COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 11 **Johnson-Lindenstrauss Lemma:** For any set of points $\vec{x}_1, \ldots, \vec{x}_n \in \mathbb{R}^d$ and $\epsilon > 0$ there exists a linear map $\boldsymbol{M} : \mathbb{R}^d \to \mathbb{R}^m$ such that $m = O\left(\frac{\log n}{\epsilon^2}\right)$ and letting $\tilde{x}_i = \boldsymbol{M} \vec{x}_i$:

For all i, j: $(1 - \epsilon) \|\vec{x_i} - \vec{x_j}\|_2 \le \|\tilde{x_i} - \tilde{x_j}\|_2 \le (1 + \epsilon) \|\vec{x_i} - \vec{x_j}\|_2$.

Further, if $M \in \mathbb{R}^{m \times d}$ has each entry chosen independently from $\mathcal{N}(0, 1/m)$, it satisfies the guarantee with high probability.

The Johnson-Lindenstrauss Lemma is a direct consequence of:

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

 $(1-\epsilon)\|ec{y}\|_2 \le \|m{M}ec{y}\|_2 \le (1+\epsilon)\|ec{y}\|_2$

 $M \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

The Johnson-Lindenstrauss Lemma is a direct consequence of:

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have each entry chosen i.i.d. as $\mathcal{N}(0, 1/m)$. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $\vec{y} \in \mathbb{R}^d$, with probability $\geq 1 - \delta$

 $(1-\epsilon)\|ec{y}\|_2 \le \|m{M}ec{y}\|_2 \le (1+\epsilon)\|ec{y}\|_2$

I.e., applying a random matrix M to any vector \vec{y} preserves the norm with high probability. Like a low-distortion embedding, but for the length of a compressed vector rather than distances between vectors.

 $M \in \mathbb{R}^{m \times d}$: random projection matrix. d: original dimension. m: compressed dimension, ϵ : embedding error, δ : embedding failure prob.

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

 $(1-\epsilon)\|y\|_2 \le \|My\|_2 \le (1+\epsilon)\|y\|_2.$

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

 $(1-\epsilon)\|y\|_2 \le \|My\|_2 \le (1+\epsilon)\|y\|_2.$

• Let
$$\tilde{y} = My$$
 and M_j be the j^{th} row of M

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

 $(1-\epsilon)\|y\|_2 \le \|My\|_2 \le (1+\epsilon)\|y\|_2.$

• Let
$$\tilde{y} = My$$
 and M_j be the j^{th} row of M

• For any j, $\tilde{y}_j = \langle \boldsymbol{M}_j, y \rangle$

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1-\epsilon)\|y\|_2 \le \|My\|_2 \le (1+\epsilon)\|y\|_2.$$

• Let
$$\tilde{y} = My$$
 and M_j be the j^{th} row of M

• For any
$$j$$
, $\tilde{y}_j = \langle \boldsymbol{M}_j, y \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot y_i$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1-\epsilon)\|y\|_2 \le \|My\|_2 \le (1+\epsilon)\|y\|_2.$$

• Let
$$\tilde{y} = My$$
 and M_j be the j^{th} row of M_j

• For any
$$j$$
, $\tilde{y}_j = \langle \boldsymbol{M}_j, y \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot y_i$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.

By linearity of expectation:

$$\mathbb{E}[\widetilde{y}_j] = \sum_{i=1}^d \mathbb{E}[\mathbf{g}_i] \cdot y_i = 0$$
 .

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1-\epsilon)\|y\|_2 \le \|My\|_2 \le (1+\epsilon)\|y\|_2.$$

• Let
$$\tilde{y} = My$$
 and M_j be the j^{th} row of N

• For any
$$j$$
, $\tilde{y}_j = \langle \boldsymbol{M}_j, y \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot y_i$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.

