COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 11

THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ and $\epsilon>0$ there exists a linear map $M: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ such that $m=$ $O\left(\frac{\log n}{\epsilon^{2}}\right)$ and letting $\tilde{x}_{i}=M \vec{x}_{i}$:

For all $i, j:(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\tilde{x}_{i}-\tilde{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}$.
Further, if $M \in \mathbb{R}^{m \times d}$ has each entry chosen independently from $\mathcal{N}(0,1 / m)$, it satisfies the guarantee with high probability.

DISTRIBUTIONAL JL

The Johnson-Lindenstrauss Lemma is a direct consequence of:

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|M \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

$M \in \mathbb{R}^{m \times d}$: random projection matrix. d : original dimension. m : compressed dimension, ϵ : embedding error, δ : embedding failure prob.

DISTRIBUTIONAL JL

The Johnson-Lindenstrauss Lemma is a direct consequence of:

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0,1 / m)$. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $\vec{y} \in \mathbb{R}^{d}$, with probability $\geq 1-\delta$

$$
(1-\epsilon)\|\vec{y}\|_{2} \leq\|\boldsymbol{M} \vec{y}\|_{2} \leq(1+\epsilon)\|\vec{y}\|_{2}
$$

I.e., applying a random matrix M to any vector \vec{y} preserves the norm with high probability. Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.
$M \in \mathbb{R}^{m \times d}$: random projection matrix. d : original dimension. m : compressed dimension, ϵ : embedding error, δ : embedding failure prob.

DISTRIBUTIONAL JL PROOF (PART 1 OF 3)

Distributional JL Lemma: Let $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1 / m)$ entries. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $y \in \mathbb{R}^{d}$, with probability at least $1-\delta$

$$
(1-\epsilon)\|y\|_{2} \leq\|\boldsymbol{M} y\|_{2} \leq(1+\epsilon)\|y\|_{2}
$$

DISTRIBUTIONAL JL PROOF (PART 1 OF 3)

Distributional JL Lemma: Let $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1 / m)$ entries. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $y \in \mathbb{R}^{d}$, with probability at least $1-\delta$

$$
(1-\epsilon)\|y\|_{2} \leq\|\boldsymbol{M} y\|_{2} \leq(1+\epsilon)\|y\|_{2}
$$

- Let $\tilde{y}=M y$ and M_{j} be the $j^{\text {th }}$ row of M

DISTRIBUTIONAL JL PROOF (PART 1 OF 3)

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1 / m)$ entries. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $y \in \mathbb{R}^{d}$, with probability at least $1-\delta$

$$
(1-\epsilon)\|y\|_{2} \leq\|\boldsymbol{M} y\|_{2} \leq(1+\epsilon)\|y\|_{2}
$$

- Let $\tilde{y}=M y$ and M_{j} be the $j^{\text {th }}$ row of \boldsymbol{M}
- For any $j, \tilde{y}_{j}=\left\langle\boldsymbol{M}_{j}, y\right\rangle$

DISTRIBUTIONAL JL PROOF (PART 1 OF 3)

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1 / m)$ entries. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $y \in \mathbb{R}^{d}$, with probability at least $1-\delta$

$$
(1-\epsilon)\|y\|_{2} \leq\|\boldsymbol{M} y\|_{2} \leq(1+\epsilon)\|y\|_{2}
$$

- Let $\tilde{y}=M y$ and M_{j} be the $j^{\text {th }}$ row of \boldsymbol{M}
- For any $j, \tilde{y}_{j}=\left\langle\boldsymbol{M}_{j}, y\right\rangle=\sum_{i=1}^{d} \mathbf{g}_{i} \cdot y_{i}$ where $\mathbf{g}_{i} \sim \mathcal{N}(0,1 / m)$.

