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THE JOHNSON-LINDENSTRAUSS LEMMA

Johnson-Lindenstrauss Lemma: For any set of points Xi, ..., %, € R?
and € > 0 there exists a linear map M : R — R™ such that m =
O (&") and letting % = MX;:

Forall i,j: (1= )% — %l < 1% — %2 < (1+ OI% — %l

Further, if M € R™*? has each entry chosen independently from
N(0,1/m), it satisfies the guarantee with high probability.




DISTRIBUTIONAL JL

The Johnson-Lindenstrauss Lemma is a direct consequence of:

Distributional JL Lemma: Let M € R™*? have each entry chosen

i.i.d. as N(0,1/m). If we set m = O (M), then for any y € R,
€

with probability > 1 — ¢

(1= allyll2 < IMy]l2 < (1 + )ll¥]l2

M € R™*?: random projection matrix. d: original dimension. m: compressed dimension,
e: embedding error, §: embedding failure prob.
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The Johnson-Lindenstrauss Lemma is a direct consequence of:

Distributional JL Lemma: Let M € R™*? have each entry chosen

i.i.d. as N(0,1/m). If we set m = O (M), then for any y € RY,
€

with probability > 1 — ¢

(1= allyll2 < IMy]l2 < (1 + )ll¥]l2

l.e., applying a random matrix M to any vector y preserves the norm with high
probability. Like a low-distortion embedding, but for the length of a compressed
vector rather than distances between vectors.

M € R™*?: random projection matrix. d: original dimension. m: compressed dimension,
e: embedding error, §: embedding failure prob.
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Distributional JL Lemma: Let M € R™*¢ have independent N(0,1/m)
entries. If weset m = O ('°g(1/6 ) then for any y € RY, with probability
at least 1 —§

(1 =9llyll2 < [IMyll2 < (L + €)llyll2.

Let y = My and M; be the j* row of M
® Forany j, yj = (Mj,y) = 27:1 g - yi where gi ~ N(0,1/m).
® By linearity of expectation:

Elj) = > Elg]-y = 0.

Since E[y;] = 0 we have IE[)"/JZ] = Var[y;]. Then, by linearity of variance:

E[7?] = Varly] = ZVarg, nl =325 m = ly/m.

Hence E[||y]13] = E[>; 771 = lly|l5. Remains to show ||j||5 is concentrated.



DISTRIBUTIONAL JL PROOF (PART 2 OF 3)

Letting y = My, we have y; = (M, y) and:

d

Ji=>_ &y where g yi ~ N(0,y7/m).
i=1

Stability of Gaussian Random Variables. For independent a ~
N(p1,0%) and b ~ N (2, 03) we have:

a+ b~ N+ p2, 07 + 03)

VANV VAN

\. .

Thus, y; ~ N(0, V‘d ly/j 'm) = N(O, ||ly|3/m).
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So Far: Each entry of our compressed vector y is Gaussian with :

¥ ~ N(0, |lyl[3/m) and E[|[7]3] = |lyll2

#7115 = 3", # a Chi-Squared random variable with m degrees of freedom (a
sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-Squared ran-
dom variable with m degrees of freedom,

Pr[|Z — EZ| > €EZ] < 2¢ /8,

€

If we set m= O (M), with probability 1 — O(e™ °6(/9)) > 1 —:

(L= lyl2 < 175 < (1 + )yl



DISTRIBUTIONAL JL. PROOF (PART 3 OF 3)

So Far: Each entry of our compressed vector y is Gaussian with :

~ 2 ~

¥i ~ N0, |lyll2/m) and E[||7]15] = Ily|I2
#7115 =37, 7 a Chi-Squared random variable with m degrees of freedom (a
sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-Squared ran-
dom variable with m degrees of freedom,

Pr[|Z — EZ| > eEZ] < 2¢ /8,

If we set m= O (M), with probability 1 — O(e™ °6/9)) > 1 —

(1= lylz < 1715 < (1 + )y 3.

Gives the distributional JL Lemma and thus the classic JL Lemma!
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is the average of the points in C;.



EXAMPLE APPLICATION: k-MEANS CLUSTERING

Goal: Separate n points in d dimensional space into k groups Ci, ..., Ck.

oM

k-means Objective: Cost(Ci,...,Ck) = Z Z |IX — 113 where

Jj=1 Xe¢;

1 -
W= ) X
’ ‘ | €C;

X1

is the average of the points in C;.

k A
Exercise: Can be rewritten as Cost(C1,...,Ck) = Z Z %
J

J=1 %1,%€C;
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EXAMPLE APPLICATION: k-MEANS CLUSTERING

. o2
k-means Objective: Cost(Ci,...,Cx) = Zj’.;l > q.mec HXl‘CijHZ

If we randomly project to m = O (e~ ?log n) dimensions, for all pairs 51, %,

(1= % — %3 < 1% — %2 < (1+ )% — 23

. — k % —50 12
Letting Cost(Cr,...,Chk) =2 1 2og ec; %

(1 —€)Cost(Cy,...,Ck) < Cost(Cy,...,Ck) < (1+€)Cost(Cy,...,Ck).

