## COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 12

## CENTRAL LIMIT THEOREM

## INTERPRETATION AS A CENTRAL LIMIT THEOREM

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ falling in $[-1,1]$. Let $\mu=\mathbb{E}\left[\sum \mathbf{X}_{i}\right], \sigma^{2}=\operatorname{Var}\left[\sum \mathbf{X}_{i}\right]$, and $s \leq \sigma$. Then:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right)
$$

## INTERPRETATION AS A CENTRAL LIMIT THEOREM

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ falling in $[-1,1]$. Let $\mu=\mathbb{E}\left[\sum \mathbf{X}_{i}\right], \sigma^{2}=\operatorname{Var}\left[\sum \mathbf{X}_{i}\right]$, and $s \leq \sigma$. Then:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right)
$$

Can plot this bound for different $s$ :

## INTERPRETATION AS A CENTRAL LIMIT THEOREM

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ falling in $[-1,1]$. Let $\mu=\mathbb{E}\left[\sum \mathbf{X}_{i}\right], \sigma^{2}=\operatorname{Var}\left[\sum \mathbf{X}_{i}\right]$, and $s \leq \sigma$. Then:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right)
$$

Can plot this bound for different $s$ :


## INTERPRETATION AS A CENTRAL LIMIT THEOREM

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ falling in $[-1,1]$. Let $\mu=\mathbb{E}\left[\sum \mathbf{X}_{i}\right], \sigma^{2}=\operatorname{Var}\left[\sum \mathbf{X}_{i}\right]$, and $s \leq \sigma$. Then:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right)
$$

Can plot this bound for different $s$ :


Looks a lot like a Gaussian (normal) distribution.

## INTERPRETATION AS A CENTRAL LIMIT THEOREM

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ falling in $[-1,1]$. Let $\mu=\mathbb{E}\left[\sum \mathbf{X}_{i}\right], \sigma^{2}=\operatorname{Var}\left[\sum \mathbf{X}_{i}\right]$, and $s \leq \sigma$. Then:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right)
$$

Can plot this bound for different $s$ :


Looks a lot like a Gaussian (normal) distribution.

$$
\mathcal{N}\left(0, \sigma^{2}\right) \text { has density } p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

## INTERPRETATION AS A CENTRAL LIMIT THEOREM

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ falling in $[-1,1]$. Let $\mu=\mathbb{E}\left[\sum \mathbf{X}_{i}\right], \sigma^{2}=\operatorname{Var}\left[\sum \mathbf{X}_{i}\right]$, and $s \leq \sigma$. Then:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right) .
$$

Can plot this bound for different $s$ :


Looks a lot like a Gaussian (normal) distribution.

$$
\mathcal{N}\left(0, \sigma^{2}\right) \text { has density } p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

## GAUSSIAN TAILS

$$
\mathcal{N}\left(0, \sigma^{2}\right) \text { has density } p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

## GAUSSIAN TAILS

$$
\mathcal{N}\left(0, \sigma^{2}\right) \text { has density } p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

Exercise: Using this can show that for $\mathbf{X} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ : for any $s \geq 0$,

$$
\operatorname{Pr}(|\mathbf{X}| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^{2}}{2}}
$$

## GAUSSIAN TAILS

$$
\mathcal{N}\left(0, \sigma^{2}\right) \text { has density } p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

Exercise: Using this can show that for $\mathbf{X} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ : for any $s \geq 0$,

$$
\operatorname{Pr}(|\mathbf{X}| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^{2}}{2}}
$$

Essentially the same bound that Bernstein's inequality gives!

## GAUSSIAN TAILS

$$
\mathcal{N}\left(0, \sigma^{2}\right) \text { has density } p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

Exercise: Using this can show that for $\mathbf{X} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ : for any $s \geq 0$,

$$
\operatorname{Pr}(|\mathbf{X}| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^{2}}{2}}
$$

Essentially the same bound that Bernstein's inequality gives!
Central Limit Theorem Interpretation: Bernstein's inequality gives a quantitative version of the CLT. The distribution of the sum of bounded independent random variables can be upper bounded with a Gaussian (normal) distribution.


## CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of $n$ bounded independent random variables converges to a Gaussian (normal) distribution as $n$ goes to infinity.


## CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of $n$ bounded independent random variables converges to a Gaussian (normal) distribution as $n$ goes to infinity.


- Why is the Gaussian distribution is so important in statistics, science, ML, etc.?


## CENTRAL LIMIT THEOREM

Stronger Central Limit Theorem: The distribution of the sum of $n$ bounded independent random variables converges to a Gaussian (normal) distribution as $n$ goes to infinity.


- Why is the Gaussian distribution is so important in statistics, science, ML, etc.?
- Many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.


## SUMMARY OF FIRST SECTION

- Probability Tools: Linearity of Expectation, Linear of Variance of Independent Variables, Concentration Bounds (Markov, Chebyshev, Bernstein, Chernoff), Union Bound, Median Trick.
- Hash Tables and Bloom Filters: Analyzing collisions. Building 2-level hash tables. Bloom filters and false positive rates.
- Locality Sensitive Hashing: MinHash for Jaccard Similarity, SimHash for Cosine Similarity. Nearest Neighbor. All-Pairs Similarity Search.
- Small Space Data Stream Algorithms: a) distinct items, b) frequent elements, c) frequent moments (homework).
- Johnson Lindenstrauss Lemma: Reducing dimension of vectors via random projection such that pairwise distances are approximately preserved. Application to clustering.


## RANDOMIZED ALGORITHMS UNIT TAKEAWAYS

- Randomization is an important tool in working with large datasets.
- Lets us solve 'easy' problems that get really difficult on massive datasets. Fast/space efficient look up (hash tables and bloom filters), distinct items counting, frequent items counting, near neighbor search (LSH), etc.
- The analysis of randomized algorithms sometimes leads to complex output distributions, which we can't compute exactly. We use concentration inequalities to bound these distributions and behaviors like accuracy, space usage, and runtime.
- Concentration inequalities and probability tools used in randomized algorithms are also fundamental in statistics, machine learning theory, probabilistic modeling of complex systems, etc.
- Linearity of Expectation: For any random variables $X_{1}, \ldots, X_{n}$ and constants $c_{1}, \ldots, c_{n}$,

$$
\mathbb{E}\left[c_{1} X_{1}+\ldots+c_{n} X_{n}\right]=c_{1} \mathbb{E}\left[X_{1}\right]+\ldots+c_{n} \mathbb{E}\left[X_{n}\right]
$$

- Linearity of Expectation: For any random variables $X_{1}, \ldots, X_{n}$ and constants $c_{1}, \ldots, c_{n}$,

$$
\mathbb{E}\left[c_{1} X_{1}+\ldots+c_{n} X_{n}\right]=c_{1} \mathbb{E}\left[X_{1}\right]+\ldots+c_{n} \mathbb{E}\left[X_{n}\right]
$$

- Independent Random Variables: $X_{1}, X_{2}, \ldots X_{n}$ are independent random variables if for any set $S \subset[n]$ and values $a_{1}, a_{2}, \ldots, a_{n}$

$$
\operatorname{Pr}\left(X_{i}=a_{i} \text { for all } i \in S\right)=\prod_{i \in S} \operatorname{Pr}\left(X_{i}=a_{i}\right)
$$

They are $k$-wise independent if this holds for $S$ with $|S| \leq k$.

