
compsci 514: algorithms for data science

Andrew McGregor

Lecture 10

0



(ε, k)-frequent items problem

Given stream of n items x1, . . . , xn where each xi ∈ U. Return a set F ,

such that for every x ∈ U:

1. If f (x) ≥ n/k then x ∈ F

2. If f (x) < (1− ε)n/k then x 6∈ F

where f (x) is the number of times x appears in the stream.

Relationship to Frequency Estimation. Note that if you have an estimate

f̃ (x) for each each f (x) such that

f (x) ≤ f̃ (x) ≤ f (x) + εn/k

then you can solve the above problem.

1



(ε, k)-frequent items problem

Given stream of n items x1, . . . , xn where each xi ∈ U. Return a set F ,

such that for every x ∈ U:

1. If f (x) ≥ n/k then x ∈ F

2. If f (x) < (1− ε)n/k then x 6∈ F

where f (x) is the number of times x appears in the stream.

Relationship to Frequency Estimation. Note that if you have an estimate

f̃ (x) for each each f (x) such that

f (x) ≤ f̃ (x) ≤ f (x) + εn/k

then you can solve the above problem.

1



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]? Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]? Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]? Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]? Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]? Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]? Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]? Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]?

Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]? Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]? Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m]? Answer: ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures the error 2n/m is εn/k and this is enough to

determine whether we need to output the element.

2



identifying frequent elements

Count-min sketch gives an accurate frequency estimate for every item in

the stream. But how do we identify the frequent items without having to

look up the estimated frequency for x ∈ U?

One approach:

• Maintain a set F while processing the stream:

• At step i :

• Add ith stream element to F if it’s estimated frequency is ≥ i/k and it

isn’t already in F .
• Remove any element from F whose estimated frequency is < i/k.

• Store O(k) items at any time and have all items with frequency ≥ n/k

stored at the end of the stream.

3



identifying frequent elements

Count-min sketch gives an accurate frequency estimate for every item in

the stream. But how do we identify the frequent items without having to

look up the estimated frequency for x ∈ U?

One approach:

• Maintain a set F while processing the stream:

• At step i :

• Add ith stream element to F if it’s estimated frequency is ≥ i/k and it

isn’t already in F .
• Remove any element from F whose estimated frequency is < i/k.

• Store O(k) items at any time and have all items with frequency ≥ n/k

stored at the end of the stream.

3



Questions on Frequent Elements?

4



high dimensional data

‘Big Data’ means not just many data points, but many measurements per data

point. I.e., very high dimensional data.

• Twitter has 321 million active monthly users. Records (tens of) thousands of

measurements per user: who they follow, who follows them, when they last

visited the site, timestamps for specific interactions, how many tweets they

have sent, the text of those tweets, etc.

• A 3 minute Youtube clip with a resolution of 500× 500 pixels at 15

frames/second with 3 color channels is a recording of ≥ 2 billion pixel values.

Even a 500× 500 pixel color image has 750, 000 pixel values.

• The human genome contains 3 billion+ base pairs. Genetic datasets often

contain information on 100s of thousands+ mutations and genetic markers.

5



high dimensional data

‘Big Data’ means not just many data points, but many measurements per data

point. I.e., very high dimensional data.

• Twitter has 321 million active monthly users. Records (tens of) thousands of

measurements per user: who they follow, who follows them, when they last

visited the site, timestamps for specific interactions, how many tweets they

have sent, the text of those tweets, etc.

• A 3 minute Youtube clip with a resolution of 500× 500 pixels at 15

frames/second with 3 color channels is a recording of ≥ 2 billion pixel values.

Even a 500× 500 pixel color image has 750, 000 pixel values.

• The human genome contains 3 billion+ base pairs. Genetic datasets often

contain information on 100s of thousands+ mutations and genetic markers.

5



high dimensional data

‘Big Data’ means not just many data points, but many measurements per data

point. I.e., very high dimensional data.

• Twitter has 321 million active monthly users. Records (tens of) thousands of

measurements per user: who they follow, who follows them, when they last

visited the site, timestamps for specific interactions, how many tweets they

have sent, the text of those tweets, etc.

