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motivation for this class

People are increasingly interested in analyzing and learning from

massive datasets.

• Twitter receives 6,000 tweets per second, 500 million/day. Google

receives 60,000 searches per second, 5.6 billion/day.

• How do they process them to target advertisements? To predict trends?

To improve their products?

• The Large Synoptic Survey Telescope will take high definition

photographs of the sky, producing 15 terabytes of data/night.

• How do they denoise and compress the images? How do they detect

anomalies such as changing brightness or position of objects to alert

researchers?
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a new paradigm for algorithm design

• Traditionally, algorithm design focuses on fast computation when data

is stored in an efficiently accessible centralized manner (e.g., in RAM

on a single machine).

• Massive data sets require storage in a distributed manner or processing

in a continuous stream.

• Even ‘simple’ problems become very difficult in this setting.
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a new paradigm for algorithm design

For example:

• How can Twitter rapidly detect if an incoming Tweet is an exact

duplicate of another Tweet made in the last year? Given that no

machine can store all Tweets made in a year.

• How can Google estimate the number of unique search queries that are

made in a given week? Given that no machine can store the full list of

queries.

• When you use Shazam to identify a song from a recording, how does it

provide an answer in < 10 seconds, without scanning over all ∼ 8

million audio files in its database.
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motivation for this class

A Second Motivation: Data Science is highly interdisciplinary.

• Many techniques that aren’t covered in the traditional CS algorithms

curriculum.
• Emphasis on building comfort with mathematical tools that underly

data science and machine learning.
4



what we’ll cover

Section 1: Randomized Methods & Sketching

How can we efficiently compress large data sets in a way that lets us

answer important algorithmic questions rapidly?

• Probability tools and concentration inequalities.

• Randomized hashing for efficient lookup, load balancing, and

estimation. Bloom filters.

• Locality sensitive hashing and nearest neighbor search.

• Streaming algorithms: identifying frequent items in a data stream,

counting distinct items, etc.

• Random compression of high-dimensional vectors: the

Johnson-Lindenstrauss lemma, applications, and connections to the

weirdness of high-dimensional geometry.
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what we’ll cover

Section 2: Spectral Methods

How do we identify the most important features of a dataset

using linear algebraic techniques?

• Principal component analysis, low-rank approximation, dimensionality

reduction.

• Singular value decomposition (SVD) and its applications to PCA,

low-rank approximation, LSA, MDS, . . .

• Spectral graph theory. Spectral clustering, community detection,

network visualization.

• Computing the SVD on large datasets via iterative methods.
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what we’ll cover

Section 3: Optimization

Fundamental continuous optimization approaches that drive methods in

machine learning and statistics.

• Gradient descent. Analysis for convex functions.

• Stochastic and online gradient descent.

• Focus on convergence analysis.

A small taste of what you can find in COMPSCI 651.
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important topics we won’t cover

• Systems/Software Tools.

• COMPSCI 532: Systems for Data Science

• Machine Learning/Data Analysis Methods and Models.

• E.g., regression methods, kernel methods, random forests, SVM, deep

neural networks.
• COMPSCI 589/689: Machine Learning

8



important topics we won’t cover

• Systems/Software Tools.

• COMPSCI 532: Systems for Data Science

• Machine Learning/Data Analysis Methods and Models.

• E.g., regression methods, kernel methods, random forests, SVM, deep

neural networks.
• COMPSCI 589/689: Machine Learning

8



important topics we won’t cover

• Systems/Software Tools.

• COMPSCI 532: Systems for Data Science

• Machine Learning/Data Analysis Methods and Models.

• E.g., regression methods, kernel methods, random forests, SVM, deep

neural networks.
• COMPSCI 589/689: Machine Learning

8



important topics we won’t cover

• Systems/Software Tools.

• COMPSCI 532: Systems for Data Science

• Machine Learning/Data Analysis Methods and Models.

• E.g., regression methods, kernel methods, random forests, SVM, deep

neural networks.
• COMPSCI 589/689: Machine Learning

8



important topics we won’t cover

• Systems/Software Tools.

• COMPSCI 532: Systems for Data Science

• Machine Learning/Data Analysis Methods and Models.

• E.g., regression methods, kernel methods, random forests, SVM, deep

neural networks.

• COMPSCI 589/689: Machine Learning

8



important topics we won’t cover

• Systems/Software Tools.

• COMPSCI 532: Systems for Data Science

• Machine Learning/Data Analysis Methods and Models.

• E.g., regression methods, kernel methods, random forests, SVM, deep

neural networks.
• COMPSCI 589/689: Machine Learning

8



style of the course

This is a theory course, perhaps the only theory course you’ll take

at UMass if you’re a Masters student.

• Build general mathematical tools and algorithmic strategies that can

be applied to a wide range of problems.

• Assignments will emphasize algorithm design, correctness proofs, and

asymptotic analysis. There’ll may be some coding but not much.

• The homework is designed to make you think beyond what is taught in

class. You will get stuck, and not see the solutions right away. This is

the best (only?) way to build mathematical and algorithm design skills.

• A strong algorithms and math background (particularly in linear

algebra and probability) are required. See Moodle for revision notes.

• UMass prereqs: COMPSCI 240 and COMPSCI 311.

For example: Bayes’ rule in conditional probability. What it means for

a vector x to be an eigenvector of a matrix A, projection, greedy

algorithms, divide-and-conquer algorithms.
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course logistics

See course webpage for lecture slides and related readings:

https://people.cs.umass.edu/~mcgregor/CS514S23/

See Moodle page for this link if you lose it.

10
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personnel

Professor: Andrew McGregor

TAs: Shib Dasgupta, Weronkia Nguyen, and Chenghao Lyu.

Together we’ve offer seven office hours, four in-person and three over Zoom.