- Linearity of Expectation: For any random variables $X_{1}, \ldots, X_{n}$ and constants $c_{1}, \ldots, c_{n}$,

$$
\mathbb{E}\left[c_{1} X_{1}+\ldots+c_{n} X_{n}\right]=c_{1} \mathbb{E}\left[X_{1}\right]+\ldots+c_{n} \mathbb{E}\left[X_{n}\right]
$$

- Independent Random Variables: $X_{1}, X_{2}, \ldots X_{n}$ are independent random variables if for any set $S \subset[n]$ and values $a_{1}, a_{2}, \ldots, a_{n}$

$$
\operatorname{Pr}\left(X_{i}=a_{i} \text { for all } i \in S\right)=\prod_{i \in S} \operatorname{Pr}\left(X_{i}=a_{i}\right)
$$

They are $k$-wise independent if this holds for $S$ with $|S| \leq k$.

- Linearity of Variance: If $X_{1}, \ldots, X_{n}$ are independent (in fact 2-wise independent suffices) then for any constants $c_{1}, \ldots, c_{n}$

$$
\operatorname{Var}\left[c_{1} X_{1}+\ldots+c_{n} X_{n}\right]=c_{1}^{2} \operatorname{Var}\left[X_{1}\right]+\ldots+c_{n}^{2} \operatorname{Var}\left[X_{n}\right]
$$

## USEFUL PROBABILITY FACTS (2/2)

- Union Bound: For any events $A_{1}, A_{2}, A_{3}, \ldots$

$$
\operatorname{Pr}[\text { at least one of the events happens }]=\operatorname{Pr}\left[\bigcup_{i} A_{i}\right] \leq \sum_{i} \operatorname{Pr}\left[A_{i}\right]
$$

## USEFUL PROBABILITY FACTS $(2 / 2)$

- Union Bound: For any events $A_{1}, A_{2}, A_{3}, \ldots$

$$
\operatorname{Pr}[\text { at least one of the events happens }]=\operatorname{Pr}\left[\bigcup_{i} A_{i}\right] \leq \sum_{i} \operatorname{Pr}\left[A_{i}\right]
$$

- An indicator random variable $X$ just takes the values 0 or 1 :

$$
\mathbb{E}[X]=p \quad \operatorname{Var}[X]=p(1-p) \quad \text { where } p=\operatorname{Pr}[X=1]
$$

## USEFUL PROBABILITY FACTS $(2 / 2)$

- Union Bound: For any events $A_{1}, A_{2}, A_{3}, \ldots$

$$
\operatorname{Pr}[\text { at least one of the events happens }]=\operatorname{Pr}\left[\bigcup_{i} A_{i}\right] \leq \sum_{i} \operatorname{Pr}\left[A_{i}\right]
$$

- An indicator random variable $X$ just takes the values 0 or 1 :

$$
\mathbb{E}[X]=p \quad \operatorname{Var}[X]=p(1-p) \quad \text { where } p=\operatorname{Pr}[X=1]
$$

- If $Y=X_{1}+\ldots+X_{n}$ where each $X_{i}$ are independent and $p=\operatorname{Pr}\left[X_{1}=1\right]=\ldots=\operatorname{Pr}\left[X_{n}=1\right]$ then $Y$ is a binomial random variable. Using linearity of expectation and variance,

$$
\mathbb{E}[Y]=n p \quad \operatorname{Var}[Y]=n p(1-p)
$$

## BALLS AND BINS $(1 / 2)$

- Most of the analysis of hash functions that we've considered can be abstracted as "balls and bins" problems: we throw $n$ balls and each ball is equally likely to land in one of $m$ bins.
- Most of the analysis of hash functions that we've considered can be abstracted as "balls and bins" problems: we throw $n$ balls and each ball is equally likely to land in one of $m$ bins.
- Let $R_{i}$ be number of balls bin $i$. Then $R_{i} \sim \operatorname{Bin}\left(n, \frac{1}{m}\right)$ and $\mathbb{E}\left[R_{i}\right]=\frac{n}{m}$, $\operatorname{Var}\left[R_{i}\right]=\frac{n}{m} \cdot\left(1-\frac{1}{m}\right) . R_{i}$ and $R_{j}$ not independent!
- Most of the analysis of hash functions that we've considered can be abstracted as "balls and bins" problems: we throw $n$ balls and each ball is equally likely to land in one of $m$ bins.
- Let $R_{i}$ be number of balls bin $i$. Then $R_{i} \sim \operatorname{Bin}\left(n, \frac{1}{m}\right)$ and $\mathbb{E}\left[R_{i}\right]=\frac{n}{m}$, $\operatorname{Var}\left[R_{i}\right]=\frac{n}{m} \cdot\left(1-\frac{1}{m}\right) . R_{i}$ and $R_{j}$ not independent!
- Union Bound implies $\operatorname{Pr}\left[\max \left(R_{1}, \ldots, R_{m}\right)>t\right] \leq \sum_{i} \operatorname{Pr}\left[R_{i}>t\right]$


## BALLS AND BINS (1/2)

- Most of the analysis of hash functions that we've considered can be abstracted as "balls and bins" problems: we throw $n$ balls and each ball is equally likely to land in one of $m$ bins.
- Let $R_{i}$ be number of balls bin $i$. Then $R_{i} \sim \operatorname{Bin}\left(n, \frac{1}{m}\right)$ and $\mathbb{E}\left[R_{i}\right]=\frac{n}{m}$, $\operatorname{Var}\left[R_{i}\right]=\frac{n}{m} \cdot\left(1-\frac{1}{m}\right) . R_{i}$ and $R_{j}$ not independent!
- Union Bound implies $\operatorname{Pr}\left[\max \left(R_{1}, \ldots, R_{m}\right)>t\right] \leq \sum_{i} \operatorname{Pr}\left[R_{i}>t\right]$
- $\operatorname{Pr}[$ no collisions $]=\frac{m-1}{m} \frac{m-2}{m} \ldots \frac{m-(n-1)}{m}$

$$
\operatorname{Pr}[\text { collisions }]=\operatorname{Pr}\left[\max \left(R_{1}, \ldots, R_{m}\right)>1\right] \leq 1 / 8 \text { if } m>4 n^{2}
$$

and more generally

$$
\operatorname{Pr}\left[\max \left(R_{1}, \ldots, R_{m}\right) \geq 2 n / m\right] \leq m^{2} / n
$$