• A 3 minute Youtube clip with a resolution of 500× 500 pixels at 15

frames/second with 3 color channels is a recording of ≥ 2 billion pixel values.

Even a 500× 500 pixel color image has 750, 000 pixel values.

• The human genome contains 3 billion+ base pairs. Genetic datasets often

contain information on 100s of thousands+ mutations and genetic markers.

5



high dimensional data

‘Big Data’ means not just many data points, but many measurements per data

point. I.e., very high dimensional data.

• Twitter has 321 million active monthly users. Records (tens of) thousands of

measurements per user: who they follow, who follows them, when they last

visited the site, timestamps for specific interactions, how many tweets they

have sent, the text of those tweets, etc.

• A 3 minute Youtube clip with a resolution of 500× 500 pixels at 15

frames/second with 3 color channels is a recording of ≥ 2 billion pixel values.

Even a 500× 500 pixel color image has 750, 000 pixel values.

• The human genome contains 3 billion+ base pairs. Genetic datasets often

contain information on 100s of thousands+ mutations and genetic markers.

5



data as vectors and matrices

In data analysis and machine learning, data points with many attributes

are often stored, processed, and interpreted as high dimensional vectors,

with real valued entries.

Similarities/distances between vectors (e.g.,

〈x , y〉, ‖x − y‖2) have meaning for

underlying data points.

6



data as vectors and matrices

In data analysis and machine learning, data points with many attributes

are often stored, processed, and interpreted as high dimensional vectors,

with real valued entries.

Similarities/distances between vectors (e.g.,

〈x , y〉, ‖x − y‖2) have meaning for

underlying data points.

6



data as vectors and matrices

In data analysis and machine learning, data points with many attributes

are often stored, processed, and interpreted as high dimensional vectors,

with real valued entries.

Similarities/distances between vectors (e.g.,

〈x , y〉, ‖x − y‖2) have meaning for

underlying data points.

6



datasets as vectors and matrices

Data points are interpreted as high dimensional vectors, with real valued

entries. Data set is interpreted as a matrix.

Data Points: ~x1, ~x2, . . . , ~xn ∈ Rd .

Data Set: X ∈ Rn×d with i th rows equal to ~xi .

Many data points n =⇒ tall. Many dimensions d =⇒ wide.

7



datasets as vectors and matrices

Data points are interpreted as high dimensional vectors, with real valued

entries. Data set is interpreted as a matrix.

Data Points: ~x1, ~x2, . . . , ~xn ∈ Rd .

Data Set: X ∈ Rn×d with i th rows equal to ~xi .

Many data points n =⇒ tall. Many dimensions d =⇒ wide.

7



datasets as vectors and matrices

Data points are interpreted as high dimensional vectors, with real valued

entries. Data set is interpreted as a matrix.

Data Points: ~x1, ~x2, . . . , ~xn ∈ Rd .

Data Set: X ∈ Rn×d with i th rows equal to ~xi .

Many data points n =⇒ tall. Many dimensions d =⇒ wide.

7



dimensionality reduction

Dimensionality Reduction: Compress data points so that they lie in many

fewer dimensions.

~x1, . . . , ~xn ∈ Rd → x̃1, . . . , x̃n ∈ Rm for m� d .

‘Lossy compression’ that still preserves important information about the

relationships between ~x1, . . . , ~xn.

Generally will not consider directly how well x̃i approximates ~xi .

8



dimensionality reduction

Dimensionality Reduction: Compress data points so that they lie in many

fewer dimensions.

~x1, . . . , ~xn ∈ Rd → x̃1, . . . , x̃n ∈ Rm for m� d .

‘Lossy compression’ that still preserves important information about the

relationships between ~x1, . . . , ~xn.

Generally will not consider directly how well x̃i approximates ~xi .

8



dimensionality reduction

Dimensionality Reduction: Compress data points so that they lie in many

fewer dimensions.