DISTRIBUTIONAL JL PROOF (PART 1 OF 3)

Distributional JL Lemma: Let $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1 / m)$ entries. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $y \in \mathbb{R}^{d}$, with probability at least $1-\delta$

$$
(1-\epsilon)\|y\|_{2} \leq\|\boldsymbol{M} y\|_{2} \leq(1+\epsilon)\|y\|_{2}
$$

- Let $\tilde{y}=M y$ and M_{j} be the $j^{\text {th }}$ row of \boldsymbol{M}
- For any $j, \tilde{y}_{j}=\left\langle\boldsymbol{M}_{j}, y\right\rangle=\sum_{i=1}^{d} \mathbf{g}_{i} \cdot y_{i}$ where $\mathbf{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- By linearity of expectation:

$$
\mathbb{E}\left[\tilde{y}_{j}\right]=\sum_{i=1}^{d} \mathbb{E}\left[\mathbf{g}_{i}\right] \cdot y_{i}=0
$$

DISTRIBUTIONAL JL PROOF (PART 1 OF 3)

Distributional JL Lemma: Let $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1 / m)$ entries. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $y \in \mathbb{R}^{d}$, with probability at least $1-\delta$

$$
(1-\epsilon)\|y\|_{2} \leq\|\boldsymbol{M} y\|_{2} \leq(1+\epsilon)\|y\|_{2} .
$$

- Let $\tilde{y}=M y$ and M_{j} be the $j^{\text {th }}$ row of \boldsymbol{M}
- For any $j, \tilde{y}_{j}=\left\langle\boldsymbol{M}_{j}, y\right\rangle=\sum_{i=1}^{d} \mathbf{g}_{i} \cdot y_{i}$ where $\mathbf{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- By linearity of expectation:

$$
\mathbb{E}\left[\tilde{y}_{j}\right]=\sum_{i=1}^{d} \mathbb{E}\left[\mathbf{g}_{i}\right] \cdot y_{i}=0
$$

- Since $\mathbb{E}\left[\tilde{y}_{j}\right]=0$ we have $\mathbb{E}\left[\tilde{y}_{j}^{2}\right]=\operatorname{Var}\left[\tilde{y}_{j}\right]$. Then, by linearity of variance:

$$
\mathbb{E}\left[\tilde{y}_{j}^{2}\right]=\operatorname{Var}\left[\tilde{y}_{j}\right]=\sum_{i=1}^{d} \operatorname{Var}\left[\mathbf{g}_{i} \cdot y_{i}\right]=\sum_{i} y_{i}^{2} / m=\|y\|_{2}^{2} / m
$$

DISTRIBUTIONAL JL PROOF (PART 1 OF 3)

Distributional JL Lemma: Let $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1 / m)$ entries. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $y \in \mathbb{R}^{d}$, with probability at least $1-\delta$

$$
(1-\epsilon)\|y\|_{2} \leq\|\boldsymbol{M} y\|_{2} \leq(1+\epsilon)\|y\|_{2} .
$$

- Let $\tilde{y}=M y$ and M_{j} be the $j^{\text {th }}$ row of \boldsymbol{M}
- For any $j, \tilde{y}_{j}=\left\langle\boldsymbol{M}_{j}, y\right\rangle=\sum_{i=1}^{d} \mathbf{g}_{i} \cdot y_{i}$ where $\mathbf{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- By linearity of expectation:

$$
\mathbb{E}\left[\tilde{y}_{j}\right]=\sum_{i=1}^{d} \mathbb{E}\left[\mathbf{g}_{i}\right] \cdot y_{i}=0
$$

- Since $\mathbb{E}\left[\tilde{y}_{j}\right]=0$ we have $\mathbb{E}\left[\tilde{y}_{j}^{2}\right]=\operatorname{Var}\left[\tilde{y}_{j}\right]$. Then, by linearity of variance:

$$
\mathbb{E}\left[\tilde{y}_{j}^{2}\right]=\operatorname{Var}\left[\tilde{y}_{j}\right]=\sum_{i=1}^{d} \operatorname{Var}\left[\mathbf{g}_{i} \cdot y_{i}\right]=\sum_{i} y_{i}^{2} / m=\|y\|_{2}^{2} / m
$$

- Hence $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j} \tilde{y}_{j}^{2}\right]=\|y\|_{2}^{2}$.

