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the johnson-lindenstrauss lemma

Johnson-Lindenstrauss Lemma: For any set of points ~x1, . . . , ~xn ∈ Rd

and ε > 0 there exists a linear map M : Rd → Rm such that m =

O
(

log n
ε2

)
and letting x̃i = M~xi :

For all i , j : (1− ε)‖~xi − ~xj‖2 ≤ ‖x̃i − x̃j‖2 ≤ (1 + ε)‖~xi − ~xj‖2.

Further, if M ∈ Rm×d has each entry chosen independently from

N (0, 1/m), it satisfies the guarantee with high probability.
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distributional jl

The Johnson-Lindenstrauss Lemma is a direct consequence of:

Distributional JL Lemma: Let M ∈ Rm×d have each entry chosen

i.i.d. as N (0, 1/m). If we set m = O
(

log(1/δ)

ε2

)
, then for any ~y ∈ Rd ,

with probability ≥ 1− δ

(1− ε)‖~y‖2 ≤ ‖M~y‖2 ≤ (1 + ε)‖~y‖2

I.e., applying a random matrix M to any vector ~y preserves the norm with high

probability. Like a low-distortion embedding, but for the length of a compressed

vector rather than distances between vectors.

M ∈ Rm×d : random projection matrix. d : original dimension. m: compressed dimension,

ε: embedding error, δ: embedding failure prob.
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distributional jl proof (part 1 of 3)

Distributional JL Lemma: Let M ∈ Rm×d have independentN (0, 1/m)

entries. If we set m = O
(

log(1/δ)

ε2

)
, then for any y ∈ Rd , with probability

at least 1− δ

(1− ε)‖y‖2 ≤ ‖My‖2 ≤ (1 + ε)‖y‖2.

• Let ỹ = My and M j be the j th row of M
• For any j , ỹj = 〈M j , y〉 =

∑d
i=1 gi · yi where gi ∼ N (0, 1/m).

• By linearity of expectation:

E[ỹj ] =
d∑

i=1

E[gi ] · yi = 0 .

• Since E[ỹj ] = 0 we have E[ỹ 2
j ] = Var[ỹj ]. Then, by linearity of variance:

E[ỹ 2
j ] = Var[ỹj ] =

d∑
i=1

Var[gi · yi ] =
∑
i

y 2
i /m = ‖y‖2

2/m .

• Hence E[‖ỹ‖2
2] = E[

∑
j ỹ

2
j ] = ‖y‖2

2. Remains to show ‖ỹ‖2
2 is concentrated.
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• Since E[ỹj ] = 0 we have E[ỹ 2
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j ] = Var[ỹj ]. Then, by linearity of variance:

E[ỹ 2
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distributional jl proof (part 2 of 3)

Letting ỹ = My , we have ỹj = 〈M j , y〉 and:

ỹj =
d∑

i=1

gi · yi where gi · yi ∼ N (0, y2
i /m).

Stability of Gaussian Random Variables. For independent a ∼
N (µ1, σ

2
1) and b ∼ N (µ2, σ

2
2) we have:

a + b ∼ N (µ1 + µ2, σ
2
1 + σ2

2)

Thus, ỹj ∼ N (0,
∑d

i=1 y
2
i /m) = N (0, ‖y‖2

2/m).
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distributional jl proof (part 3 of 3)

So Far: Each entry of our compressed vector ỹ is Gaussian with :

ỹj ∼ N (0, ‖y‖2
2/m) and E[‖ỹ‖2

2] = ‖y‖2
2

‖ỹ‖2
2 =

∑m
i=1 ỹ

2
j a Chi-Squared random variable with m degrees of freedom (a

sum of m squared independent Gaussians)
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2 ≤ (1 + ε)‖y‖2
2.

Gives the distributional JL Lemma and thus the classic JL Lemma!

5



example application: k-means clustering

Goal: Separate n points in d dimensional space into k groups C1, . . . , Ck .

k-means Objective: Cost(C1, . . . , Ck) =
k∑

j=1

∑
~x∈Cj

‖~x − µj‖2
2 where

µj =
1

|Cj |
∑
~x∈Cj

~x

is the average of the points in Cj .

Exercise: Can be rewritten as Cost(C1, . . . , Ck) =
k∑

j=1

∑
~x1,~x2∈Cj

‖~x1 − ~x2‖2
2

|Cj |
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)
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Upshot: Can cluster in m dimensional space (much more efficiently) and

minimize Cost(C1, . . . , Ck).
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jl lemma is almost optimal



orthogonal vectors

• Recall that we say two vectors x , y are orthogonal if 〈x , y〉 = 0.

• What is the largest set of mutually orthogonal unit vectors in

d-dimensional space? Answer: d .

• How large can a set of unit vectors in d-dimensional space be that

have all pairwise dot products |〈x , y〉| ≤ ε? Answer: 2Ω(ε2d).

An exponentially large set of random vectors will be nearly pairwise

orthogonal with high probability!
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orthogonal vectors proof

Claim: 2O(ε2d) random d-dimensional unit vectors will have all pairwise

dot products |〈x , y〉| ≤ ε (be nearly orthogonal).

Proof: Let x1, . . . , xt ∈ Rd have independent random entries ± 1√
d

.

• What is ‖xi‖2? Every xi is always a unit vector.

• What is E[〈xi , xj〉]? E[〈xi , xj〉] = 0

• By a Bernstein bound, Pr[|〈xi , xj〉| ≥ ε] ≤ 2e−ε
2d/6.

• If t = 1
2e
ε2d/12, using a union bound over

(
t
2

)
≤ 1

8e
ε2d/6 possible pairs,

with probability ≥ 3/4 all will be nearly orthogonal.

We won’t prove it but this is essentially optimal: In d dimensions, there

can be at most 2O(ε2d) nearly orthogonal unit vectors.
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connection to dimensionality reduction

Recall: The Johnson Lindenstrauss lemma states that if M ∈ Rm×d is a

random matrix (linear map) with m = O
(

log n
ε2

)
, for x1, . . . , xn ∈ Rd with

high probability, for all i , j :

(1− ε)‖xi − xj‖2
2 ≤ ‖Mxi −Mxj‖2

2 ≤ (1 + ε)‖xi − xj‖2
2.

Implies: If x1, . . . , xn are nearly orthogonal unit vectors in d-dimensions

(with pairwise dot products bounded by ε/8), then

Mx1

‖Mx1‖2
, . . . ,

Mxn
‖Mxn‖2

are nearly orthogonal unit vectors in m-dimensions (with pairwise dot

products bounded by ε). Algebra is a bit messy but a good exercise to

partially work through. Proof uses the fact that

‖x − y‖2
2 = ‖x‖2

2 + ‖y‖2
2 − 2〈x , y〉 .
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connection to dimensionality reduction

Claim 1: n nearly orthogonal unit vectors can be projected to

m = O
(

log n
ε2

)
dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there can be at most 2O(ε2m) nearly

orthogonal unit vectors.

• For both of these to hold it must be that n ≤ 2O(ε2m).

• I.e., n = 2log n ≤ 2O(ε2m) and so m = Ω
(

log n
ε2

)
.

• Tells us that the JL lemma is optimal up to constants.
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