By linearity of expectation:

$$\mathbb{E}[\widetilde{y}_j] = \sum_{i=1}^d \mathbb{E}[\mathbf{g}_i] \cdot y_i = 0 \; .$$

• Since $\mathbb{E}[\tilde{y}_j] = 0$ we have $\mathbb{E}[\tilde{y}_j^2] = Var[\tilde{y}_j]$. Then, by linearity of variance:

$$\mathbb{E}[\tilde{y}_j^2] = \mathsf{Var}[\tilde{y}_j] = \sum_{i=1}^d \mathsf{Var}[\mathbf{g}_i \cdot y_i] = \sum_i y_i^2 / m = \|y\|_2^2 / m$$

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1-\epsilon)\|y\|_2 \le \|My\|_2 \le (1+\epsilon)\|y\|_2.$$

• Let
$$\tilde{y} = My$$
 and M_j be the j^{th} row of M_j

• For any
$$j$$
, $\tilde{y}_j = \langle \boldsymbol{M}_j, y \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot y_i$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.

• By linearity of expectation:

$$\mathbb{E}[\widetilde{y}_j] = \sum_{i=1}^d \mathbb{E}[\mathbf{g}_i] \cdot y_i = 0 \; .$$

• Since $\mathbb{E}[\tilde{y}_j] = 0$ we have $\mathbb{E}[\tilde{y}_j^2] = Var[\tilde{y}_j]$. Then, by linearity of variance:

$$\mathbb{E}[\tilde{y}_{j}^{2}] = \mathsf{Var}[\tilde{y}_{j}] = \sum_{i=1}^{d} \mathsf{Var}[\mathbf{g}_{i} \cdot y_{i}] = \sum_{i} y_{i}^{2}/m = \|y\|_{2}^{2}/m$$

• Hence $\mathbb{E}[\|\tilde{y}\|_{2}^{2}] = \mathbb{E}[\sum_{j} \tilde{y}_{j}^{2}] = \|y\|_{2}^{2}$.

Distributional JL Lemma: Let $M \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0, 1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1 - \delta$

$$(1-\epsilon)\|y\|_2 \le \|My\|_2 \le (1+\epsilon)\|y\|_2.$$

• Let
$$\tilde{y} = My$$
 and M_j be the j^{th} row of M_j

• For any
$$j$$
, $\tilde{y}_j = \langle \boldsymbol{M}_j, y \rangle = \sum_{i=1}^d \mathbf{g}_i \cdot y_i$ where $\mathbf{g}_i \sim \mathcal{N}(0, 1/m)$.

By linearity of expectation:

$$\mathbb{E}[\widetilde{y}_j] = \sum_{i=1}^d \mathbb{E}[\mathbf{g}_i] \cdot y_i = 0 \; .$$

• Since $\mathbb{E}[\tilde{y}_j] = 0$ we have $\mathbb{E}[\tilde{y}_j^2] = Var[\tilde{y}_j]$. Then, by linearity of variance:

$$\mathbb{E}[\tilde{y}_{j}^{2}] = \mathsf{Var}[\tilde{y}_{j}] = \sum_{i=1}^{d} \mathsf{Var}[\mathbf{g}_{i} \cdot y_{i}] = \sum_{i} y_{i}^{2}/m = \|y\|_{2}^{2}/m$$

• Hence $\mathbb{E}[\|\tilde{y}\|_2^2] = \mathbb{E}[\sum_j \tilde{y}_j^2] = \|y\|_2^2$. Remains to show $\|\tilde{y}\|_2^2$ is concentrated.