DISTRIBUTIONAL JL PROOF (PART 1 OF 3)

Distributional JL Lemma: Let $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1 / m)$ entries. If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any $y \in \mathbb{R}^{d}$, with probability at least $1-\delta$

$$
(1-\epsilon)\|y\|_{2} \leq\|\boldsymbol{M} y\|_{2} \leq(1+\epsilon)\|y\|_{2} .
$$

- Let $\tilde{y}=M y$ and M_{j} be the $j^{\text {th }}$ row of \boldsymbol{M}
- For any $j, \tilde{y}_{j}=\left\langle\boldsymbol{M}_{j}, y\right\rangle=\sum_{i=1}^{d} \mathbf{g}_{i} \cdot y_{i}$ where $\mathbf{g}_{i} \sim \mathcal{N}(0,1 / m)$.
- By linearity of expectation:

$$
\mathbb{E}\left[\tilde{y}_{j}\right]=\sum_{i=1}^{d} \mathbb{E}\left[\mathbf{g}_{i}\right] \cdot y_{i}=0
$$

- Since $\mathbb{E}\left[\tilde{y}_{j}\right]=0$ we have $\mathbb{E}\left[\tilde{y}_{j}^{2}\right]=\operatorname{Var}\left[\tilde{y}_{j}\right]$. Then, by linearity of variance:

$$
\mathbb{E}\left[\tilde{y}_{j}^{2}\right]=\operatorname{Var}\left[\tilde{y}_{j}\right]=\sum_{i=1}^{d} \operatorname{Var}\left[\mathbf{g}_{i} \cdot y_{i}\right]=\sum_{i} y_{i}^{2} / m=\|y\|_{2}^{2} / m
$$

- Hence $\mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\mathbb{E}\left[\sum_{j} \tilde{y}_{j}^{2}\right]=\|y\|_{2}^{2}$. Remains to show $\|\tilde{y}\|_{2}^{2}$ is concentrated.

DISTRIBUTIONAL JL PROOF (PART 2 OF 3)

Letting $\tilde{y}=M y$, we have $\tilde{y}_{j}=\left\langle\boldsymbol{M}_{j}, y\right\rangle$ and:

$$
\tilde{y}_{j}=\sum_{i=1}^{d} \mathbf{g}_{i} \cdot y_{i} \text { where } \mathbf{g}_{i} \cdot y_{i} \sim \mathcal{N}\left(0, y_{i}^{2} / m\right)
$$

Stability of Gaussian Random Variables. For independent a ~ $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ we have:

$$
a+b \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Thus, $\tilde{y}_{j} \sim \mathcal{N}\left(0, \sum_{i=1}^{d} y_{i}^{2} / m\right)=\mathcal{N}\left(0,\|y\|_{2}^{2} / m\right)$.

DISTRIBUTIONAL JL PROOF (PART 3 OF 3)

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$
\tilde{y}_{j} \sim \mathcal{N}\left(0,\|y\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|y\|_{2}^{2}
$$

DISTRIBUTIONAL JL PROOF (PART 3 OF 3)

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$
\tilde{y}_{j} \sim \mathcal{N}\left(0,\|y\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|y\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}_{j}^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

DISTRIBUTIONAL JL PROOF (PART 3 OF 3)

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$
\tilde{y}_{j} \sim \mathcal{N}\left(0,\|y\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|y\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}_{j}^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

DISTRIBUTIONAL JL PROOF (PART 3 OF 3)

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$
\tilde{y}_{j} \sim \mathcal{N}\left(0,\|y\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|y\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}_{j}^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting \mathbf{Z} be a Chi-Squared random variable with m degrees of freedom,

$$
\operatorname{Pr}[|\mathbf{Z}-\mathbb{E} \mathbf{Z}| \geq \epsilon \mathbb{E} \mathbf{Z}] \leq 2 e^{-m \epsilon^{2} / 8}
$$