~x1, . . . , ~xn ∈ Rd → x̃1, . . . , x̃n ∈ Rm for m� d .

‘Lossy compression’ that still preserves important information about the

relationships between ~x1, . . . , ~xn.

Generally will not consider directly how well x̃i approximates ~xi .

8



dimensionality reduction

Dimensionality Reduction: Compress data points so that they lie in many

fewer dimensions.

~x1, . . . , ~xn ∈ Rd → x̃1, . . . , x̃n ∈ Rm for m� d .

‘Lossy compression’ that still preserves important information about the

relationships between ~x1, . . . , ~xn.

Generally will not consider directly how well x̃i approximates ~xi .

8



low distortion embedding

Low Distortion Embedding: Given ~x1, . . . , ~xn ∈ Rd , distance function D, and

error parameter ε ≥ 0, find x̃1, . . . , x̃n ∈ Rm (where m� d) and distance

function D̃ such that for all i , j ∈ [n]:

(1− ε)D(~xi , ~xj) ≤ D̃(x̃i , x̃j) ≤ (1 + ε)D(~xi , ~xj).

We’ll focus on the case where D and D̃ are Euclidean distances. I.e., the

distance between two vectors x and y is defined as

‖~x − ~y‖2 =

√∑
i

(~x(i)− ~y(i))2

This is related to the Euclidean norm, ‖~z‖2 =
√∑n

i=1 ~z(i)2.

9



low distortion embedding

Low Distortion Embedding: Given ~x1, . . . , ~xn ∈ Rd , distance function D, and

error parameter ε ≥ 0, find x̃1, . . . , x̃n ∈ Rm (where m� d) and distance

function D̃ such that for all i , j ∈ [n]:

(1− ε)D(~xi , ~xj) ≤ D̃(x̃i , x̃j) ≤ (1 + ε)D(~xi , ~xj).

We’ll focus on the case where D and D̃ are Euclidean distances. I.e., the

distance between two vectors x and y is defined as

‖~x − ~y‖2 =

√∑
i

(~x(i)− ~y(i))2

This is related to the Euclidean norm, ‖~z‖2 =
√∑n

i=1 ~z(i)2.

9



the johnson-lindenstrauss lemma

Johnson-Lindenstrauss Lemma: For any set of points ~x1, . . . , ~xn ∈ Rd

and ε > 0 there exists a linear map M : Rd → Rm such that m =

O
(
log n
ε2

)
and letting x̃i = M~xi :

For all i , j : (1− ε)‖~xi − ~xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1 + ε)‖~xi − ~xj‖2.

Further, if M ∈ Rm×d has each entry chosen independently from

N (0, 1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, ε = .05, and n = 100, 000, m ≈ 6600.

Very surprising! Powerful result with a simple construction: applying a random

linear transformation to a set of points preserves distances between all those

points with high probability.

10



the johnson-lindenstrauss lemma

Johnson-Lindenstrauss Lemma: For any set of points ~x1, . . . , ~xn ∈ Rd

and ε > 0 there exists a linear map M : Rd → Rm such that m =

O
(
log n
ε2

)
and letting x̃i = M~xi :

For all i , j : (1− ε)‖~xi − ~xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1 + ε)‖~xi − ~xj‖2.

Further, if M ∈ Rm×d has each entry chosen independently from

N (0, 1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, ε = .05, and n = 100, 000, m ≈ 6600.

Very surprising! Powerful result with a simple construction: applying a random

linear transformation to a set of points preserves distances between all those

points with high probability.

10



the johnson-lindenstrauss lemma

Johnson-Lindenstrauss Lemma: For any set of points ~x1, . . . , ~xn ∈ Rd

and ε > 0 there exists a linear map M : Rd → Rm such that m =

O
(
log n
ε2

)
and letting x̃i = M~xi :

For all i , j : (1− ε)‖~xi − ~xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1 + ε)‖~xi − ~xj‖2.

Further, if M ∈ Rm×d has each entry chosen independently from

N (0, 1/m), it satisfies the guarantee with high probability.

