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SUMMARY

Next Few Classes: Low-rank approximation, the SVD, and
principal component analysis (PCA).

® Reduce d-dimensional data points to a smaller dimension m.
® |ike JL, compression is linear, i.e., by applying a matrix.

® Chose matrix taking into account structure of dataset.

® Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we'll use:

® \ectors Vi, ..., Vg are orthonormal if ||Vi||o =1 and (Vj,Vj) =0 Vi#j
|73 = VT and (AB)T = BT AT where (-)" means transpose, i.e.,

swapping rows and columns.

® A set of vectors B is a basis for a set of vectors V, if every vector in V
is a linear combination of vectors in B.
® The dimension of V is the size of its smallest basis.
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Assume that data points X1, ..., X, lie in some k-dimensional subspace V of R?.
d-dimensional space

k-dim. subspace V

Claim: Let v, ..., Vi be an orthonormal basis for V and V € R?*¥ be the
matrix with these vectors as its columns. For all X;, Xj:

IV = V5l = 1% — %]l

That is, VT € R**¢ is a linear embedding of i, ..., X, into k dimensions with
no distortion.
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DOT PRODUCT TRANSFORMATION

Claim: Let v, ...,V be an orthonormal basis for V and V € R7*k be
the matrix with these vectors as its columns. For all y € V:

IVT7ll2 = [17]l2-
Proof:

® If y=3".cVi then y =V where ¢ = (a1, ..., ck)
175 =y"y = (Vc) (Vé)=¢eTvTve

IIVTY\\z—( ANT(VTy) =y7TWTy=TvTwTve
But VTV = [ since

[VTV]/'J - ‘7IT‘7J {

[ ]

So [|y]lz = cTe= VT3
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Now assume that data points X1, ..., X, lie close to any k-dimensional subspace
V of R.

d-dimensional space

k-dim. subspace V

Letting ¥, ..., vk be an orthonormal basis for V and V € R?*¥ be the matrix
with these vectors as its columns, VX, € R is still a good embedding for

x; € RY. This is the key idea behind low-rank approximation and principal
component analysis (PCA).

® How do we find V and V7
® How good is the embedding?
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® Every data point X; (row of X) can be written as

Xi=Vé =ci1 Vi+...+Ck Vk

k parameters

d dimensions
— —

vT

n data points X (o

® X can be represented by (n+ d) - k parameters vs. n - d.

® The rows of X are spanned by k vectors: the columns of V. —> the
columns of X are spanned by k vectors: the columns of C.



LOW-RANK FACTORIZATION

Claim: If Xi,...,X, lie in a k-dimensional subspace with orthonormal basis
V € R9%¥ the data matrix can be written as X = CV".

k parameters

d dimensions
— ——

A\

x
|
o

n data points X C

basis for subspace V. V € RI*K: matrix with columns iy ooy Vk.

iy .., % € R data points, X € R"¥?: data matrix, v,..., v € RY: orthogonal ]




LOW-RANK FACTORIZATION

Claim: If Xi,...,X, lie in a k-dimensional subspace with orthonormal basis
V € R9%¥ the data matrix can be written as X = CV".

k parameters

d dimensions
— ——

A\

x
|
o

n data points X C

Hint: Use that VTV = I.

basis for subspace V. V € RI*K: matrix with columns iy ooy Vk.

iy ..., % € R data points, X € R"%?: data matrix, v,..., v € RY: orthogonal ]




LOW-RANK FACTORIZATION

Claim: If Xi,...,X, lie in a k-dimensional subspace with orthonormal basis
V € R9%¥ the data matrix can be written as X = CV".

k parameters

d dimensions
— ——

A\

x
|
o

n data points X C

Hint: Use that VTV = I.

e X=CV'T — Xv=cVv'v

basis for subspace V. V € RI*K: matrix with columns Vi ooy Vk.

Ry ..., % € R data points, X € R"%?: data matrix, v,..., v € R?: orthogonal ]




LOW-RANK FACTORIZATION

Claim: If Xi,...,X, lie in a k-dimensional subspace with orthonormal basis
V € R9%¥ the data matrix can be written as X = CV".

k parameters

d dimensions
— ——

A\

x
|
o

n data points X C

Hint: Use that VTV = I.

e X=CV'T — Xv=cV'V —

Ry, % € R data points, X € R"%?: data matrix, v,..., v € RY: orthogonal
basis for subspace V. V € RI*K: matrix with columns Vi ooy Vk.




LOW-RANK FACTORIZATION

Claim: If Xi,...,X, lie in a k-dimensional subspace with orthonormal basis
V € R9%¥ the data matrix can be written as X = CV".

k parameters

—
X G
n data points X VI T e | ¢=xv=x

Hint: Use that VTV = I.

e X=CV' — XVv=cV'V —

Xiy .o, Xn € RY: data points, X € R"%9: data matrix, %, ..., vk € R%: orthogonal
basis for subspace V. V € R?*k: matrix with columns v, . . ., V.
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Claim: If xi,...,X, lie close to a k-dimensional subspace V with orthonormal
basis V € R?*¥ the data matrix can be approximated as:

X ~ XVV'

d-dimensional space

k-dim. subspace V

Note: XVV7 has rank k. It is a low-rank approximation of X. Later we'll show
that:
XVV' = argmin ||X —BJ}

B with rows in V

where [|A[|F is defined as />, ; A7 .
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So Far: If Xi,..., X, lie close to a k-dimensional subspace V with orthonormal
basis V € R?*¥ the data matrix can be approximated as:

X~ XVV'.
This is the closest approximation to X with rows in V).

e Letting (XVVT);, (XVVT"); be the i and j* projected data points, i.e., the
ith and jth rows of XVVT:

I(XVVT); — (XVV )l = [[[(XV); — (XV);IV T [l2 = [[(XV); — (XV)j]|2-

The first equality uses (XVV"); = (XV);V", (XVVT); = (XV);V" and the
second equality uses the orthonormality of the columns of V, i.e., for any
row vector a

JaVT |3 = (@V")(@v")" = aVv'Va' =aa’ = [al}

® Can use XV € R"™* as a compressed approximate data set.

Next Time: How to find the subspace V and correspondingly V.
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A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect Xi,. .., X, € R? to lie close to a
k-dimensional subspace?
® The rows of X can be approximately reconstructed from a basis of k

vectors.
projections onto 15
784 dimensional vectors  dimensional space  orthonormal basis vy,...,V5

NENR
NENE
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® Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:
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home n

., %, € R? to lie close to a
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floors
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® Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:
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DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect X1, ...,%, € R? to lie close to a
k-dimensional subspace?

® Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

10000* 10* ~
bedrooms floors sale price
home 1 2 2 195,000
home 2 4 1 310,000

home n 5 3 450,000

11