## BALLS AND BINS (1/2)

- Most of the analysis of hash functions that we've considered can be abstracted as "balls and bins" problems: we throw $n$ balls and each ball is equally likely to land in one of $m$ bins.
- Let $R_{i}$ be number of balls bin $i$. Then $R_{i} \sim \operatorname{Bin}\left(n, \frac{1}{m}\right)$ and $\mathbb{E}\left[R_{i}\right]=\frac{n}{m}$, $\operatorname{Var}\left[R_{i}\right]=\frac{n}{m} \cdot\left(1-\frac{1}{m}\right) . R_{i}$ and $R_{j}$ not independent!
- Union Bound implies $\operatorname{Pr}\left[\max \left(R_{1}, \ldots, R_{m}\right)>t\right] \leq \sum_{i} \operatorname{Pr}\left[R_{i}>t\right]$
- $\operatorname{Pr}[$ no collisions $]=\frac{m-1}{m} \frac{m-2}{m} \ldots \frac{m-(n-1)}{m}$

$$
\operatorname{Pr}[\text { collisions }]=\operatorname{Pr}\left[\max \left(R_{1}, \ldots, R_{m}\right)>1\right] \leq 1 / 8 \text { if } m>4 n^{2}
$$

and more generally

$$
\operatorname{Pr}\left[\max \left(R_{1}, \ldots, R_{m}\right) \geq 2 n / m\right] \leq m^{2} / n
$$

- In the exam, you'll be expected to do calculations like these.


## BALLS AND BINS (2/2)

- Let $T$ be the number of bins where $R_{i}=0$. We showed:

$$
\mathbb{E}[T]=m(1-1 / m)^{n}
$$

## BALLS AND BINS (2/2)

- Let $T$ be the number of bins where $R_{i}=0$. We showed:

$$
\mathbb{E}[T]=m(1-1 / m)^{n}
$$

- The probability the next $k$ balls thrown all land in non-empty bins is

$$
(1-T / m)^{k}
$$

and this lets us analyze the false positive rate of a Bloom filter.

## HASH FUNCTIONS

- Hash function $\mathbf{h}: U \rightarrow[n]$ is two universal if:

$$
\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)] \leq \frac{1}{n} \quad \text { for all } x \neq y \in U
$$

## HASH FUNCTIONS

- Hash function $\mathbf{h}: U \rightarrow[n]$ is two universal if:

$$
\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)] \leq \frac{1}{n} \quad \text { for all } x \neq y \in U
$$

- Hash function $\mathbf{h}: U \rightarrow[n]$ is $k$-wise independent if $\{h(e)\}_{e \in U}$ are $k$-wise independent and each $h(e)$ is uniform in [n].


## HASH FUNCTIONS

- Hash function $\mathbf{h}: U \rightarrow[n]$ is two universal if:

$$
\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)] \leq \frac{1}{n} \quad \text { for all } x \neq y \in U
$$

- Hash function $\mathbf{h}: U \rightarrow[n]$ is $k$-wise independent if $\{h(e)\}_{e \in U}$ are $k$-wise independent and each $h(e)$ is uniform in [n].
- Hash function $\mathbf{h}: U \rightarrow[n]$ is fully independent if $\{h(e)\}_{e \in U}$ are independent and each $h(e)$ is uniform in [ $n$ ].


## THREE MAIN CONCENTRATION BOUNDS

- Markov. For any non-negative random variable $X$ and $t>0$,

$$
\operatorname{Pr}[X \geq t] \leq \mathbb{E}[X] / t
$$

## THREE MAIN CONCENTRATION BOUNDS

- Markov. For any non-negative random variable $X$ and $t>0$,

$$
\operatorname{Pr}[X \geq t] \leq \mathbb{E}[X] / t
$$

- Chebyshev. For any random variable $X$ and $t>0$,

$$
\operatorname{Pr}[X \geq t+\mathbb{E}[X]] \leq \operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq \operatorname{Var}[X] / t^{2}
$$

## THREE MAIN CONCENTRATION BOUNDS

- Markov. For any non-negative random variable $X$ and $t>0$,

$$
\operatorname{Pr}[X \geq t] \leq \mathbb{E}[X] / t
$$

- Chebyshev. For any random variable $X$ and $t>0$,

$$
\operatorname{Pr}[X \geq t+\mathbb{E}[X]] \leq \operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq \operatorname{Var}[X] / t^{2}
$$

- Chernoff. Let $X_{1}, \ldots, X_{n}$ be independent $\{0,1\}$ random variables with $\mu=\mathbb{E}\left[\sum_{i} X_{i}\right]$. Then for any $\delta>0$,

$$
\operatorname{Pr}\left[\left|\left(\sum_{i} X_{i}\right)-\mu\right| \geq \delta \mu\right] \leq 2 \exp \left(-\frac{\delta^{2} \mu}{\delta+2}\right)
$$

## THREE MAIN CONCENTRATION BOUNDS

- Markov. For any non-negative random variable $X$ and $t>0$,

$$
\operatorname{Pr}[X \geq t] \leq \mathbb{E}[X] / t
$$

- Chebyshev. For any random variable $X$ and $t>0$,

$$
\operatorname{Pr}[X \geq t+\mathbb{E}[X]] \leq \operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq \operatorname{Var}[X] / t^{2}
$$

- Chernoff. Let $X_{1}, \ldots, X_{n}$ be independent $\{0,1\}$ random variables with $\mu=\mathbb{E}\left[\sum_{i} X_{i}\right]$. Then for any $\delta>0$,

$$
\operatorname{Pr}\left[\left|\left(\sum_{i} X_{i}\right)-\mu\right| \geq \delta \mu\right] \leq 2 \exp \left(-\frac{\delta^{2} \mu}{\delta+2}\right)
$$

- Generally, Chernoff gives better results then Chebyshev and Chebyshev gives better results than Markov. So choose bound based on how much you know about $X$.


## THREE MAIN CONCENTRATION BOUNDS

- Markov. For any non-negative random variable $X$ and $t>0$,

$$
\operatorname{Pr}[X \geq t] \leq \mathbb{E}[X] / t
$$

- Chebyshev. For any random variable $X$ and $t>0$,

$$
\operatorname{Pr}[X \geq t+\mathbb{E}[X]] \leq \operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq \operatorname{Var}[X] / t^{2}
$$

- Chernoff. Let $X_{1}, \ldots, X_{n}$ be independent $\{0,1\}$ random variables with $\mu=\mathbb{E}\left[\sum_{i} X_{i}\right]$. Then for any $\delta>0$,

$$
\operatorname{Pr}\left[\left|\left(\sum_{i} X_{i}\right)-\mu\right| \geq \delta \mu\right] \leq 2 \exp \left(-\frac{\delta^{2} \mu}{\delta+2}\right)
$$

- Generally, Chernoff gives better results then Chebyshev and Chebyshev gives better results than Markov. So choose bound based on how much you know about $X$.
- Bernstein generalizes Chernoff to arbitrary bounded $X_{i}$ variables.