For d = 1 trillion, ε = .05, and n = 100, 000, m ≈ 6600.

Very surprising! Powerful result with a simple construction: applying a random

linear transformation to a set of points preserves distances between all those

points with high probability.

10



random projection

For any ~x1, . . . , ~xn and M ∈ Rm×d with each entry chosen independently from

N (0, 1/m), with high probability, letting x̃i = M~xi :

For all i , j : (1− ε)‖~xi − ~xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1 + ε)‖~xi − ~xj‖2.

• M is known as a random projection. It is a random linear function, mapping

length d vectors to length m vectors.

• M is data oblivious. Stark contrast to methods like PCA.

11



random projection

For any ~x1, . . . , ~xn and M ∈ Rm×d with each entry chosen independently from

N (0, 1/m), with high probability, letting x̃i = M~xi :

For all i , j : (1− ε)‖~xi − ~xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1 + ε)‖~xi − ~xj‖2.

• M is known as a random projection. It is a random linear function, mapping

length d vectors to length m vectors.

• M is data oblivious. Stark contrast to methods like PCA.

11



random projection

For any ~x1, . . . , ~xn and M ∈ Rm×d with each entry chosen independently from

N (0, 1/m), with high probability, letting x̃i = M~xi :

For all i , j : (1− ε)‖~xi − ~xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1 + ε)‖~xi − ~xj‖2.

• M is known as a random projection. It is a random linear function, mapping

length d vectors to length m vectors.

• M is data oblivious. Stark contrast to methods like PCA.

11



algorithmic considerations

• Alternative constructions: ±1 entries, sparse (most entries 0), Fourier

structured, etc. =⇒ efficient computation of x̃i = M~xi .

• Data oblivious property means that once M is chosen, x̃1, . . . , x̃n can

be computed in a stream with little memory.

• Storage is just O(nm) rather than O(nd).

• Compression can be performed in parallel on different servers.

• When new data points are added, can be easily compressed, without

updating existing points.

12



algorithmic considerations

• Alternative constructions: ±1 entries, sparse (most entries 0), Fourier

structured, etc. =⇒ efficient computation of x̃i = M~xi .

• Data oblivious property means that once M is chosen, x̃1, . . . , x̃n can

be computed in a stream with little memory.

• Storage is just O(nm) rather than O(nd).

• Compression can be performed in parallel on different servers.

• When new data points are added, can be easily compressed, without

updating existing points.

12



algorithmic considerations

• Alternative constructions: ±1 entries, sparse (most entries 0), Fourier

structured, etc. =⇒ efficient computation of x̃i = M~xi .

• Data oblivious property means that once M is chosen, x̃1, . . . , x̃n can

be computed in a stream with little memory.

• Storage is just O(nm) rather than O(nd).

• Compression can be performed in parallel on different servers.

• When new data points are added, can be easily compressed, without

updating existing points.

12



algorithmic considerations

• Alternative constructions: ±1 entries, sparse (most entries 0), Fourier

structured, etc. =⇒ efficient computation of x̃i = M~xi .

• Data oblivious property means that once M is chosen, x̃1, . . . , x̃n can

be computed in a stream with little memory.

• Storage is just O(nm) rather than O(nd).

• Compression can be performed in parallel on different servers.

• When new data points are added, can be easily compressed, without

updating existing points.

12



the johnson-lindenstrauss lemma

Johnson-Lindenstrauss Lemma: For any set of points ~x1, . . . , ~xn ∈ Rd

and ε > 0 there exists a linear map M : Rd → Rm such that m =

O
(
log n
ε2

)
and letting x̃i = M~xi :

For all i , j : (1− ε)‖~xi − ~xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1 + ε)‖~xi − ~xj‖2.

Further, if M ∈ Rm×d has each entry chosen independently from

N (0, 1/m), it satisfies the guarantee with high probability.