Letting
$$\tilde{y} = \boldsymbol{M} y$$
, we have $\tilde{y}_j = \langle \boldsymbol{M}_j, y \rangle$ and:

$$ilde{y}_j = \sum_{i=1}^d \mathbf{g}_i \cdot y_i ext{ where } \mathbf{g}_i \cdot y_i \sim \mathcal{N}(0, y_i^2/m).$$

Stability of Gaussian Random Variables. For independent $a \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $b \sim \mathcal{N}(\mu_2, \sigma_2^2)$ we have:

$$m{a}+m{b}\sim\mathcal{N}(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$$

=

Thus, $\tilde{y}_j \sim \mathcal{N}(0, \sum_{i=1}^d y_i^2/m) = \mathcal{N}(0, \|y\|_2^2/m).$

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

 $ilde{y}_j \sim \mathcal{N}(0, \|y\|_2^2/m)$ and $\mathbb{E}[\| ilde{y}\|_2^2] = \|y\|_2^2$

$$ilde{y}_j \sim \mathcal{N}(0, \|y\|_2^2/m)$$
 and $\mathbb{E}[\| ilde{y}\|_2^2] = \|y\|_2^2$

 $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}_i^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

$$ilde{y}_j \sim \mathcal{N}(0, \|y\|_2^2/m)$$
 and $\mathbb{E}[\| ilde{y}\|_2^2] = \|y\|_2^2$

 $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}_i^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

$$ilde{y}_j \sim \mathcal{N}(0, \|y\|_2^2/m)$$
 and $\mathbb{E}[\| ilde{y}\|_2^2] = \|y\|_2^2$

 $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}_i^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-Squared random variable with m degrees of freedom,

 $\Pr\left[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}\right] \le 2e^{-m\epsilon^2/8}.$

$$ilde{y}_j \sim \mathcal{N}(0, \|y\|_2^2/m)$$
 and $\mathbb{E}[\| ilde{y}\|_2^2] = \|y\|_2^2$

 $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}_i^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-Squared random variable with m degrees of freedom,

$$\Pr\left[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}\right] \le 2e^{-m\epsilon^2/8}.$$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
 $(1 - \epsilon) \|y\|_2^2 \le \|\tilde{y}\|_2^2 \le (1 + \epsilon) \|y\|_2^2$.

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

 $ilde{y}_{j} \sim \mathcal{N}(0, \|y\|_2^2/m)$ and $\mathbb{E}[\| ilde{y}\|_2^2] = \|y\|_2^2$

 $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}_i^2$ a Chi-Squared random variable with *m* degrees of freedom (a sum of *m* squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting Z be a Chi-Squared random variable with m degrees of freedom,

$$\Pr\left[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}\right] \le 2e^{-m\epsilon^2/8}.$$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
 $(1 - \epsilon) \|y\|_2^2 \le \|\tilde{y}\|_2^2 \le (1 + \epsilon) \|y\|_2^2$.

Gives the distributional JL Lemma and thus the classic JL Lemma!

Goal: Separate *n* points in *d* dimensional space into *k* groups C_1, \ldots, C_k .

Goal: Separate *n* points in *d* dimensional space into *k* groups C_1, \ldots, C_k .

is the average of the points in C_j .

Goal: Separate *n* points in *d* dimensional space into *k* groups C_1, \ldots, C_k .

is the average of the points in C_j .

Exercise: Can be rewritten as $Cost(\mathcal{C}_1, \dots, \mathcal{C}_k) = \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_j} \frac{\|\vec{x}_1 - \vec{x}_2\|_2^2}{|\mathcal{C}_j|}$

k-means Objective: $Cost(C_1, ..., C_k) = \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in C_j} \frac{\|\vec{x}_1 - \vec{x}_2\|_2^2}{|C_i|}$

k-means Objective: $Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_j} \frac{\|\vec{x}_1 - \vec{x}_2\|_2^2}{|\mathcal{C}_j|}$ If we randomly project to $m = O(\epsilon^{-2} \log n)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1-\epsilon)\|ec{x}_1-ec{x}_2\|_2^2 \le \|ec{x}_1-ec{x}_2\|_2^2 \le (1+\epsilon)\|ec{x}_1-ec{x}_2\|_2^2$$

k-means Objective: $Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_j} \frac{\|\vec{x}_1 - \vec{x}_2\|_2^2}{|\mathcal{C}_j|}$ If we randomly project to $m = O(\epsilon^{-2} \log n)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1-\epsilon)\|ec{x_1}-ec{x_2}\|_2^2 \le \|ec{x_1}-ec{x_2}\|_2^2 \le (1+\epsilon)\|ec{x_1}-ec{x_2}\|_2^2$$