## AVERAGING AND THE MEDIAN TRICK

- Want to learn a quantity $q$. Suppose you have a randomized algorithm that returns $X$ that has expectation $q$ and variance $\sigma^{2}$.


## AVERAGING AND THE MEDIAN TRICK

- Want to learn a quantity $q$. Suppose you have a randomized algorithm that returns $X$ that has expectation $q$ and variance $\sigma^{2}$.
- To get a good estimate of $q$, repeat algorithm $t$ times to get $X_{1}, \ldots, X_{t}$ and let $A=\left(X_{1}+\ldots+X_{t}\right) / t$. Then, if $t=\frac{\sigma^{2}}{\delta \epsilon^{2} q^{2}}$

$$
\operatorname{Pr}[|A-q| \geq \epsilon q] \leq \frac{\operatorname{Var}[A]}{\epsilon^{2} q^{2}}
$$

## AVERAGING AND THE MEDIAN TRICK

- Want to learn a quantity $q$. Suppose you have a randomized algorithm that returns $X$ that has expectation $q$ and variance $\sigma^{2}$.
- To get a good estimate of $q$, repeat algorithm $t$ times to get $X_{1}, \ldots, X_{t}$ and let $A=\left(X_{1}+\ldots+X_{t}\right) / t$. Then, if $t=\frac{\sigma^{2}}{\delta \epsilon^{2} q^{2}}$

$$
\operatorname{Pr}[|A-q| \geq \epsilon q] \leq \frac{\operatorname{Var}[A]}{\epsilon^{2} q^{2}}=\frac{\sigma^{2} / t}{\epsilon^{2} q^{2}}
$$

## AVERAGING AND THE MEDIAN TRICK

- Want to learn a quantity $q$. Suppose you have a randomized algorithm that returns $X$ that has expectation $q$ and variance $\sigma^{2}$.
- To get a good estimate of $q$, repeat algorithm $t$ times to get $X_{1}, \ldots, X_{t}$ and let $A=\left(X_{1}+\ldots+X_{t}\right) / t$. Then, if $t=\frac{\sigma^{2}}{\delta \epsilon^{2} q^{2}}$

$$
\operatorname{Pr}[|A-q| \geq \epsilon q] \leq \frac{\operatorname{Var}[A]}{\epsilon^{2} q^{2}}=\frac{\sigma^{2} / t}{\epsilon^{2} q^{2}}=\delta
$$

- Want to learn a quantity $q$. Suppose you have a randomized algorithm that returns $X$ that has expectation $q$ and variance $\sigma^{2}$.
- To get a good estimate of $q$, repeat algorithm $t$ times to get $X_{1}, \ldots, X_{t}$ and let $A=\left(X_{1}+\ldots+X_{t}\right) / t$. Then, if $t=\frac{\sigma^{2}}{\delta \epsilon^{2} q^{2}}$

$$
\operatorname{Pr}[|A-q| \geq \epsilon q] \leq \frac{\operatorname{Var}[A]}{\epsilon^{2} q^{2}}=\frac{\sigma^{2} / t}{\epsilon^{2} q^{2}}=\delta
$$

- Median Trick: Let $t=t_{1} t_{2}$ where $t_{1}=\frac{4 \sigma^{2}}{\epsilon^{2} q^{2}}$ and $t_{2}=O\left(\log \frac{1}{\delta}\right)$. Let $A_{1}$ be average of first $t_{1}$ results, let $A_{2}$ be average of next $t_{1}$ results etc. Then,

$$
\operatorname{Pr}\left[\left|A_{i}-q\right| \geq \epsilon q\right] \leq 1 / 4
$$

and $\operatorname{Pr}\left[\mid\right.$ median $\left.\left(A_{1}, \ldots, A_{t_{2}}\right)-q \mid \geq \epsilon q\right] \leq \delta$.

## 2-LEVEL HASH TABLES VS. BLOOM FILTER

- Input to both is a set of items $S$ and and both support queries of the form "Is $x \in S$ ?" in constant time.


## 2-LEVEL HASH TABLES VS. BLOOM FILTER

- Input to both is a set of items $S$ and and both support queries of the form "Is $x \in S$ ?" in constant time.
- 2-Level Hash Table:
- Space is $O(|S|) \times$ "space required to store an element of $S$ "


## 2-LEVEL HASH TABLES VS. BLOOM FILTER

- Input to both is a set of items $S$ and and both support queries of the form "Is $x \in S$ ?" in constant time.
- 2-Level Hash Table:
- Space is $O(|S|) \times$ "space required to store an element of $S$ "
- Bloom Filter:


## 2-LEVEL HASH TABLES VS. BLOOM FILTER

- Input to both is a set of items $S$ and and both support queries of the form "Is $x \in S$ ?" in constant time.
- 2-Level Hash Table:
- Space is $O(|S|) \times$ "space required to store an element of $S$ "
- Bloom Filter:
- Does not actually store the items in $S$, just a binary array from which we make various deductions.


## 2-LEVEL HASH TABLES VS. BLOOM FILTER

- Input to both is a set of items $S$ and and both support queries of the form "Is $x \in S$ ?" in constant time.
- 2-Level Hash Table:
- Space is $O(|S|) \times$ "space required to store an element of $S$ "
- Bloom Filter:
- Does not actually store the items in $S$, just a binary array from which we make various deductions.
- Uses only $O(|S|)$ space but at the cost of sometimes answering "yes" when answer should be "no" (a false positive)
- Input to both is a set of items $S$ and and both support queries of the form "Is $x \in S$ ?" in constant time.
- 2-Level Hash Table:
- Space is $O(|S|) \times$ "space required to store an element of $S$ "
- Bloom Filter:
- Does not actually store the items in $S$, just a binary array from which we make various deductions.
- Uses only $O(|S|)$ space but at the cost of sometimes answering "yes" when answer should be "no" (a false positive)
- If the Bloom Filter array is length $m$, false positive probability is roughly $\left(1-e^{-k|S| / m}\right)^{k}$ where $k$ is the number of hash functions used. Picking $k=\ln 2 \cdot m /|S|$ gives probability $1 / 2^{(\ln 2) m /|S|}$
- Input to both is a set of items $S$ and and both support queries of the form "Is $x \in S$ ?" in constant time.
- 2-Level Hash Table:
- Space is $O(|S|) \times$ "space required to store an element of $S$ "
- Bloom Filter:
- Does not actually store the items in $S$, just a binary array from which we make various deductions.
- Uses only $O(|S|)$ space but at the cost of sometimes answering "yes" when answer should be "no" (a false positive)
- If the Bloom Filter array is length $m$, false positive probability is roughly $\left(1-e^{-k|S| / m}\right)^{k}$ where $k$ is the number of hash functions used. Picking $k=\ln 2 \cdot m /|S|$ gives probability $1 / 2^{(\ln 2) m /|S|}$
- Also saw stacked hash tables in the homework.


