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central limit theorem



interpretation as a central limit theorem

Bernstein Inequality (Simplified): Consider independent random vari-

ables X1, . . . ,Xn falling in [-1,1]. Let µ = E[
∑

Xi ], σ
2 = Var[

∑
Xi ],

and s ≤ σ. Then:

Pr

(∣∣∣∣∣
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ sσ

)
≤ 2 exp

(
− s2

4

)
.

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

N (0, σ2) has density p(x) = 1√
2πσ2

· e−
x2

2σ2 .
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gaussian tails

N (0, σ2) has density p(x) = 1√
2πσ2

· e−
x2

2σ2 .

Exercise: Using this can show that for X ∼ N (0, σ2): for any s ≥ 0,

Pr (|X| ≥ s · σ) ≤ O(1) · e−
s2

2 .

Essentially the same bound that Bernstein’s inequality gives!

Central Limit Theorem Interpretation: Bernstein’s inequality gives a

quantitative version of the CLT. The distribution of the sum of bounded

independent random variables can be upper bounded with a Gaussian (normal)

distribution.
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central limit theorem

Stronger Central Limit Theorem: The distribution of the sum of n

bounded independent random variables converges to a Gaussian (normal)

distribution as n goes to infinity.

• Why is the Gaussian distribution is so important in statistics, science,

ML, etc.?

• Many random variables can be approximated as the sum of a large

number of small and roughly independent random effects. Thus, their

distribution looks Gaussian by CLT.
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summary of first section



what we’ve covered

• Probability Tools: Linearity of Expectation, Linear of Variance of

Independent Variables, Concentration Bounds (Markov, Chebyshev,

Bernstein, Chernoff), Union Bound, Median Trick.

• Hash Tables and Bloom Filters: Analyzing collisions. Building

2-level hash tables. Bloom filters and false positive rates.

• Locality Sensitive Hashing: MinHash for Jaccard Similarity, SimHash

for Cosine Similarity. Nearest Neighbor. All-Pairs Similarity Search.

• Small Space Data Stream Algorithms: a) distinct items, b)

frequent elements, c) frequent moments (homework).

• Johnson Lindenstrauss Lemma: Reducing dimension of vectors via

random projection such that pairwise distances are approximately

preserved. Application to clustering.
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randomized algorithms unit takeaways

• Randomization is an important tool in working with large datasets.

• Lets us solve ‘easy’ problems that get really difficult on massive datasets.

Fast/space efficient look up (hash tables and bloom filters), distinct items

counting, frequent items counting, near neighbor search (LSH), etc.

• The analysis of randomized algorithms sometimes leads to complex output

distributions, which we can’t compute exactly. We use concentration

inequalities to bound these distributions and behaviors like accuracy, space

usage, and runtime.

• Concentration inequalities and probability tools used in randomized

algorithms are also fundamental in statistics, machine learning theory,

probabilistic modeling of complex systems, etc.
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useful probability facts (1/2)

• Linearity of Expectation: For any random variables X1, . . . ,Xn and

constants c1, . . . , cn,

E[c1X1 + . . .+ cnXn] = c1E[X1] + . . .+ cnE[Xn]

• Independent Random Variables: X1,X2, . . .Xn are independent random

variables if for any set S ⊂ [n] and values a1, a2, . . . , an

Pr(Xi = ai for all i ∈ S) =
∏
i∈S

Pr(Xi = ai ) .

They are k-wise independent if this holds for S with |S | ≤ k.

• Linearity of Variance: If X1, . . . ,Xn are independent (in fact 2-wise

independent suffices) then for any constants c1, . . . , cn

Var[c1X1 + . . .+ cnXn] = c21 Var[X1] + . . .+ c2n Var[Xn]
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useful probability facts (2/2)

• Union Bound: For any events A1,A2,A3, . . .

Pr [at least one of the events happens] = Pr

[⋃
i

Ai

]
≤
∑
i

Pr[Ai ] .

• An indicator random variable X just takes the values 0 or 1:

E[X ] = p Var[X ] = p(1− p) where p = Pr[X = 1]

• If Y = X1 + . . .+ Xn where each Xi are independent and

p = Pr[X1 = 1] = . . . = Pr[Xn = 1] then Y is a binomial random

variable. Using linearity of expectation and variance,

E[Y ] = np Var[Y ] = np(1− p)

9



useful probability facts (2/2)

• Union Bound: For any events A1,A2,A3, . . .

Pr [at least one of the events happens] = Pr

[⋃
i

Ai

]
≤
∑
i

Pr[Ai ] .

• An indicator random variable X just takes the values 0 or 1:

E[X ] = p Var[X ] = p(1− p) where p = Pr[X = 1]

• If Y = X1 + . . .+ Xn where each Xi are independent and

p = Pr[X1 = 1] = . . . = Pr[Xn = 1] then Y is a binomial random

variable. Using linearity of expectation and variance,

E[Y ] = np Var[Y ] = np(1− p)

9



useful probability facts (2/2)

• Union Bound: For any events A1,A2,A3, . . .