Letting $\overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \sum_{j=1}^k \sum_{\vec{x}_1,\vec{x}_2 \in \mathcal{C}_j} \frac{\|\tilde{x}_1 - \tilde{x}_2\|_2^2}{|\mathcal{C}_j|}$

 $(1-\epsilon)Cost(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq \overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq (1+\epsilon)Cost(\mathcal{C}_1,\ldots,\mathcal{C}_k).$

k-means Objective: $Cost(\mathcal{C}_1, \ldots, \mathcal{C}_k) = \sum_{j=1}^k \sum_{\vec{x}_1, \vec{x}_2 \in \mathcal{C}_j} \frac{\|\vec{x}_1 - \vec{x}_2\|_2^2}{|\mathcal{C}_j|}$ If we randomly project to $m = O(\epsilon^{-2} \log n)$ dimensions, for all pairs \vec{x}_1, \vec{x}_2 ,

$$(1-\epsilon)\|ec{x_1}-ec{x_2}\|_2^2 \leq \|ec{x}_1-ec{x}_2\|_2^2 \leq (1+\epsilon)\|ec{x}_1-ec{x}_2\|_2^2$$

Letting $\overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \sum_{j=1}^k \sum_{\vec{x}_1,\vec{x}_2 \in \mathcal{C}_j} \frac{\|\tilde{x}_1 - \tilde{x}_2\|_2^2}{|\mathcal{C}_j|}$

 $(1-\epsilon)Cost(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq \overline{Cost}(\mathcal{C}_1,\ldots,\mathcal{C}_k) \leq (1+\epsilon)Cost(\mathcal{C}_1,\ldots,\mathcal{C}_k).$

Upshot: Can cluster in *m* dimensional space (much more efficiently) and minimize $\overline{Cost}(C_1, \ldots, C_k)$.

JL LEMMA IS ALMOST OPTIMAL

• Recall that we say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$.

- Recall that we say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$.
- What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space?

- Recall that we say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$.
- What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*.

- Recall that we say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$.
- What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*.
- How large can a set of unit vectors in *d*-dimensional space be that have all pairwise dot products |⟨x, y⟩| ≤ ε?

- Recall that we say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$.
- What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*.
- How large can a set of unit vectors in *d*-dimensional space be that have all pairwise dot products |⟨x, y⟩| ≤ ε? Answer: 2^{Ω(ε²d)}.

An exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Proof: Let $x_1, \ldots, x_t \in \mathbb{R}^d$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

• What is $||x_i||_2$?

Proof: Let $x_1, \ldots, x_t \in \mathbb{R}^d$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

• What is $||x_i||_2$? Every x_i is always a unit vector.

- What is $||x_i||_2$? Every x_i is always a unit vector.
- What is $\mathbb{E}[\langle x_i, x_j \rangle]$?

- What is $||x_i||_2$? Every x_i is always a unit vector.
- What is $\mathbb{E}[\langle x_i, x_j \rangle]$? $\mathbb{E}[\langle x_i, x_j \rangle] = 0$

- What is $||x_i||_2$? Every x_i is always a unit vector.
- What is $\mathbb{E}[\langle x_i, x_j \rangle]$? $\mathbb{E}[\langle x_i, x_j \rangle] = 0$
- By a Bernstein bound, $\Pr[|\langle x_i, x_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$.

- What is $||x_i||_2$? Every x_i is always a unit vector.
- What is $\mathbb{E}[\langle x_i, x_j \rangle]$? $\mathbb{E}[\langle x_i, x_j \rangle] = 0$
- By a Bernstein bound, $\Pr[|\langle x_i, x_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$.
- If $t = \frac{1}{2}e^{\epsilon^2 d/12}$, using a union bound over $\binom{t}{2} \leq \frac{1}{8}e^{\epsilon^2 d/6}$ possible pairs, with probability $\geq 3/4$ all will be nearly orthogonal.