## LOCALITY SENSITIVE HASHING

- Designed a hash function for hashing sets such that for sets $A$ and $B$, $\operatorname{Pr}[M H(A)=M H(B)]=J(A, B)=\frac{|A \cap B|}{|A \cup B|}$.
$M H(A)=\min _{x \in A} h(x)$ where $\quad h: U \rightarrow[0,1]$ is fully independent


## LOCALITY SENSITIVE HASHING

- Designed a hash function for hashing sets such that for sets $A$ and $B$, $\operatorname{Pr}[M H(A)=M H(B)]=J(A, B)=\frac{|A \cap B|}{|A \cup B|}$.

$$
M H(A)=\min _{x \in A} h(x) \text { where } \quad h: U \rightarrow[0,1] \text { is fully independent }
$$

- Can form signature of set $A$ using $r$ independent hash functions:

$$
\text { signature }(A)=\left(M H_{1}(A), \ldots, M H_{r}(A)\right)
$$

Note $\operatorname{Pr}[$ signature $(A)=$ signature $(B)]=J(A, B)^{r}$.

## LOCALITY SENSITIVE HASHING

- Designed a hash function for hashing sets such that for sets $A$ and $B$, $\operatorname{Pr}[M H(A)=M H(B)]=J(A, B)=\frac{|A \cap B|}{|A \cup B|}$.

$$
M H(A)=\min _{x \in A} h(x) \text { where } \quad h: U \rightarrow[0,1] \text { is fully independent }
$$

- Can form signature of set $A$ using $r$ independent hash functions:

$$
\text { signature }(A)=\left(M H_{1}(A), \ldots, M H_{r}(A)\right)
$$

Note $\operatorname{Pr}[$ signature $(A)=$ signature $(B)]=J(A, B)^{r}$.

- Given $r$ independent hash functions, we can form $t$ signatures signature $_{1}(A), \ldots$ signature $_{t}(A)$. Then if $s=J(A, B)$,

$$
{\operatorname{Pr}\left[\text { signature }_{i}(A)=\operatorname{signature~}_{i}(B) \text { for some } i\right]=1-\left(1-s^{r}\right)^{t} . . . ~}_{\text {. }}
$$

## LOCALITY SENSITIVE HASHING

- Designed a hash function for hashing sets such that for sets $A$ and $B$, $\operatorname{Pr}[M H(A)=M H(B)]=J(A, B)=\frac{|A \cap B|}{|A \cup B|}$.

$$
M H(A)=\min _{x \in A} h(x) \text { where } \quad h: U \rightarrow[0,1] \text { is fully independent }
$$

- Can form signature of set $A$ using $r$ independent hash functions:

$$
\text { signature }(A)=\left(M H_{1}(A), \ldots, M H_{r}(A)\right)
$$

Note $\operatorname{Pr}[$ signature $(A)=$ signature $(B)]=J(A, B)^{r}$.

- Given $r$ independent hash functions, we can form $t$ signatures signature $_{1}(A), \ldots$ signature $_{t}(A)$. Then if $s=J(A, B)$,

$$
\operatorname{Pr}\left[\operatorname{signature}_{i}(A)=\operatorname{signature}_{i}(B) \text { for some } i\right]=1-\left(1-s^{r}\right)^{t} .
$$

- To find all pairs of similar sets amongst $A_{1}, A_{2}, A_{3}, \ldots$ only compare a pair if there exists $i$, their $i$ th signatures match.


## DATA STREAMS ALGORITHMS

- We want to compute something about the stream $x_{1}, x_{2}, \ldots, x_{m}$ with only one pass over the stream and limited space.


## DATA STREAMS ALGORITHMS

- We want to compute something about the stream $x_{1}, x_{2}, \ldots, x_{m}$ with only one pass over the stream and limited space.
- Let $f_{i}$ be the number of values in stream that equal $i$.


## DATA STREAMS ALGORITHMS

- We want to compute something about the stream $x_{1}, x_{2}, \ldots, x_{m}$ with only one pass over the stream and limited space.
- Let $f_{i}$ be the number of values in stream that equal $i$.
- Distinct Items: Can estimate $D=\mid\left\{i: f_{i}>0\right\}$ up to a factor $1+\epsilon$ with probability $1-\delta$ in $O\left(\epsilon^{-2} \log 1 / \delta\right)$ space. Main idea was exploiting the fact the expected value of the minimum of $d$ number picked randomly in $[0,1]$ is $1 /(d+1)$.


## DATA STREAMS ALGORITHMS

- We want to compute something about the stream $x_{1}, x_{2}, \ldots, x_{m}$ with only one pass over the stream and limited space.
- Let $f_{i}$ be the number of values in stream that equal $i$.
- Distinct Items: Can estimate $D=\mid\left\{i: f_{i}>0\right\}$ up to a factor $1+\epsilon$ with probability $1-\delta$ in $O\left(\epsilon^{-2} \log 1 / \delta\right)$ space. Main idea was exploiting the fact the expected value of the minimum of $d$ number picked randomly in $[0,1]$ is $1 /(d+1)$.
- Frequently Elements Items: Can return a set $S$ such that:

$$
f_{i} \geq m / k \text { implies } i \in S \quad \text { and } \quad i \in S \text { implies } f_{i} \geq m(1-\epsilon) / k
$$

with probability $1-\delta$ in $O(k / \epsilon \cdot \log 1 / \delta)$ space.

- Sum of Powers: In the homework we considered estimating quantities such as $\sum f_{i}^{k}$.


## FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Count-Min Sketch: A random hashing based method closely related to bloom filters.


## FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Count-Min Sketch: A random hashing based method closely related to bloom filters.


## FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Count-Min Sketch: A random hashing based method closely related to bloom filters.


## FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Count-Min Sketch: A random hashing based method closely related to bloom filters.


Use $A[\mathbf{h}(x)]$ to estimate $f(x)$, the frequency of $x$ in the stream.

- Claim: $A[\mathbf{h}(x)] \geq f(x)$.
- Claim: $A[\mathbf{h}(x)] \leq f(x)+2 n / m$ with probability at least $1 / 2$.


## FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Count-Min Sketch: A random hashing based method closely related to bloom filters.


Use $A[\mathbf{h}(x)]$ to estimate $f(x)$, the frequency of $x$ in the stream.

- Claim: $A[\mathbf{h}(x)] \geq f(x)$.
- Claim: $A[\mathbf{h}(x)] \leq f(x)+2 n / m$ with probability at least $1 / 2$.

How can we increase this probability to $1-\delta$ for arbitrary $\delta>0$ ?

## COUNT-MIN SKETCH ACCURACY



- Estimate $f(x)$ with $\tilde{f}(x)=\min _{i \in[t]} A_{i}\left[\mathbf{h}_{i}(x)\right]$.


## COUNT-MIN SKETCH ACCURACY



- Estimate $f(x)$ with $\tilde{f}(x)=\min _{i \in[t]} A_{i}\left[\mathbf{h}_{i}(x)\right]$.
- Then $\operatorname{Pr}[f(x) \leq \tilde{f}(x) \leq f(x)+2 n / m] \geq 1-1 / 2^{t}$.