DISTRIBUTIONAL JL PROOF (PART 3 OF 3)

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$
\tilde{y}_{j} \sim \mathcal{N}\left(0,\|y\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|y\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}_{j}^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting \mathbf{Z} be a Chi-Squared random variable with m degrees of freedom,

$$
\operatorname{Pr}[|\mathbf{Z}-\mathbb{E} \mathbf{Z}| \geq \epsilon \mathbb{E} \mathbf{Z}] \leq 2 e^{-m \epsilon^{2} / 8}
$$

If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, with probability $1-O\left(e^{-\log (1 / \delta)}\right) \geq 1-\delta$:

$$
(1-\epsilon)\|y\|_{2}^{2} \leq\|\tilde{y}\|_{2}^{2} \leq(1+\epsilon)\|y\|_{2}^{2}
$$

DISTRIBUTIONAL JL PROOF (PART 3 OF 3)

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$
\tilde{y}_{j} \sim \mathcal{N}\left(0,\|y\|_{2}^{2} / m\right) \text { and } \mathbb{E}\left[\|\tilde{y}\|_{2}^{2}\right]=\|y\|_{2}^{2}
$$

$\|\tilde{y}\|_{2}^{2}=\sum_{i=1}^{m} \tilde{y}_{j}^{2}$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting \mathbf{Z} be a Chi-Squared random variable with m degrees of freedom,

$$
\operatorname{Pr}[|\mathbf{Z}-\mathbb{E} \mathbf{Z}| \geq \epsilon \mathbb{E} \mathbf{Z}] \leq 2 e^{-m \epsilon^{2} / 8}
$$

If we set $m=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, with probability $1-O\left(e^{-\log (1 / \delta)}\right) \geq 1-\delta$:

$$
(1-\epsilon)\|y\|_{2}^{2} \leq\|\tilde{y}\|_{2}^{2} \leq(1+\epsilon)\|y\|_{2}^{2}
$$

Gives the distributional JL Lemma and thus the classic JL Lemma!

EXAMPLE APPLICATION: k-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.

EXAMPLE APPLICATION: k-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\sum_{j=1}^{k} \sum_{\vec{x} \in \mathcal{C}_{j}}\left\|\vec{x}-\mu_{j}\right\|_{2}^{2}$ where

$$
\mu_{j}=\frac{1}{\left|\mathcal{C}_{j}\right|} \sum_{\vec{x} \in \mathcal{C}_{j}} \vec{x}
$$

is the average of the points in \mathcal{C}_{j}.

EXAMPLE APPLICATION: k-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups $\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}$.

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\sum_{j=1}^{k} \sum_{\vec{x} \in \mathcal{C}_{j}}\left\|\vec{x}-\mu_{j}\right\|_{2}^{2}$ where

$$
\mu_{j}=\frac{1}{\left|\mathcal{C}_{j}\right|} \sum_{\vec{x} \in \mathcal{C}_{j}} \vec{x}
$$

is the average of the points in \mathcal{C}_{j}.
Exercise: Can be rewritten as $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{j}} \frac{\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}}{\left|\mathcal{C}_{j}\right|}$

$$
\text { k-means Objective: } \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{j}} \frac{\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}}{\left|\mathcal{C}_{j}\right|}
$$

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{j}} \frac{\left\|\vec{x}_{1}-\overrightarrow{-}_{2}\right\|_{2}^{2}}{\left|\mathcal{C}_{j}\right|}$
If we randomly project to $m=O\left(\epsilon^{-2} \log n\right)$ dimensions, for all pairs \vec{x}_{1}, \vec{x}_{2},

$$
(1-\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \leq\left\|\tilde{x}_{1}-\tilde{x}_{2}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}
$$