13



distributional jl

The Johnson-Lindenstrauss Lemma is a direct consequence of:

Distributional JL Lemma: Let M ∈ Rm×d have each entry chosen

i.i.d. as N (0, 1/m). If we set m = O
(

log(1/δ)

ε2

)
, then for any ~y ∈ Rd ,

with probability ≥ 1− δ

(1− ε)‖~y‖2 ≤ ‖M~y‖2 ≤ (1 + ε)‖~y‖2

I.e., applying a random matrix M to any vector ~y preserves the norm with high

probability. Like a low-distortion embedding, but for the length of a compressed

vector rather than distances between vectors.

M ∈ Rm×d : random projection matrix. d : original dimension. m: compressed dimension,

ε: embedding error, δ: embedding failure prob.

14



distributional jl

The Johnson-Lindenstrauss Lemma is a direct consequence of:

Distributional JL Lemma: Let M ∈ Rm×d have each entry chosen

i.i.d. as N (0, 1/m). If we set m = O
(

log(1/δ)

ε2

)
, then for any ~y ∈ Rd ,

with probability ≥ 1− δ

(1− ε)‖~y‖2 ≤ ‖M~y‖2 ≤ (1 + ε)‖~y‖2

I.e., applying a random matrix M to any vector ~y preserves the norm with high

probability. Like a low-distortion embedding, but for the length of a compressed

vector rather than distances between vectors.

M ∈ Rm×d : random projection matrix. d : original dimension. m: compressed dimension,

ε: embedding error, δ: embedding failure prob.

14



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that a

random projection M preserves the norm of any y . The main JL Lemma says

that M preserves distances between vectors.

Since M is linear these are the

same thing!

Proof: Given x1, . . . , xn, define
(
n
2

)
vectors yij where yij = xi − xj .

• If we choose M with m = O
(
ε−2log 1/δ′

)
, for each yij with probability at

least 1− δ′ we have:

(1− ε)‖yij‖2 ≤ ‖Myij‖2 ≤ (1 + ε)‖yij‖2

15



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that a

random projection M preserves the norm of any y . The main JL Lemma says

that M preserves distances between vectors. Since M is linear these are the

same thing!

Proof: Given x1, . . . , xn, define
(
n
2

)
vectors yij where yij = xi − xj .

• If we choose M with m = O
(
ε−2log 1/δ′

)
, for each yij with probability at

least 1− δ′ we have:

(1− ε)‖yij‖2 ≤ ‖Myij‖2 ≤ (1 + ε)‖yij‖2

15



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that a

random projection M preserves the norm of any y . The main JL Lemma says

that M preserves distances between vectors. Since M is linear these are the

same thing!

Proof: Given x1, . . . , xn, define
(
n
2

)
vectors yij where yij = xi − xj .

• If we choose M with m = O
(
ε−2log 1/δ′

)
, for each yij with probability at

least 1− δ′ we have:

(1− ε)‖yij‖2 ≤ ‖Myij‖2 ≤ (1 + ε)‖yij‖2

15



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that a

random projection M preserves the norm of any y . The main JL Lemma says

that M preserves distances between vectors. Since M is linear these are the

same thing!

Proof: Given x1, . . . , xn, define
(
n
2

)
vectors yij where yij = xi − xj .

• If we choose M with m = O
(
ε−2log 1/δ′

)
, for each yij with probability at

least 1− δ′ we have:

(1− ε)‖yij‖2 ≤ ‖Myij‖2 ≤ (1 + ε)‖yij‖2

15



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that a

random projection M preserves the norm of any y . The main JL Lemma says

that M preserves distances between vectors. Since M is linear these are the

same thing!

Proof: Given x1, . . . , xn, define
(
n
2

)
vectors yij where yij = xi − xj .

• If we choose M with m = O
(
ε−2log 1/δ′

)
, for each yij with probability at

least 1− δ′ we have:

(1− ε)‖yij‖2 ≤ ‖Myij‖2 ≤ (1 + ε)‖yij‖2

15



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that a

random projection M preserves the norm of any y . The main JL Lemma says

that M preserves distances between vectors. Since M is linear these are the

same thing!

Proof: Given x1, . . . , xn, define
(
n
2

)
vectors yij where yij = xi − xj .