## COUNT-MIN SKETCH ACCURACY



- Estimate $f(x)$ with $\tilde{f}(x)=\min _{i \in[t]} A_{i}\left[\mathbf{h}_{i}(x)\right]$.
- Then $\operatorname{Pr}[f(x) \leq \tilde{f}(x) \leq f(x)+2 n / m] \geq 1-1 / 2^{t}$.


## COUNT-MIN SKETCH ACCURACY



- Estimate $f(x)$ with $\tilde{f}(x)=\min _{i \in[t]} A_{i}\left[\mathbf{h}_{i}(x)\right]$.
- Then $\operatorname{Pr}[f(x) \leq \tilde{f}(x) \leq f(x)+2 n / m] \geq 1-1 / 2^{t}$.
- Setting $t=\log (1 / \delta)$ ensures probability is at least $1-\delta$.


## COUNT-MIN SKETCH ACCURACY



- Estimate $f(x)$ with $\tilde{f}(x)=\min _{i \in[t]} A_{i}\left[\mathbf{h}_{i}(x)\right]$.
- Then $\operatorname{Pr}[f(x) \leq \tilde{f}(x) \leq f(x)+2 n / m] \geq 1-1 / 2^{t}$.
- Setting $t=\log (1 / \delta)$ ensures probability is at least $1-\delta$.
- Setting $m=2 k / \epsilon$ ensures $2 n / m=\epsilon n / k$ and that's enough to determine whether we need to output the element.


## JOHNSON-LINDENSTRAUSS

Johnson Lindenstrauss Lemma: If $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ is a random matrix with $m=O\left(\epsilon^{-2} \log n\right)$, for $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ with high probability, for all $i, j$ :

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\boldsymbol{M} \vec{x}_{i}-\boldsymbol{M} \vec{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

where $\|\vec{z}\|_{2}^{2}$ is the sum of squared entries of $\vec{z}$.

## JOHNSON-LINDENSTRAUSS

Johnson Lindenstrauss Lemma: If $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ is a random matrix with $m=O\left(\epsilon^{-2} \log n\right)$, for $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ with high probability, for all $i, j$ :

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\boldsymbol{M} \vec{x}_{i}-\boldsymbol{M} \vec{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

where $\|\vec{z}\|_{2}^{2}$ is the sum of squared entries of $\vec{z}$.

## Proof Idea:

## JOHNSON-LINDENSTRAUSS

Johnson Lindenstrauss Lemma: If $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ is a random matrix with $m=O\left(\epsilon^{-2} \log n\right)$, for $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ with high probability, for all $i, j$ :

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\boldsymbol{M} \vec{x}_{i}-\boldsymbol{M} \vec{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

where $\|\vec{z}\|_{2}^{2}$ is the sum of squared entries of $\vec{z}$.

## Proof Idea:

- Follows from Distributional JL: If $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ has $\mathcal{N}(0,1 / m)$ entries where $m=O\left(\epsilon^{-2} \log (1 / \delta)\right)$ then for any $\vec{y} \in \mathbb{R}^{d},\|\boldsymbol{M} \vec{y}\|_{2} \approx\|\vec{y}\|_{2}$ with probability at least $1-\delta$.


## JOHNSON-LINDENSTRAUSS

Johnson Lindenstrauss Lemma: If $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ is a random matrix with $m=O\left(\epsilon^{-2} \log n\right)$, for $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ with high probability, for all $i, j$ :

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\boldsymbol{M} \vec{x}_{i}-\boldsymbol{M} \vec{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

where $\|\vec{z}\|_{2}^{2}$ is the sum of squared entries of $\vec{z}$.

## Proof Idea:

- Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $\mathcal{N}(0,1 / m)$ entries where $m=O\left(\epsilon^{-2} \log (1 / \delta)\right)$ then for any $\vec{y} \in \mathbb{R}^{d},\|\boldsymbol{M} \vec{y}\|_{2} \approx\|\vec{y}\|_{2}$ with probability at least $1-\delta$.
- To prove Distributional JL Lemma:


## JOHNSON-LINDENSTRAUSS

Johnson Lindenstrauss Lemma: If $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ is a random matrix with $m=O\left(\epsilon^{-2} \log n\right)$, for $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ with high probability, for all $i, j$ :

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\boldsymbol{M} \vec{x}_{i}-\boldsymbol{M} \vec{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

where $\|\vec{z}\|_{2}^{2}$ is the sum of squared entries of $\vec{z}$.

## Proof Idea:

- Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $\mathcal{N}(0,1 / m)$ entries where $m=O\left(\epsilon^{-2} \log (1 / \delta)\right)$ then for any $\vec{y} \in \mathbb{R}^{d},\|\boldsymbol{M} \vec{y}\|_{2} \approx\|\vec{y}\|_{2}$ with probability at least $1-\delta$.
- To prove Distributional JL Lemma:
- By linearity of expectation and variance, $\mathbb{E}\left[\|M \vec{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}$.


## JOHNSON-LINDENSTRAUSS

Johnson Lindenstrauss Lemma: If $\boldsymbol{M} \in \mathbb{R}^{m \times d}$ is a random matrix with $m=O\left(\epsilon^{-2} \log n\right)$, for $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ with high probability, for all $i, j$ :

$$
(1-\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2} \leq\left\|\boldsymbol{M} \vec{x}_{i}-\boldsymbol{M} \vec{x}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

where $\|\vec{z}\|_{2}^{2}$ is the sum of squared entries of $\vec{z}$.

## Proof Idea:

- Follows from Distributional JL: If $M \in \mathbb{R}^{m \times d}$ has $\mathcal{N}(0,1 / m)$ entries where $m=O\left(\epsilon^{-2} \log (1 / \delta)\right)$ then for any $\vec{y} \in \mathbb{R}^{d},\|\boldsymbol{M} \vec{y}\|_{2} \approx\|\vec{y}\|_{2}$ with probability at least $1-\delta$.
- To prove Distributional JL Lemma:
- By linearity of expectation and variance, $\mathbb{E}\left[\|M \vec{y}\|_{2}^{2}\right]=\|\vec{y}\|_{2}^{2}$.
- $\|M \vec{y}\|_{2}^{2}$ is the sum of $m$ squared independent normal distributions and is tightly concentrated around the expectation.

EXTRA SLIDE

EXTRA SLIDE

EXTRA SLIDE

EXTRA SLIDE

EXTRA SLIDE

## DISTINCT ELEMENTS IN PRACTICE

Our algorithm uses continuous valued fully random hash functions.

## DISTINCT ELEMENTS IN PRACTICE

Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

## DISTINCT ELEMENTS IN PRACTICE

Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

- The idea of using the minimum hash value of $x_{1}, \ldots, x_{n}$ to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.


## DISTINCT ELEMENTS IN PRACTICE

Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

- The idea of using the minimum hash value of $x_{1}, \ldots, x_{n}$ to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.
- Flajolet-Martin (LogLog) algorithm and HyperLogLog.