Pr [at least one of the events happens] = Pr

[⋃
i

Ai

]
≤
∑
i

Pr[Ai ] .

• An indicator random variable X just takes the values 0 or 1:

E[X ] = p Var[X ] = p(1− p) where p = Pr[X = 1]

• If Y = X1 + . . .+ Xn where each Xi are independent and

p = Pr[X1 = 1] = . . . = Pr[Xn = 1] then Y is a binomial random

variable. Using linearity of expectation and variance,

E[Y ] = np Var[Y ] = np(1− p)

9



balls and bins (1/2)

• Most of the analysis of hash functions that we’ve considered can be

abstracted as “balls and bins” problems: we throw n balls and each

ball is equally likely to land in one of m bins.

• Let Ri be number of balls bin i . Then Ri ∼ Bin(n, 1
m ) and E[Ri ] = n

m ,

Var[Ri ] = n
m · (1− 1

m ). Ri and Rj not independent!

• Union Bound implies Pr[max(R1, . . . ,Rm) > t] ≤
∑

i Pr[Ri > t]

• Pr [no collisions] = m−1
m

m−2
m . . . m−(n−1)m

Pr[collisions] = Pr[max(R1, . . . ,Rm) > 1] ≤ 1/8 if m > 4n2

and more generally

Pr[max(R1, . . . ,Rm) ≥ 2n/m] ≤ m2/n

• In the exam, you’ll be expected to do calculations like these.
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balls and bins (2/2)

• Let T be the number of bins where Ri = 0. We showed:

E[T ] = m(1− 1/m)n

• The probability the next k balls thrown all land in non-empty bins is

(1− T/m)k

and this lets us analyze the false positive rate of a Bloom filter.
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hash functions

• Hash function h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1

n
for all x 6= y ∈ U

• Hash function h : U → [n] is k-wise independent if {h(e)}e∈U are

k-wise independent and each h(e) is uniform in [n].

• Hash function h : U → [n] is fully independent if {h(e)}e∈U are

independent and each h(e) is uniform in [n].
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three main concentration bounds

• Markov. For any non-negative random variable X and t > 0,

Pr[X ≥ t] ≤ E[X ]/t .

• Chebyshev. For any random variable X and t > 0,

Pr[X ≥ t + E[X ]] ≤ Pr[|X − E[X ]| ≥ t] ≤ Var[X ]/t2 .

• Chernoff. Let X1, . . . ,Xn be independent {0, 1} random variables with

µ = E[
∑

i Xi ]. Then for any δ > 0,

Pr[|(
∑
i

Xi )− µ| ≥ δµ] ≤ 2 exp

(
− δ2µ

δ + 2

)
.

• Generally, Chernoff gives better results then Chebyshev and Chebyshev

gives better results than Markov. So choose bound based on how

much you know about X .

• Bernstein generalizes Chernoff to arbitrary bounded Xi variables.

13
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averaging and the median trick

• Want to learn a quantity q. Suppose you have a randomized algorithm

that returns X that has expectation q and variance σ2.

• To get a good estimate of q, repeat algorithm t times to get

X1, . . . ,Xt and let A = (X1 + . . .+ Xt)/t. Then, if t = σ2

δε2q2

Pr[|A− q| ≥ εq] ≤ Var[A]

ε2q2
=
σ2/t

ε2q2
= δ

• Median Trick: Let t = t1t2 where t1 = 4σ2

ε2q2 and t2 = O(log 1
δ ). Let A1

be average of first t1 results, let A2 be average of next t1 results etc.

Then,

Pr[|Ai − q| ≥ εq] ≤ 1/4

and Pr[|median(A1, . . . ,At2)− q| ≥ εq] ≤ δ.

14
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that returns X that has expectation q and variance σ2.
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2-level hash tables vs. bloom filter

• Input to both is a set of items S and and both support queries of the

form “Is x ∈ S?” in constant time.

• 2-Level Hash Table:

• Space is O(|S |)×“space required to store an element of S”

• Bloom Filter:

• Does not actually store the items in S , just a binary array from which we

make various deductions.
• Uses only O(|S |) space but at the cost of sometimes answering “yes”

when answer should be “no” (a false positive)
• If the Bloom Filter array is length m, false positive probability is roughly

(1− e−k|S|/m)k where k is the number of hash functions used. Picking

k = ln 2 ·m/|S | gives probability 1/2(ln 2)m/|S|

• Also saw stacked hash tables in the homework.
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locality sensitive hashing

• Designed a hash function for hashing sets such that for sets A and B,

Pr[MH(A) = MH(B)] = J(A,B) = |A∩B|
|A∪B| .

MH(A) = min
x∈A

h(x) where h : U → [0, 1] is fully independent

• Can form signature of set A using r independent hash functions:

signature(A) = (MH1(A), . . . ,MHr (A))

Note Pr[signature(A) = signature(B)] = J(A,B)r .