• If we choose M with m = O
(
ε−2log 1/δ′

)
, for each yij with probability at

least 1− δ′ we have:

(1− ε)‖xi − xj‖2 ≤ ‖M(xi − xj)‖2 ≤ (1 + ε)‖xi − xj‖2

15



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that a

random projection M preserves the norm of any y . The main JL Lemma says

that M preserves distances between vectors. Since M is linear these are the

same thing!

Proof: Given x1, . . . , xn, define
(
n
2

)
vectors yij where yij = xi − xj .

• If we choose M with m = O
(
ε−2log 1/δ′

)
, for each yij with probability at

least 1− δ′ we have:

(1− ε)‖xi − xj‖2 ≤ ‖Mxi −Mxj‖2 ≤ (1 + ε)‖xi − xj‖2

15



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that a

random projection M preserves the norm of any y . The main JL Lemma says

that M preserves distances between vectors. Since M is linear these are the

same thing!

Proof: Given x1, . . . , xn, define
(
n
2

)
vectors yij where yij = xi − xj .

• If we choose M with m = O
(
ε−2log 1/δ′

)
, for each yij with probability at

least 1− δ′ we have:

(1− ε)‖xi − xj‖2 ≤ ‖Mxi −Mxj‖2 ≤ (1 + ε)‖xi − xj‖2

15



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that a

random projection M preserves the norm of any y . The main JL Lemma says

that M preserves distances between vectors. Since M is linear these are the

same thing!

Proof: Given x1, . . . , xn, define
(
n
2

)
vectors yij where yij = xi − xj .

• If we choose M with m = O
(
ε−2log 1/δ′

)
, for each yij with probability at

least 1− δ′ we have:

(1− ε)‖xi − xj‖2 ≤ ‖Mxi −Mxj‖2 ≤ (1 + ε)‖xi − xj‖2

• Union Bound: Every distance preserved with probability 1−
(
n
2

)
· δ′.

15



distributional jl =⇒ jl

Distributional JL Lemma =⇒ JL Lemma: Distributional JL show that a

random projection M preserves the norm of any y . The main JL Lemma says

that M preserves distances between vectors. Since M is linear these are the

same thing!

Proof: Given x1, . . . , xn, define
(
n
2

)
vectors yij where yij = xi − xj .

• If we choose M with m = O
(
ε−2log 1/δ′

)
, for each yij with probability at

least 1− δ′ we have:

(1− ε)‖xi − xj‖2 ≤ ‖Mxi −Mxj‖2 ≤ (1 + ε)‖xi − xj‖2

• Union Bound: Every distance preserved with probability 1−
(
n
2

)
· δ′.

• Setting δ′ = δ/
(
n
2

)
ensures all distances preserved with probability 1− δ and

m = O

(
log(1/δ′)

ε2

)
= O

(
log(

(
n
2

)
/δ)

ε2

)
= O

(
log(n/δ)

ε2

)

15



distributional jl proof (part 1 of 3)

Distributional JL Lemma: Let M ∈ Rm×d have independentN (0, 1/m)

entries. If we set m = O
(

log(1/δ)

ε2

)
, then for any y ∈ Rd , with probability

at least 1− δ

(1− ε)‖y‖2 ≤ ‖My‖2 ≤ (1 + ε)‖y‖2.

• Let ỹ = My and M j be the j th row of M
• For any j , ỹj = 〈M j , y〉 =

∑d
i=1 gi · yi where gi ∼ N (0, 1/m).

• By linearity of expectation:

E[ỹj ] =
d∑

i=1

E[gi ] · yi = 0 .

• Since E[ỹj ] = 0 we have E[ỹ 2
j ] = Var[ỹj ]. Then, by linearity of variance:

E[ỹ 2
j ] = Var[ỹj ] =

d∑
i=1

Var[gi · yi ] =
∑
i

y 2
i /m = ‖y‖22/m .

• Hence E[‖ỹ‖22] = E[
∑

j ỹ
2
j ] = ‖y‖22. Remains to show ‖ỹ‖22 is concentrated.