EXAMPLE APPLICATION: k-MEANS CLUSTERING

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{j}} \frac{\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}}{\left|\mathcal{C}_{j}\right|}$ If we randomly project to $m=O\left(\epsilon^{-2} \log n\right)$ dimensions, for all pairs \vec{x}_{1}, \vec{x}_{2},

$$
(1-\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \leq\left\|\tilde{x}_{1}-\tilde{x}_{2}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}
$$

Letting $\overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{j}} \frac{\left\|\tilde{x}_{1}-\tilde{x}_{2}\right\|_{2}^{2}}{\left|\mathcal{C}_{j}\right|}$

$$
(1-\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq \overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq(1+\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)
$$

k-means Objective: $\operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{j}} \frac{\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}}{\left|\mathcal{C}_{j}\right|}$ If we randomly project to $m=O\left(\epsilon^{-2} \log n\right)$ dimensions, for all pairs \vec{x}_{1}, \vec{x}_{2},

$$
(1-\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2} \leq\left\|\tilde{x}_{1}-\tilde{x}_{2}\right\|_{2}^{2} \leq(1+\epsilon)\left\|\vec{x}_{1}-\vec{x}_{2}\right\|_{2}^{2}
$$

Letting $\overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)=\sum_{j=1}^{k} \sum_{\vec{x}_{1}, \vec{x}_{2} \in \mathcal{C}_{j}} \frac{\left\|\tilde{x}_{1}-\tilde{x}_{2}\right\|_{2}^{2}}{\left|\mathcal{C}_{j}\right|}$

$$
(1-\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq \overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right) \leq(1+\epsilon) \operatorname{Cost}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)
$$

Upshot: Can cluster in m dimensional space (much more efficiently) and minimize $\overline{\operatorname{Cost}}\left(\mathcal{C}_{1}, \ldots, \mathcal{C}_{k}\right)$.

JL LEMMA IS ALMOST OPTIMAL

ORTHOGONAL VECTORS

- Recall that we say two vectors x, y are orthogonal if $\langle x, y\rangle=0$.

ORTHOGONAL VECTORS

- Recall that we say two vectors x, y are orthogonal if $\langle x, y\rangle=0$.
- What is the largest set of mutually orthogonal unit vectors in d-dimensional space?

ORTHOGONAL VECTORS

- Recall that we say two vectors x, y are orthogonal if $\langle x, y\rangle=0$.
- What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d.

ORTHOGONAL VECTORS

- Recall that we say two vectors x, y are orthogonal if $\langle x, y\rangle=0$.
- What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d.
- How large can a set of unit vectors in d-dimensional space be that have all pairwise dot products $|\langle x, y\rangle| \leq \epsilon$?

ORTHOGONAL VECTORS

- Recall that we say two vectors x, y are orthogonal if $\langle x, y\rangle=0$.
- What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d.
- How large can a set of unit vectors in d-dimensional space be that have all pairwise dot products $|\langle x, y\rangle| \leq \epsilon$? Answer: $2^{\Omega\left(\epsilon^{2} d\right)}$.

An exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

ORTHOGONAL VECTORS PROOF

Claim: $2^{O\left(\epsilon^{2} d\right)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y\rangle| \leq \epsilon$ (be nearly orthogonal).
Proof: Let $x_{1}, \ldots, x_{t} \in \mathbb{R}^{d}$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

ORTHOGONAL VECTORS PROOF

Claim: $2^{O\left(\epsilon^{2} d\right)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y\rangle| \leq \epsilon$ (be nearly orthogonal).
Proof: Let $x_{1}, \ldots, x_{t} \in \mathbb{R}^{d}$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

- What is $\left\|x_{i}\right\|_{2}$?

ORTHOGONAL VECTORS PROOF

Claim: $2^{O\left(\epsilon^{2} d\right)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y\rangle| \leq \epsilon$ (be nearly orthogonal).
Proof: Let $x_{1}, \ldots, x_{t} \in \mathbb{R}^{d}$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

- What is $\left\|x_{i}\right\|_{2}$? Every x_{i} is always a unit vector.