## DISTINCT ELEMENTS IN PRACTICE

Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

- The idea of using the minimum hash value of $x_{1}, \ldots, x_{n}$ to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.
- Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(\mathrm{x}_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(\mathrm{x}_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(\mathrm{x}_{3}\right)$ | 1001110 |
|  |  |
| $\vdots$ |  |
|  |  |
| $\mathbf{h}\left(\mathrm{x}_{n}\right)$ | 1011000 |

## DISTINCT ELEMENTS IN PRACTICE

Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

- The idea of using the minimum hash value of $x_{1}, \ldots, x_{n}$ to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.
- Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $h\left(x_{1}\right)$ | 1010010 |  |
| :---: | :---: | :---: |
| $\mathbf{h}\left(x_{2}\right)$ | 1001100 |  |
| $\mathbf{h}\left(x_{3}\right)$ | 1001110 |  |
|  |  |  |
|  | $\vdots$ |  |
|  | $h\left(x_{n}\right)$ |  |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

## DISTINCT ELEMENTS IN PRACTICE

Our algorithm uses continuous valued fully random hash functions. Can't be implemented...

- The idea of using the minimum hash value of $x_{1}, \ldots, x_{n}$ to estimate the number of distinct elements naturally extends to when the hash functions map to discrete values.
- Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(x_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(x_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(x_{3}\right)$ | 1001110 |
|  |  |
| $\vdots$ |  |
|  |  |
| $\mathbf{h}\left(x_{n}\right)$ | 1011000 |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.
The more distinct hashes we see, the higher we expect this maximum to be.

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $h\left(x_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(x_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(x_{3}\right)$ | 1001110 |
|  |  |
|  | $\vdots$ |
|  |  |
| $\mathbf{h}\left(x_{n}\right)$ | 1011000 |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(\mathrm{x}_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(\mathrm{x}_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(\mathrm{x}_{3}\right)$ | 1001110 |
|  |  |
|  | $\vdots$ |
|  |  |
| $\mathbf{h}\left(\mathrm{x}_{n}\right)$ | 1011000 |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

With distinct elements, roughly what do we expect $\mathbf{m}$ to be?
a) $O(1)$
b) $O(\log d)$
c) $O(\sqrt{d})$
d) $O(d)$

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(\mathrm{x}_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(\mathrm{x}_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(\mathrm{x}_{3}\right)$ | 1001110 |
|  |  |
|  | $\vdots$ |
|  |  |
| $\mathbf{h}\left(\mathrm{x}_{\mathrm{n}}\right)$ | 1011000 |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

With distinct elements, roughly what do we expect $\mathbf{m}$ to be?
a) $O(1)$
b) $O(\log d)$
c) $O(\sqrt{d})$
d) $O(d)$

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(\mathrm{x}_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(\mathrm{x}_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(\mathrm{x}_{3}\right)$ | 1001110 |
|  |  |
|  | $\vdots$ |
|  |  |
| $\mathbf{h}\left(\mathrm{x}_{\mathrm{n}}\right)$ | 1011000 |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

With distinct elements, roughly what do we expect $\mathbf{m}$ to be?

$$
\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right) \text { has } x \text { trailing zeros }\right)=
$$

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $h\left(x_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(x_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(x_{3}\right)$ | 1001110 |
|  |  |
|  | $\vdots$ |
|  |  |
| $\mathbf{h}\left(x_{n}\right)$ | 1011000 |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

With distinct elements, roughly what do we expect $\mathbf{m}$ to be?

$$
\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right) \text { has } x \text { trailing zeros }\right)=\frac{1}{2^{\times}}
$$

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(\mathrm{x}_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(\mathrm{x}_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(\mathrm{x}_{3}\right)$ | 1001110 |
|  |  |
|  | $\vdots$ |
|  |  |
| $\mathbf{h}\left(\mathrm{x}_{\mathrm{n}}\right)$ | 1011000 |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

With distinct elements, roughly what do we expect $\mathbf{m}$ to be?

$$
\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right) \text { has } \log d \text { trailing zeros }\right)=\frac{1}{2^{\log d}}
$$

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(\mathrm{x}_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(\mathrm{x}_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(\mathrm{x}_{3}\right)$ | 1001110 |
|  |  |
|  | $\vdots$ |
|  |  |
| $\mathbf{h}\left(\mathrm{x}_{\mathrm{n}}\right)$ | 1011000 |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

With distinct elements, roughly what do we expect $\mathbf{m}$ to be?

$$
\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right) \text { has } \log d \text { trailing zeros }\right)=\frac{1}{2^{\log d}}=\frac{1}{d}
$$

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(\mathrm{x}_{1}\right)$ | 1010010 |  |
| :---: | :---: | :---: |
| $\mathbf{h}\left(\mathrm{x}_{2}\right)$ | 1001100 |  |
| $\mathbf{h}\left(\mathrm{x}_{3}\right)$ | 1001110 |  |
|  |  |  |
|  | $\vdots$ |  |
|  |  |  |
| $\mathbf{h}\left(\mathrm{x}_{\mathrm{n}}\right)$ | 1011000 |  |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

With $d$ distinct elements, roughly what do we expect $m$ to be?

$$
\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right) \text { has } \log d \text { trailing zeros }\right)=\frac{1}{2^{\log d}}=\frac{1}{d}
$$

So with $d$ distinct hashes, expect to see 1 with $\log d$ trailing zeros. Expect $\mathbf{m} \approx \log d$.

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(\mathrm{x}_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(\mathrm{x}_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(\mathrm{x}_{3}\right)$ | 1001110 |
|  |  |
|  | $\vdots$ |
|  |  |
| $\mathbf{h}\left(\mathrm{x}_{n}\right)$ | 1011000 |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

With distinct elements, roughly what do we expect $\mathbf{m}$ to be?

$$
\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right) \text { has } \log d \text { trailing zeros }\right)=\frac{1}{2^{\log d}}=\frac{1}{d}
$$

So with $d$ distinct hashes, expect to see 1 with $\log d$ trailing zeros. Expect $\mathbf{m} \approx \log d . \mathrm{m}$ takes $\log \log d$ bits to store.

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(\mathrm{x}_{1}\right)$ | 1010010 |
| :---: | :---: |
| $\mathbf{h}\left(\mathrm{x}_{2}\right)$ | 1001100 |
| $\mathbf{h}\left(\mathrm{x}_{3}\right)$ | 1001110 |
|  |  |
|  | $\vdots$ |
|  |  |
| $\mathbf{h}\left(\mathrm{x}_{n}\right)$ | 1011000 |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

With distinct elements, roughly what do we expect $\mathbf{m}$ to be?

$$
\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right) \text { has } \log d \text { trailing zeros }\right)=\frac{1}{2^{\log d}}=\frac{1}{d}
$$

So with $d$ distinct hashes, expect to see 1 with $\log d$ trailing zeros. Expect $\mathbf{m} \approx \log d . \quad \mathbf{m}$ takes $\log \log d$ bits to store.