16



distributional jl proof (part 1 of 3)

Distributional JL Lemma: Let M ∈ Rm×d have independentN (0, 1/m)

entries. If we set m = O
(

log(1/δ)

ε2

)
, then for any y ∈ Rd , with probability

at least 1− δ

(1− ε)‖y‖2 ≤ ‖My‖2 ≤ (1 + ε)‖y‖2.

• Let ỹ = My and M j be the j th row of M

• For any j , ỹj = 〈M j , y〉 =
∑d

i=1 gi · yi where gi ∼ N (0, 1/m).

• By linearity of expectation:

E[ỹj ] =
d∑

i=1

E[gi ] · yi = 0 .

• Since E[ỹj ] = 0 we have E[ỹ 2
j ] = Var[ỹj ]. Then, by linearity of variance:

E[ỹ 2
j ] = Var[ỹj ] =

d∑
i=1

Var[gi · yi ] =
∑
i

y 2
i /m = ‖y‖22/m .

• Hence E[‖ỹ‖22] = E[
∑

j ỹ
2
j ] = ‖y‖22. Remains to show ‖ỹ‖22 is concentrated.

16



distributional jl proof (part 1 of 3)

Distributional JL Lemma: Let M ∈ Rm×d have independentN (0, 1/m)

entries. If we set m = O
(

log(1/δ)

ε2

)
, then for any y ∈ Rd , with probability

at least 1− δ

(1− ε)‖y‖2 ≤ ‖My‖2 ≤ (1 + ε)‖y‖2.

• Let ỹ = My and M j be the j th row of M
• For any j , ỹj = 〈M j , y〉

=
∑d

i=1 gi · yi where gi ∼ N (0, 1/m).

• By linearity of expectation:

E[ỹj ] =
d∑

i=1

E[gi ] · yi = 0 .

• Since E[ỹj ] = 0 we have E[ỹ 2
j ] = Var[ỹj ]. Then, by linearity of variance:

E[ỹ 2
j ] = Var[ỹj ] =

d∑
i=1

Var[gi · yi ] =
∑
i

y 2
i /m = ‖y‖22/m .

• Hence E[‖ỹ‖22] = E[
∑

j ỹ
2
j ] = ‖y‖22. Remains to show ‖ỹ‖22 is concentrated.

16



distributional jl proof (part 1 of 3)

Distributional JL Lemma: Let M ∈ Rm×d have independentN (0, 1/m)

entries. If we set m = O
(

log(1/δ)

ε2

)
, then for any y ∈ Rd , with probability

at least 1− δ

(1− ε)‖y‖2 ≤ ‖My‖2 ≤ (1 + ε)‖y‖2.

• Let ỹ = My and M j be the j th row of M
• For any j , ỹj = 〈M j , y〉 =

∑d
i=1 gi · yi where gi ∼ N (0, 1/m).

• By linearity of expectation:

E[ỹj ] =
d∑

i=1

E[gi ] · yi = 0 .

• Since E[ỹj ] = 0 we have E[ỹ 2
j ] = Var[ỹj ]. Then, by linearity of variance:

E[ỹ 2
j ] = Var[ỹj ] =

d∑
i=1

Var[gi · yi ] =
∑
i

y 2
i /m = ‖y‖22/m .

• Hence E[‖ỹ‖22] = E[
∑

j ỹ
2
j ] = ‖y‖22. Remains to show ‖ỹ‖22 is concentrated.

16



distributional jl proof (part 1 of 3)

Distributional JL Lemma: Let M ∈ Rm×d have independentN (0, 1/m)

entries. If we set m = O
(

log(1/δ)

ε2

)
, then for any y ∈ Rd , with probability

at least 1− δ

(1− ε)‖y‖2 ≤ ‖My‖2 ≤ (1 + ε)‖y‖2.

• Let ỹ = My and M j be the j th row of M
• For any j , ỹj = 〈M j , y〉 =

∑d
i=1 gi · yi where gi ∼ N (0, 1/m).