ORTHOGONAL VECTORS PROOF

Claim: $2^{O\left(\epsilon^{2} d\right)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y\rangle| \leq \epsilon$ (be nearly orthogonal).
Proof: Let $x_{1}, \ldots, x_{t} \in \mathbb{R}^{d}$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

- What is $\left\|x_{i}\right\|_{2}$? Every x_{i} is always a unit vector.
- What is $\mathbb{E}\left[\left\langle x_{i}, x_{j}\right\rangle\right]$?

ORTHOGONAL VECTORS PROOF

Claim: $2^{O\left(\epsilon^{2} d\right)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y\rangle| \leq \epsilon$ (be nearly orthogonal).
Proof: Let $x_{1}, \ldots, x_{t} \in \mathbb{R}^{d}$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

- What is $\left\|x_{i}\right\|_{2}$? Every x_{i} is always a unit vector.
- What is $\mathbb{E}\left[\left\langle x_{i}, x_{j}\right\rangle\right]$? $\mathbb{E}\left[\left\langle x_{i}, x_{j}\right\rangle\right]=0$

ORTHOGONAL VECTORS PROOF

Claim: $2^{O\left(\epsilon^{2} d\right)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y\rangle| \leq \epsilon$ (be nearly orthogonal).
Proof: Let $x_{1}, \ldots, x_{t} \in \mathbb{R}^{d}$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

- What is $\left\|x_{i}\right\|_{2}$? Every x_{i} is always a unit vector.
- What is $\mathbb{E}\left[\left\langle x_{i}, x_{j}\right\rangle\right]$? $\mathbb{E}\left[\left\langle x_{i}, x_{j}\right\rangle\right]=0$
- By a Bernstein bound, $\operatorname{Pr}\left[\left|\left\langle x_{i}, x_{j}\right\rangle\right| \geq \epsilon\right] \leq 2 e^{-\epsilon^{2} d / 6}$.

ORTHOGONAL VECTORS PROOF

Claim: $2^{O\left(\epsilon^{2} d\right)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y\rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $x_{1}, \ldots, x_{t} \in \mathbb{R}^{d}$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

- What is $\left\|x_{i}\right\|_{2}$? Every x_{i} is always a unit vector.
- What is $\mathbb{E}\left[\left\langle x_{i}, x_{j}\right\rangle\right]$? $\mathbb{E}\left[\left\langle x_{i}, x_{j}\right\rangle\right]=0$
- By a Bernstein bound, $\operatorname{Pr}\left[\left|\left\langle x_{i}, x_{j}\right\rangle\right| \geq \epsilon\right] \leq 2 e^{-\epsilon^{2} d / 6}$.
- If $t=\frac{1}{2} e^{\epsilon^{2} d / 12}$, using a union bound over $\binom{t}{2} \leq \frac{1}{8} e^{\epsilon^{2} d / 6}$ possible pairs, with probability $\geq 3 / 4$ all will be nearly orthogonal.

ORTHOGONAL VECTORS PROOF

Claim: $2^{O\left(\epsilon^{2} d\right)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y\rangle| \leq \epsilon$ (be nearly orthogonal).

Proof: Let $x_{1}, \ldots, x_{t} \in \mathbb{R}^{d}$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

- What is $\left\|x_{i}\right\|_{2}$? Every x_{i} is always a unit vector.
- What is $\mathbb{E}\left[\left\langle x_{i}, x_{j}\right\rangle\right]$? $\mathbb{E}\left[\left\langle x_{i}, x_{j}\right\rangle\right]=0$
- By a Bernstein bound, $\operatorname{Pr}\left[\left|\left\langle x_{i}, x_{j}\right\rangle\right| \geq \epsilon\right] \leq 2 e^{-\epsilon^{2} d / 6}$.
- If $t=\frac{1}{2} e^{\epsilon^{2} d / 12}$, using a union bound over $\binom{t}{2} \leq \frac{1}{8} e^{\epsilon^{2} d / 6}$ possible pairs, with probability $\geq 3 / 4$ all will be nearly orthogonal.