See Moodle page for locations, links, and times.
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piazza and participation

We will use Piazza for class discussion and questions.

• See Moodle for link to sign up.

You’re helping yourself and others if you:

• Ask good clarifying questions and answering questions during lectures.

• Answer other students’ or instructor questions on Piazza.

• Post helpful/interesting links on Piazza, e.g., resources covering class

material, research articles related to class topics.
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textbooks and materials

We will use material from two textbooks (links to free online versions on

the course webpage): Foundations of Data Science and Mining of

Massive Datasets, but will follow neither closely.

• I will sometimes post optional readings a few days prior to each class.

• Draft lecture notes will be posted before each class and potentially

updated afterwards if necessary.
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homework

We will have 4-5 problem sets, which you may complete in groups of up

to 3 students.

• You may not discuss homework with people outside your group (except

the instructor and TAs) until the solutions are released.

• Use are not allowed to consult previous solutions from the class or

search for solutions online.

• Work together on each question rather than dividing the questions

between group members.

• Use, e.g., Piazza, to help organize groups.

Problem set submissions will be via Gradescope.

• See Moodle for a link to join.
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weekly quizzes

Will release a Moodle quiz most Fridays. It’s due Monday at 8pm.

• Designed as a check-in that you are following the material, and to help

me make adjustments as needed.

• Should take under an hour per week. Open notes unless specified

otherwise. Most questions easy but some more challenging ones.
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grading

Grade Breakdown:

• Problem Sets: 25%. (One-time “lifeline extension” of 48 hours.)

• Weekly Quizzes: 20%. (No extensions but we’ll drop lowest quiz.)

• Midterm: 25%. Thursday October 20th

• Cumulative Final: 25%. (During Final’s Week.)

• Piazza Participation: 5%.

Academic Honesty:

• A first violation cheating on a homework, quiz, or other assignment

will result in a 0 on that assignment.

• A second violation, or cheating on an exam will result in failing the

class.
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disability services and accommodations

UMass is committed to making reasonable, effective, and appropriate

accommodations to meet the needs to students with disabilities.

• If you have a documented disability on file with Disability Services,

you may be eligible for reasonable accommodations in this course.

• If your disability requires an accommodation, please notify me by

Friday 2/17 so that we can make arrangements.

I understand that people have different learning needs etc. If something

isn’t working for you in the class, please reach out and let’s try to work it

out.
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Questions?
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Section 1: Randomized Methods & Sketching
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some probability review

Consider a random X variable taking values in some finite set S ⊂ R.

E.g., for a random dice roll, S = {1, 2, 3, 4, 5, 6}.

• Expectation: E[X] =
∑

s∈S Pr(X = s) · s.
• Variance: Var[X] = E[(X− E[X])2].

E.g., if X takes the values 1, 2, 4 with probabilities 1/3, 1/2, 1/6 then

E[X] = 1/3 · 1 + 1/2 · 2 + 1/6 · 4 = 2

Var[X] = 1/3 · (1− 2)2 + 1/2 · (2− 2)2 + 1/6 · (4− 2)2 = 1

For any scalar α, E[α · X] = α · E[X] and Var[α · X] = α2 · Var[X].
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For any scalar α, E[α · X] = α · E[X] and Var[α · X] = α2 · Var[X].
20



independence

Consider two random events A and B.

• Conditional Probability:

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
.

• Independence: A and B are independent if:

Pr(A|B) = Pr(A).

Using the definition of conditional probability, independence means:

Pr(A ∩ B)

Pr(B)
= Pr(A)

=⇒ Pr(A ∩ B) = Pr(A) · Pr(B).

A ∩ B: event that both events A and B happen.
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independence

Example: What is the probability that for two independent dice rolls the

first is odd and the second is odd?

Pr(D1 ∈ {1, 3, 5} ∩ D2 ∈ {1, 3, 5}) = Pr(D1 ∈ {1, 3, 5}) · Pr(D2 ∈ {1, 3, 5})
= 1/4

Independent Random Variables: X, Y are independent if for all s, t,

X = s and Y = t are independent events. In other words:

Pr(X = s ∩ Y = t) = Pr(X = s) · Pr(Y = t).

Example: What is the probability that for two independent dice rolls, the

first is 1 and the sum of the two dice is odd?

Pr(D1 = 1 ∩ D1 + D2 is odd)

= Pr(D1 = 1) · Pr(D1 + D2 ∈ {1, 3, 5, 7, 9, 11}|D1 = 1)

= 1/6 · Pr(D2 ∈ {2, 4, 6}) = 1/6 · 1/2 = Pr(D1 = 1) · Pr(D1 + D2 is odd)
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linearity of expectation and variance

When are the expectation and variance linear?

I.e., under what conditions on X and Y do we have:

E[X + Y] = E[X] + E[Y]

and

Var[X + Y] = Var[X] + Var[Y].

X, Y: any two random variables.
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linearity of expectation

E[X + Y] = E[X] + E[Y]

for any random variables X and Y.

Proof:

E[X + Y] =
∑
s∈S

∑
t∈T

Pr(X = s ∩ Y = t) · (s + t)

=
∑
s∈S

∑
t∈T

Pr(X = s ∩ Y = t)s +
∑
s∈S

∑
t∈T

Pr(X = s ∩ Y = t)t

=
∑
s∈S

s
∑
t∈T

Pr(X = s ∩ Y = t) +
∑
t∈T

t
∑
s∈S

Pr(X = s ∩ Y = t)

=
∑
s∈S

s Pr(X = s) +
∑
t∈T

t Pr(Y = t)

(law of total probability)

= E[X] + E[Y].
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linearity of variance

Var[X + Y] = Var[X] + Var[Y]

when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].
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