Proof: Let $x_1, \ldots, x_t \in \mathbb{R}^d$ have independent random entries $\pm \frac{1}{\sqrt{d}}$.

- What is $||x_i||_2$? Every x_i is always a unit vector.
- What is $\mathbb{E}[\langle x_i, x_j \rangle]$? $\mathbb{E}[\langle x_i, x_j \rangle] = 0$
- By a Bernstein bound, $\Pr[|\langle x_i, x_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$.
- If $t = \frac{1}{2}e^{\epsilon^2 d/12}$, using a union bound over $\binom{t}{2} \leq \frac{1}{8}e^{\epsilon^2 d/6}$ possible pairs, with probability $\geq 3/4$ all will be nearly orthogonal.

We won't prove it but this is essentially optimal: In d dimensions, there can be at most $2^{O(\epsilon^2 d)}$ nearly orthogonal unit vectors.

CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{M} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $x_1, \ldots, x_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1-\epsilon)||x_i-x_j||_2^2 \le ||\mathbf{M}x_i-\mathbf{M}x_j||_2^2 \le (1+\epsilon)||x_i-x_j||_2^2.$$

CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{M} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $x_1, \ldots, x_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1-\epsilon)||x_i-x_j||_2^2 \le ||\mathbf{M}x_i-\mathbf{M}x_j||_2^2 \le (1+\epsilon)||x_i-x_j||_2^2.$$

Implies: If x_1, \ldots, x_n are nearly orthogonal unit vectors in *d*-dimensions (with pairwise dot products bounded by $\epsilon/8$), then

$M x_1$						$M x_n$
$\ Mx_1\ _2$,	•	•	•	,	$\ \mathbf{M}\mathbf{x}_n\ _2$

are nearly orthogonal unit vectors in *m*-dimensions (with pairwise dot products bounded by ϵ).

CONNECTION TO DIMENSIONALITY REDUCTION

Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{M} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $x_1, \ldots, x_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1-\epsilon)||x_i-x_j||_2^2 \le ||\mathbf{M}x_i-\mathbf{M}x_j||_2^2 \le (1+\epsilon)||x_i-x_j||_2^2.$$

Implies: If x_1, \ldots, x_n are nearly orthogonal unit vectors in *d*-dimensions (with pairwise dot products bounded by $\epsilon/8$), then

$M x_1$						$M x_n$
$\ Mx_1\ _2$,	•	•	•	,	$\ \mathbf{M}\mathbf{x}_n\ _2$

are nearly orthogonal unit vectors in *m*-dimensions (with pairwise dot products bounded by ϵ). Algebra is a bit messy but a good exercise to partially work through. Proof uses the fact that

$$||x - y||_2^2 = ||x||_2^2 + ||y||_2^2 - 2\langle x, y \rangle$$
.

Claim 2: In *m* dimensions, there can be at most $2^{O(\epsilon^2 m)}$ nearly orthogonal unit vectors.

Claim 2: In *m* dimensions, there can be at most $2^{O(\epsilon^2 m)}$ nearly orthogonal unit vectors.

• For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.

Claim 2: In *m* dimensions, there can be at most $2^{O(\epsilon^2 m)}$ nearly orthogonal unit vectors.

- For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- I.e., $n = 2^{\log n} \le 2^{O(\epsilon^2 m)}$ and so $m = \Omega\left(\frac{\log n}{\epsilon^2}\right)$.

Claim 2: In *m* dimensions, there can be at most $2^{O(\epsilon^2 m)}$ nearly orthogonal unit vectors.

- For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- I.e., $n = 2^{\log n} \le 2^{O(\epsilon^2 m)}$ and so $m = \Omega\left(\frac{\log n}{\epsilon^2}\right)$.
- Tells us that the JL lemma is optimal up to constants.