Upshot: Can cluster in m dimensional space (much more efficiently) and
minimize Cost(Ci,...,Ck).



JL LEMMA IS ALMOST OPTIMAL
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ORTHOGONAL VECTORS

® Recall that we say two vectors x, y are orthogonal if (x,y) = 0.

® What is the largest set of mutually orthogonal unit vectors in
d-dimensional space? Answer: d.

® How large can a set of unit vectors in d-dimensional space be that
have all pairwise dot products |(x, y)| < ¢? Answer: 2%<d).

An exponentially large set of random vectors will be nearly pairwise
orthogonal with high probability!



ORTHOGONAL VECTORS PROOF

Claim: 2°(¢9) random d-dimensional unit vectors will have all pairwise
dot products |(x,y)| < € (be nearly orthogonal).

Proof: Let x1,...,x; € R? have independent random entries :l:ﬁ.
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Claim: 2°(¢9) random d-dimensional unit vectors will have all pairwise
dot products |(x,y)| < € (be nearly orthogonal).

Proof: Let x1,...,x; € R? have independent random entries :l:ﬁ.

® \What is |[x;|[»? Every x; is always a unit vector.

* What is E[(x;, x;)]? E[{x;,x;)] = 0
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Claim: 2°(¢9) random d-dimensional unit vectors will have all pairwise
dot products |(x,y)| < € (be nearly orthogonal).

Proof: Let x1,...,x; € R? have independent random entries :l:ﬁ.

® \What is |[x;|[»? Every x; is always a unit vector.
o What is E[(x;. x;)]7 E[(x;, x;)] =0
® By a Bernstein bound, Pr[|(x;, xj}| > €] < 2e=<9/6,
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o What is E[(x;. x;)]7 E[(x;, x;)] =0

® By a Bernstein bound, Pr[|(x;, xj}| > €] < 2e=<9/6,
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ORTHOGONAL VECTORS PROOF

Claim: 2°(¢9) random d-dimensional unit vectors will have all pairwise
dot products |(x,y)| < € (be nearly orthogonal).

Proof: Let x1,...,x; € R? have independent random entries :l:ﬁ.

What is ||x;][»7 Every x; is always a unit vector.
What is E[(x;, x;)]? E[(x;,x;)] =0
® By a Bernstein bound, Pr[|(x;, x;)| > €] < 2e=<9/6,

2 . . 2 . .
o |ft= %ee d/12, using a union bound over (;) < %ee d/6 possible pairs,

with probability > 3/4 all will be nearly orthogonal.

We won't prove it but this is essentially optimal: In d dimensions, there
can be at most 20(€'9) nearly orthogonal unit vectors.

10



CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if M € R™*9 js a

random matrix (linear map) with m = O (|°§”>, for x1,...,x, € RY with

high probability, for all /,:

(1= e)llxi = x5 < [[Mx; — M5 < (1+€)lx: — x13.
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random matrix (linear map) with m = O (|°§”>, for x1,...,x, € RY with

high probability, for all /,:

(1= e)llxi = x5 < [[Mx; — M5 < (1+€)lx: — x13.

Implies: If xq, ..., x, are nearly orthogonal unit vectors in d-dimensions
(with pairwise dot products bounded by €/8), then
Mx; Mx,
IMxa2” " [[Mxa]l2

are nearly orthogonal unit vectors in m-dimensions (with pairwise dot
products bounded by ¢).
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CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if M € R™*9 js a

random matrix (linear map) with m = O (|°§”>, for x1,...,x, € RY with

high probability, for all /,:
(1= e)llxi = x5 < [[Mxi — M5 < (1 + €)llx; — xl[3.
Implies: If xq, ..., x, are nearly orthogonal unit vectors in d-dimensions

(with pairwise dot products bounded by €/8), then

Mx; Mx,
[Mxll2” " [ Mxal|2

are nearly orthogonal unit vectors in m-dimensions (with pairwise dot
products bounded by €). Algebra is a bit messy but a good exercise to
partially work through. Proof uses the fact that

Ix = I3 = lIx13 + llyll3 = 2(x, ) -

11



CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to

m=20 ('i%”) dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there can be at most 20(<'™ nearly
orthogonal unit vectors.
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CONNECTION TO DIMENSIONALITY REDUCTION

Claim 1: n nearly orthogonal unit vectors can be projected to

m=20 (lof") dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there can be at most 20(<'™ nearly
orthogonal unit vectors.
® For both of these to hold it must be that n < 20(m)
e le, n=29°n < 20(€Mm and 5o m = Q ('°g").
6

® Tells us that the JL lemma is optimal up to constants.

12
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