number of triangles T_{3} up to a factor $(1+\epsilon)$ with probability $1-\delta$ given promise that $T_{3}>t$.
- Thm: $\Omega\left(n^{2}\right)$ space required to determine if $t=0$ (with $\delta=1 / 3$).

Triangles

- Given a stream of edges, estimate the number of triangles T_{3} up to a factor $(1+\epsilon)$ with probability $1-\delta$ given promise that $T_{3}>t$.
- Thm: $\Omega\left(n^{2}\right)$ space required to determine if $t=0$ (with $\delta=1 / 3$).
- Thm: $\tilde{O}\left(\epsilon^{-2}(n m / t)\right)$ space is sufficient.

Lower Bound

- Thm: $\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$

Lower Bound

- Thm: $\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$
- Analysis:

1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ?

Lower Bound

- Thm: $\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$
- Analysis:

1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ?
2. Problem requires $\Omega\left(n^{2}\right)$ bits of communication

Lower Bound

- Thm: $\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$
- Analysis:

1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ?
2. Problem requires $\Omega\left(n^{2}\right)$ bits of communication
3. Consider graph $G=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\} \text { and } E=\left\{\left(v_{i}, u_{i}\right): i \in[n]\right\}
$$

Lower Bound

- Thm: $\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$
- Analysis:

1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ?
2. Problem requires $\Omega\left(n^{2}\right)$ bits of communication
3. Consider graph $G=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\} \text { and } E=\left\{\left(v_{i}, u_{i}\right): i \in[n]\right\}
$$

4. Alice emulates streams algorithm on G and edges $\left\{\left(u_{i}, w_{j}\right): A_{i j}=1\right\}$

Lower Bound

- Thm: $\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$
- Analysis:

1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ?
2. Problem requires $\Omega\left(n^{2}\right)$ bits of communication
3. Consider graph $G=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\} \text { and } E=\left\{\left(v_{i}, u_{i}\right): i \in[n]\right\}
$$

4. Alice emulates streams algorithm on G and edges $\left\{\left(u_{i}, w_{j}\right): A_{i j}=1\right\}$
5. Sends the memory state of the algorithm to Bob

Lower Bound

- Thm: $\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$
- Analysis:

1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ?
2. Problem requires $\Omega\left(n^{2}\right)$ bits of communication
3. Consider graph $G=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\} \text { and } E=\left\{\left(v_{i}, u_{i}\right): i \in[n]\right\}
$$

4. Alice emulates streams algorithm on G and edges $\left\{\left(u_{i}, w_{j}\right): A_{i j}=1\right\}$
5. Sends the memory state of the algorithm to Bob
6. Bob continues algorithm on edges $\left\{\left(v_{i}, w_{j}\right): B_{i j}=1\right\}$

Lower Bound

- Thm: $\Omega\left(n^{2}\right)$ space required to determine if $T_{3} \neq 0$
- Analysis:

1. Suppose Alice has $n \times n$ binary matrix A, Bob has $n \times n$ binary matrix B. Is $A_{i j}=B_{i j}=1$ for some (i, j) ?
2. Problem requires $\Omega\left(n^{2}\right)$ bits of communication
3. Consider graph $G=(V, E)$ with

$$
V=\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{n}\right\} \text { and } E=\left\{\left(v_{i}, u_{i}\right): i \in[n]\right\}
$$

4. Alice emulates streams algorithm on G and edges $\left\{\left(u_{i}, w_{j}\right): A_{i j}=1\right\}$
5. Sends the memory state of the algorithm to Bob
6. Bob continues algorithm on edges $\left\{\left(v_{i}, w_{j}\right): B_{i j}=1\right\}$
7. Memory is $\Omega\left(n^{2}\right)$ bits since $T_{3}>0$ iff $A_{i j}=B_{i j}=1$ for some i, j

An Algorithm

- Thm: $\tilde{O}\left(\epsilon^{-2}(n m / t)\right)$ space is sufficient if $T_{3} \geq t$.

An Algorithm

- Thm: $\tilde{O}\left(\epsilon^{-2}(n m / t)\right)$ space is sufficient if $T_{3} \geq t$.
- Algorithm:
- Pick an edge $e_{i}=(u, v)$ uniformly at random from the stream.