Total Space: $O\left(\frac{\log \log d}{\epsilon^{2}}+\log d\right)$ for an $\epsilon$ approximate count.

## LOGLOG COUNTING OF DISTINCT ELEMENTS

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

| $\mathbf{h}\left(\mathrm{x}_{1}\right)$ | 1010010 |  |
| :---: | :---: | :---: |
| $\mathbf{h}\left(\mathrm{x}_{2}\right)$ | 1001100 |  |
| $\mathbf{h}\left(\mathrm{x}_{3}\right)$ | 1001110 |  |
|  |  |  |
|  | $\vdots$ |  |
|  | $\mathbf{h}\left(\mathrm{x}_{\mathrm{n}}\right)$ |  |
|  | 1011000 |  |

Estimate \# distinct elements based on maximum number of trailing zeros $\mathbf{m}$.

With distinct elements, roughly what do we expect $\mathbf{m}$ to be?

$$
\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right) \text { has } \log d \text { trailing zeros }\right)=\frac{1}{2^{\log d}}=\frac{1}{d}
$$

So with $d$ distinct hashes, expect to see 1 with $\log d$ trailing zeros. Expect $\mathbf{m} \approx \log d . \quad \mathbf{m}$ takes $\log \log d$ bits to store.

Total Space: $O\left(\frac{\log \log d}{\epsilon^{2}}+\log d\right)$ for an $\epsilon$ approximate count.
Note: Careful averaging of estimates from multiple hash functions.

## LOGLOG SPACE GUARANTEES

Using HyperLogLog to count 1 billion distinct items with $2 \%$ accuracy:

$$
\text { space used }=O\left(\frac{\log \log d}{\epsilon^{2}}+\log d\right)
$$

## LOGLOG SPACE GUARANTEES

Using HyperLogLog to count 1 billion distinct items with $2 \%$ accuracy:

$$
\begin{aligned}
\text { space used } & =O\left(\frac{\log \log d}{\epsilon^{2}}+\log d\right) \\
& =\frac{1.04 \cdot\left\lceil\log _{2} \log _{2} d\right\rceil}{\epsilon^{2}}+\left\lceil\log _{2} d\right\rceil \text { bits }^{1}
\end{aligned}
$$

1. 1.04 is the constant in the HyperLogLog analysis. Not important!

## LOGLOG SPACE GUARANTEES

Using HyperLogLog to count 1 billion distinct items with $2 \%$ accuracy:

$$
\begin{aligned}
\text { space used } & =O\left(\frac{\log \log d}{\epsilon^{2}}+\log d\right) \\
& =\frac{1.04 \cdot\left\lceil\log _{2} \log _{2} d\right\rceil}{\epsilon^{2}}+\left\lceil\log _{2} d\right\rceil \text { bits }^{1} \\
& =\frac{1.04 \cdot 5}{.02^{2}}+30=13030 \text { bits } \approx 1.6 \mathrm{kB}!
\end{aligned}
$$

1. 1.04 is the constant in the HyperLogLog analysis. Not important!

## LOGLOG SPACE GUARANTEES

Using HyperLogLog to count 1 billion distinct items with $2 \%$ accuracy:

$$
\begin{aligned}
\text { space used } & =O\left(\frac{\log \log d}{\epsilon^{2}}+\log d\right) \\
& =\frac{1.04 \cdot\left\lceil\log _{2} \log _{2} d\right\rceil}{\epsilon^{2}}+\left\lceil\log _{2} d\right\rceil \text { bits }^{1} \\
& =\frac{1.04 \cdot 5}{.02^{2}}+30=13030 \text { bits } \approx 1.6 \mathrm{kB}!
\end{aligned}
$$

Mergeable Sketch: Consider the case (essentially always in practice) that the items are processed on different machines.

1. 1.04 is the constant in the HyperLogLog analysis. Not important!

## LOGLOG SPACE GUARANTEES

Using HyperLogLog to count 1 billion distinct items with $2 \%$ accuracy:

$$
\begin{aligned}
\text { space used } & =O\left(\frac{\log \log d}{\epsilon^{2}}+\log d\right) \\
& =\frac{1.04 \cdot\left\lceil\log _{2} \log _{2} d\right\rceil}{\epsilon^{2}}+\left\lceil\log _{2} d\right\rceil \text { bits }^{1} \\
& =\frac{1.04 \cdot 5}{.02^{2}}+30=13030 \text { bits } \approx 1.6 \mathrm{kB}!
\end{aligned}
$$

Mergeable Sketch: Consider the case (essentially always in practice) that the items are processed on different machines.

- Given data structures (sketches) $H L L\left(x_{1}, \ldots, x_{n}\right), H L L\left(y_{1}, \ldots, y_{n}\right)$ it is easy to merge them to give $\operatorname{HLL}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.

1. 1.04 is the constant in the HyperLogLog analysis. Not important!

## LOGLOG SPACE GUARANTEES

Using HyperLogLog to count 1 billion distinct items with $2 \%$ accuracy:

$$
\begin{aligned}
\text { space used } & =O\left(\frac{\log \log d}{\epsilon^{2}}+\log d\right) \\
& =\frac{1.04 \cdot\left\lceil\log _{2} \log _{2} d\right\rceil}{\epsilon^{2}}+\left\lceil\log _{2} d\right\rceil \text { bits }^{1} \\
& =\frac{1.04 \cdot 5}{.02^{2}}+30=13030 \text { bits } \approx 1.6 \mathrm{kB}!
\end{aligned}
$$

Mergeable Sketch: Consider the case (essentially always in practice) that the items are processed on different machines.

- Given data structures (sketches) $\operatorname{HLL}\left(x_{1}, \ldots, x_{n}\right), \operatorname{HLL}\left(y_{1}, \ldots, y_{n}\right)$ it is easy to merge them to give $\operatorname{HLL}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$. How?

1. 1.04 is the constant in the HyperLogLog analysis. Not important!

## LOGLOG SPACE GUARANTEES

Using HyperLogLog to count 1 billion distinct items with $2 \%$ accuracy:

$$
\begin{aligned}
\text { space used } & =O\left(\frac{\log \log d}{\epsilon^{2}}+\log d\right) \\
& =\frac{1.04 \cdot\left\lceil\log _{2} \log _{2} d\right\rceil}{\epsilon^{2}}+\left\lceil\log _{2} d\right\rceil \text { bits }^{1} \\
& =\frac{1.04 \cdot 5}{.02^{2}}+30=13030 \text { bits } \approx 1.6 \mathrm{kB}!
\end{aligned}
$$

Mergeable Sketch: Consider the case (essentially always in practice) that the items are processed on different machines.

- Given data structures (sketches) $\operatorname{HLL}\left(x_{1}, \ldots, x_{n}\right), \operatorname{HLL}\left(y_{1}, \ldots, y_{n}\right)$ it is easy to merge them to give $\operatorname{HLL}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$. How?
- Set the maximum \# of trailing zeros to the maximum in the two sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important!