We won't prove it but this is essentially optimal: In dimensions, there can be at most $2^{O\left(\epsilon^{2} d\right)}$ nearly orthogonal unit vectors.

CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$, for $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ with high probability, for all i, j :

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2} \leq\left\|\boldsymbol{M} x_{i}-\boldsymbol{M} x_{j}\right\|_{2}^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2} .
$$

CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if $M \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$, for $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ with high probability, for all i, j :

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2} \leq\left\|\boldsymbol{M} x_{i}-\boldsymbol{M} x_{j}\right\|_{2}^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2} .
$$

Implies: If x_{1}, \ldots, x_{n} are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon / 8$), then

$$
\frac{\boldsymbol{M} x_{1}}{\left\|\boldsymbol{M} x_{1}\right\|_{2}}, \ldots, \frac{\boldsymbol{M} x_{n}}{\left\|\boldsymbol{M} x_{n}\right\|_{2}}
$$

are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if $M \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$, for $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ with high probability, for all i, j :

$$
(1-\epsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2} \leq\left\|\boldsymbol{M} x_{i}-\boldsymbol{M} x_{j}\right\|_{2}^{2} \leq(1+\epsilon)\left\|x_{i}-x_{j}\right\|_{2}^{2}
$$

Implies: If x_{1}, \ldots, x_{n} are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon / 8$), then

$$
\frac{\boldsymbol{M} x_{1}}{\left\|\boldsymbol{M} x_{1}\right\|_{2}}, \ldots, \frac{\boldsymbol{M} x_{n}}{\left\|\boldsymbol{M} x_{n}\right\|_{2}}
$$

are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ). Algebra is a bit messy but a good exercise to partially work through. Proof uses the fact that

$$
\|x-y\|_{2}^{2}=\|x\|_{2}^{2}+\|y\|_{2}^{2}-2\langle x, y\rangle .
$$

Claim 1: n nearly orthogonal unit vectors can be projected to $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions and still be nearly orthogonal.
Claim 2: In m dimensions, there can be at most $2^{O\left(\epsilon^{2} m\right)}$ nearly orthogonal unit vectors.

Claim 1: n nearly orthogonal unit vectors can be projected to $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions and still be nearly orthogonal.
Claim 2: In m dimensions, there can be at most $2^{O\left(\epsilon^{2} m\right)}$ nearly orthogonal unit vectors.

- For both of these to hold it must be that $n \leq 2^{O\left(\epsilon^{2} m\right)}$.

Claim 1: n nearly orthogonal unit vectors can be projected to $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions and still be nearly orthogonal.
Claim 2: In m dimensions, there can be at most $2^{O\left(\epsilon^{2} m\right)}$ nearly orthogonal unit vectors.

- For both of these to hold it must be that $n \leq 2^{O\left(\epsilon^{2} m\right)}$.
- I.e., $n=2^{\log n} \leq 2^{O\left(\epsilon^{2} m\right)}$ and so $m=\Omega\left(\frac{\log n}{\epsilon^{2}}\right)$.

Claim 1: n nearly orthogonal unit vectors can be projected to $m=O\left(\frac{\log n}{\epsilon^{2}}\right)$ dimensions and still be nearly orthogonal.
Claim 2: In m dimensions, there can be at most $2^{O\left(\epsilon^{2} m\right)}$ nearly orthogonal unit vectors.

- For both of these to hold it must be that $n \leq 2^{O\left(\epsilon^{2} m\right)}$.
- I.e., $n=2^{\log n} \leq 2^{O\left(\epsilon^{2} m\right)}$ and so $m=\Omega\left(\frac{\log n}{\epsilon^{2}}\right)$.
- Tells us that the JL lemma is optimal up to constants.