An Algorithm

- Thm: $\tilde{O}\left(\epsilon^{-2}(n m / t)\right)$ space is sufficient if $T_{3} \geq t$.
- Algorithm:
- Pick an edge $e_{i}=(u, v)$ uniformly at random from the stream.
- Pick w uniformly at random from $V \backslash\{u, v\}$

An Algorithm

- Thm: $\tilde{O}\left(\epsilon^{-2}(n m / t)\right)$ space is sufficient if $T_{3} \geq t$.
- Algorithm:
- Pick an edge $e_{i}=(u, v)$ uniformly at random from the stream.
- Pick w uniformly at random from $V \backslash\{u, v\}$
- If $e_{j}=(u, w), e_{k}=(v, w)$ for $j, k>i$ exist return $3 m(n-2)$; else 0 .

An Algorithm

- Thm: $\tilde{O}\left(\epsilon^{-2}(n m / t)\right)$ space is sufficient if $T_{3} \geq t$.
- Algorithm:
- Pick an edge $e_{i}=(u, v)$ uniformly at random from the stream.
- Pick w uniformly at random from $V \backslash\{u, v\}$
- If $e_{j}=(u, w), e_{k}=(v, w)$ for $j, k>i$ exist return $3 m(n-2)$; else 0 .
- Analysis:
- Expected outcome of algorithm is T_{3}

An Algorithm

- Thm: $\tilde{O}\left(\epsilon^{-2}(n m / t)\right)$ space is sufficient if $T_{3} \geq t$.
- Algorithm:
- Pick an edge $e_{i}=(u, v)$ uniformly at random from the stream.
- Pick w uniformly at random from $V \backslash\{u, v\}$
- If $e_{j}=(u, w), e_{k}=(v, w)$ for $j, k>i$ exist return $3 m(n-2)$; else 0 .
- Analysis:
- Expected outcome of algorithm is T_{3}
- Repeat $O\left(\epsilon^{-2}(m n / t)\right)$ times in parallel and average

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond...

Random Order Streams and Space-Efficient Sampling

- Past work assumes stream is ordered by an all-powerful adversary

Random Order Streams and Space-Efficient Sampling

- Past work assumes stream is ordered by an all-powerful adversary
- Can we design smaller-space algorithms if we assume random order?

Random Order Streams and Space-Efficient Sampling

- Past work assumes stream is ordered by an all-powerful adversary
- Can we design smaller-space algorithms if we assume random order?
- Perform average-case analysis to understand performance in practice

Random Order Streams and Space-Efficient Sampling

- Past work assumes stream is ordered by an all-powerful adversary
- Can we design smaller-space algorithms if we assume random order?
- Perform average-case analysis to understand performance in practice
- What about processing stochastically generated streams such as a stream of i.i.d. samples? Learning algorithms...

Probabilistic Data

- Previous work assumes all input is specified exactly

Probabilistic Data

- Previous work assumes all input is specified exactly
- What if each data item has some inherent uncertainty

Probabilistic Data

- Previous work assumes all input is specified exactly
- What if each data item has some inherent uncertainty
- Can we compute the expected value or distribution of aggregates?

Annotations and Stream Verification

- Suppose we have help processing the stream by a third party who "annotates" the stream

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{m}\right\rangle \rightarrow\left\langle x_{1}, x_{2}, a_{2}, x_{3}, x_{4}, \ldots, x_{m}, a_{m}\right\rangle
$$

Annotations and Stream Verification

- Suppose we have help processing the stream by a third party who "annotates" the stream

$$
\left\langle x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{m}\right\rangle \rightarrow\left\langle x_{1}, x_{2}, a_{2}, x_{3}, x_{4}, \ldots, x_{m}, a_{m}\right\rangle
$$

- Can we reduce our space use if assisted by an honest helper but not be misled by a malicious helper?

Thanks!

- Blog: http://polylogblog.wordpress.com
- Lectures: Piotr Indyk, MIT
http://stellar.mit.edu/S/course/6/fa07/6.895/
- Books:
"Data Streams: Algorithms and Applications"
S. Muthukrishnan (2005)
"Algorithms and Complexity of Stream Processing" A. McGregor, S. Muthukrishnan (forthcoming)