• Given rt independent hash functions, we can form t signatures

signature1(A), . . . signaturet(A). Then if s = J(A,B),

Pr[signaturei (A) = signaturei (B) for some i ] = 1− (1− s r )t .

• To find all pairs of similar sets amongst A1,A2,A3, . . . only compare a

pair if there exists i , their ith signatures match.
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data streams algorithms

• We want to compute something about the stream x1, x2, . . . , xm with

only one pass over the stream and limited space.

• Let fi be the number of values in stream that equal i .

• Distinct Items: Can estimate D = |{i : fi > 0} up to a factor 1 + ε with

probability 1− δ in O(ε−2 log 1/δ) space. Main idea was exploiting the

fact the expected value of the minimum of d number picked randomly in

[0, 1] is 1/(d + 1).
• Frequently Elements Items: Can return a set S such that:

fi ≥ m/k implies i ∈ S and i ∈ S implies fi ≥ m(1− ε)/k

with probability 1− δ in O(k/ε · log 1/δ) space.
• Sum of Powers: In the homework we considered estimating quantities

such as
∑

f ki .
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frequent elements with count-min sketch

Count-Min Sketch: A random hashing based method closely related to

bloom filters.
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frequent elements with count-min sketch

Count-Min Sketch: A random hashing based method closely related to

bloom filters.

Use A[h(x)] to estimate f (x), the frequency of x in the stream.

• Claim: A[h(x)] ≥ f (x).

• Claim: A[h(x)] ≤ f (x) + 2n/m with probability at least 1/2.
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frequent elements with count-min sketch

Count-Min Sketch: A random hashing based method closely related to

bloom filters.

Use A[h(x)] to estimate f (x), the frequency of x in the stream.

• Claim: A[h(x)] ≥ f (x).

• Claim: A[h(x)] ≤ f (x) + 2n/m with probability at least 1/2.

How can we increase this probability to 1− δ for arbitrary δ > 0?
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count-min sketch accuracy

• Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)].

• Then Pr[f (x) ≤ f̃ (x) ≤ f (x) + 2n/m] ≥ 1− 1/2t .

• Setting t = log(1/δ) ensures probability is at least 1− δ.

• Setting m = 2k/ε ensures 2n/m = εn/k and that’s enough to

determine whether we need to output the element.
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johnson-lindenstrauss

Johnson Lindenstrauss Lemma: If M ∈ Rm×d is a random matrix with

m = O
(
ε−2log n

)
, for ~x1, . . . , ~xn ∈ Rd with high probability, for all i , j :

(1− ε)‖~xi − ~xj‖2 ≤ ‖M~xi −M~xj‖2 ≤ (1 + ε)‖~xi − ~xj‖2

where ‖~z‖22 is the sum of squared entries of ~z .

Proof Idea:

• Follows from Distributional JL: If M ∈ Rm×d has N (0, 1/m) entries

where m = O(ε−2 log(1/δ)) then for any ~y ∈ Rd , ‖M~y‖2 ≈ ‖~y‖2 with

probability at least 1− δ.

• To prove Distributional JL Lemma:

• By linearity of expectation and variance, E[‖M~y‖22] = ‖~y‖22.
• ‖M~y‖22 is the sum of m squared independent normal distributions and is

tightly concentrated around the expectation.
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distinct elements in practice

Our algorithm uses continuous valued fully random hash functions.

Can’t

be implemented...

• The idea of using the minimum hash value of x1, . . . , xn to estimate

the number of distinct elements naturally extends to when the hash

functions map to discrete values.
• Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements based

on maximum number of trailing

zeros m.

The more distinct hashes we see, the

higher we expect this maximum to

be.
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loglog counting of distinct elements

Flajolet-Martin (LogLog) algorithm and HyperLogLog.

Estimate # distinct elements based on

maximum number of trailing zeros m.

With d distinct elements, roughly what do we expect m to be?

a) O(1) b) O(log d) c) O(
√
d) d) O(d)

Pr(h(xi ) has x trailing zeros) =

1

2x
=

1

d
.

So with d distinct hashes, expect to see 1 with log d trailing zeros. Expect

m ≈ log d .

m takes log log d bits to store.

Total Space: O
(
log log d
ε2

+ log d
)

for an ε approximate count.

Note: Careful averaging of estimates from multiple hash functions.
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loglog space guarantees

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O

(
log log d

ε2
+ log d

)

=
1.04 · dlog2 log2 de

ε2
+ dlog2 de bits1

=
1.04 · 5
.022

+ 30 = 13030 bits ≈ 1.6 kB!

Mergeable Sketch: Consider the case (essentially always in practice) that the

items are processed on different machines.

• Given data structures (sketches) HLL(x1, . . . , xn), HLL(y1, . . . , yn) it is easy

to merge them to give HLL(x1, . . . , xn, y1, . . . , yn). How?

• Set the maximum # of trailing zeros to the maximum in the two sketches.

1. 1.04 is the constant in the HyperLogLog analysis. Not important!
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