• By linearity of expectation:

E[ỹj ] =
d∑

i=1

E[gi ] · yi = 0 .

• Since E[ỹj ] = 0 we have E[ỹ 2
j ] = Var[ỹj ]. Then, by linearity of variance:

E[ỹ 2
j ] = Var[ỹj ] =

d∑
i=1

Var[gi · yi ] =
∑
i

y 2
i /m = ‖y‖22/m .

• Hence E[‖ỹ‖22] = E[
∑

j ỹ
2
j ] = ‖y‖22. Remains to show ‖ỹ‖22 is concentrated.

16



distributional jl proof (part 1 of 3)

Distributional JL Lemma: Let M ∈ Rm×d have independentN (0, 1/m)

entries. If we set m = O
(

log(1/δ)

ε2

)
, then for any y ∈ Rd , with probability

at least 1− δ

(1− ε)‖y‖2 ≤ ‖My‖2 ≤ (1 + ε)‖y‖2.

• Let ỹ = My and M j be the j th row of M
• For any j , ỹj = 〈M j , y〉 =

∑d
i=1 gi · yi where gi ∼ N (0, 1/m).

• By linearity of expectation:

E[ỹj ] =
d∑

i=1

E[gi ] · yi = 0 .

• Since E[ỹj ] = 0 we have E[ỹ 2
j ] = Var[ỹj ]. Then, by linearity of variance:

E[ỹ 2
j ] = Var[ỹj ] =

d∑
i=1

Var[gi · yi ] =
∑
i

y 2
i /m = ‖y‖22/m .

• Hence E[‖ỹ‖22] = E[
∑

j ỹ
2
j ] = ‖y‖22. Remains to show ‖ỹ‖22 is concentrated.

16



distributional jl proof (part 1 of 3)

Distributional JL Lemma: Let M ∈ Rm×d have independentN (0, 1/m)

entries. If we set m = O
(

log(1/δ)

ε2

)
, then for any y ∈ Rd , with probability

at least 1− δ

(1− ε)‖y‖2 ≤ ‖My‖2 ≤ (1 + ε)‖y‖2.

• Let ỹ = My and M j be the j th row of M
• For any j , ỹj = 〈M j , y〉 =

∑d
i=1 gi · yi where gi ∼ N (0, 1/m).

• By linearity of expectation:

E[ỹj ] =
d∑

i=1

E[gi ] · yi = 0 .

• Since E[ỹj ] = 0 we have E[ỹ 2
j ] = Var[ỹj ]. Then, by linearity of variance:

E[ỹ 2
j ] = Var[ỹj ] =

d∑
i=1

Var[gi · yi ] =
∑
i

y 2
i /m = ‖y‖22/m .

• Hence E[‖ỹ‖22] = E[
∑

j ỹ
2
j ] = ‖y‖22.

Remains to show ‖ỹ‖22 is concentrated.

16



distributional jl proof (part 1 of 3)

Distributional JL Lemma: Let M ∈ Rm×d have independentN (0, 1/m)

entries. If we set m = O
(

log(1/δ)

ε2

)
, then for any y ∈ Rd , with probability

at least 1− δ

(1− ε)‖y‖2 ≤ ‖My‖2 ≤ (1 + ε)‖y‖2.

• Let ỹ = My and M j be the j th row of M
• For any j , ỹj = 〈M j , y〉 =

∑d
i=1 gi · yi where gi ∼ N (0, 1/m).

• By linearity of expectation:

E[ỹj ] =
d∑

i=1

E[gi ] · yi = 0 .

• Since E[ỹj ] = 0 we have E[ỹ 2
j ] = Var[ỹj ]. Then, by linearity of variance:

E[ỹ 2
j ] = Var[ỹj ] =

d∑
i=1

Var[gi · yi ] =
∑
i

y 2
i /m = ‖y‖22/m .

• Hence E[‖ỹ‖22] = E[
∑

j ỹ
2
j ] = ‖y‖22. Remains to show ‖ỹ‖22 is concentrated.

16


