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summary

Next Few Classes: Low-rank approximation, the SVD, and

principal component analysis (PCA).

• Reduce d-dimensional data points to a smaller dimension m.

• Like JL, compression is linear, i.e., by applying a matrix.

• Chose matrix taking into account structure of dataset.

• Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we’ll use:

• Vectors ~v1, . . . , ~vk are orthonormal if ‖~vi‖2 = 1 and 〈~vi , ~vj〉 = 0 ∀i 6= j

• ‖~v‖22 = ~vT~v and (AB)T = BTAT where (·)T means transpose, i.e.,

swapping rows and columns.

• A set of vectors B is a basis for a set of vectors V, if every vector in V
is a linear combination of vectors in B.

• The dimension of V is the size of its smallest basis.

1



summary

Next Few Classes: Low-rank approximation, the SVD, and

principal component analysis (PCA).

• Reduce d-dimensional data points to a smaller dimension m.

• Like JL, compression is linear, i.e., by applying a matrix.

• Chose matrix taking into account structure of dataset.

• Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we’ll use:

• Vectors ~v1, . . . , ~vk are orthonormal if ‖~vi‖2 = 1 and 〈~vi , ~vj〉 = 0 ∀i 6= j

• ‖~v‖22 = ~vT~v and (AB)T = BTAT where (·)T means transpose, i.e.,

swapping rows and columns.

• A set of vectors B is a basis for a set of vectors V, if every vector in V
is a linear combination of vectors in B.

• The dimension of V is the size of its smallest basis.

1



summary

Next Few Classes: Low-rank approximation, the SVD, and

principal component analysis (PCA).

• Reduce d-dimensional data points to a smaller dimension m.

• Like JL, compression is linear, i.e., by applying a matrix.

• Chose matrix taking into account structure of dataset.

• Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we’ll use:

• Vectors ~v1, . . . , ~vk are orthonormal if ‖~vi‖2 = 1 and 〈~vi , ~vj〉 = 0 ∀i 6= j

• ‖~v‖22 = ~vT~v and (AB)T = BTAT where (·)T means transpose, i.e.,

swapping rows and columns.

• A set of vectors B is a basis for a set of vectors V, if every vector in V
is a linear combination of vectors in B.

• The dimension of V is the size of its smallest basis.

1



summary

Next Few Classes: Low-rank approximation, the SVD, and

principal component analysis (PCA).

• Reduce d-dimensional data points to a smaller dimension m.

• Like JL, compression is linear, i.e., by applying a matrix.

• Chose matrix taking into account structure of dataset.

• Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we’ll use:

• Vectors ~v1, . . . , ~vk are orthonormal if ‖~vi‖2 = 1 and 〈~vi , ~vj〉 = 0 ∀i 6= j

• ‖~v‖22 = ~vT~v and (AB)T = BTAT where (·)T means transpose, i.e.,

swapping rows and columns.

• A set of vectors B is a basis for a set of vectors V, if every vector in V
is a linear combination of vectors in B.

• The dimension of V is the size of its smallest basis.

1



summary

Next Few Classes: Low-rank approximation, the SVD, and

principal component analysis (PCA).

• Reduce d-dimensional data points to a smaller dimension m.

• Like JL, compression is linear, i.e., by applying a matrix.

• Chose matrix taking into account structure of dataset.

• Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we’ll use:

• Vectors ~v1, . . . , ~vk are orthonormal if ‖~vi‖2 = 1 and 〈~vi , ~vj〉 = 0 ∀i 6= j

• ‖~v‖22 = ~vT~v and (AB)T = BTAT where (·)T means transpose, i.e.,

swapping rows and columns.

• A set of vectors B is a basis for a set of vectors V, if every vector in V
is a linear combination of vectors in B.

• The dimension of V is the size of its smallest basis.
1



embedding with assumptions

Assume that data points ~x1, . . . , ~xn lie in some k-dimensional subspace V of Rd .

Claim: Let ~v1, . . . , ~vk be an orthonormal basis for V and V ∈ Rd×k be the

matrix with these vectors as its columns. For all ~xi , ~xj :

‖VT~xi − VT~xj‖2 = ‖~xi − ~xj‖2.

That is, VT ∈ Rk×d is a linear embedding of ~x1, . . . , ~xn into k dimensions with

no distortion.
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dot product transformation

Claim: Let ~v1, . . . , ~vk be an orthonormal basis for V and V ∈ Rd×k be

the matrix with these vectors as its columns. For all ~y ∈ V:

‖VT~y‖2 = ‖~y‖2.

Proof:

• If ~y =
∑

i ci~vi then ~y = V~c where ~cT = (c1, . . . , ck)
• ‖~y‖22 = ~yT~y = (V~c)T (V~c) = ~cTVTV~c
• ‖VT~y‖22 = (VT~y)T (VT~y) = ~yTVVT~y = ~cTVTVVTV~c
• But VTV = I since

[VTV]i,j = ~vT
i ~vj =

{
1 i = j

0 i 6= j

• So ‖~y‖22 = ~cT~c = ‖VT~y‖22.
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embedding with assumptions

Now assume that data points ~x1, . . . , ~xn lie close to any k-dimensional subspace

V of Rd .

Letting ~v1, . . . , ~vk be an orthonormal basis for V and V ∈ Rd×k be the matrix

with these vectors as its columns, VT~xi ∈ Rk is still a good embedding for

xi ∈ Rd .

This is the key idea behind low-rank approximation and principal

component analysis (PCA).

• How do we find V and V?

• How good is the embedding?
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low-rank factorization

• Every data point ~xi (row of X) can be written as

~xi = V~ci = ci,1 · ~v1 + . . .+ ci,k · ~vk

• X can be represented by (n + d) · k parameters vs. n · d .

• The rows of X are spanned by k vectors: the columns of V =⇒ the

columns of X are spanned by k vectors: the columns of C.
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low-rank factorization

Claim: If ~x1, . . . , ~xn lie in a k-dimensional subspace with orthonormal basis

V ∈ Rd×k , the data matrix can be written as X = CVT .

Exercise: What is this coefficient matrix C? Hint: Use that VTV = I.

• X = CVT =⇒ XV = CVTV

=⇒ XV = C

~x1, . . . , ~xn ∈ Rd : data points, X ∈ Rn×d : data matrix, ~v1, . . . , ~vk ∈ Rd : orthogonal

basis for subspace V. V ∈ Rd×k : matrix with columns ~v1, . . . , ~vk .
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projection view

Claim: If ~x1, . . . , ~xn lie in a k-dimensional subspace V with orthonormal basis

V ∈ Rd×k , the data matrix can be written as

X = CVT .

• VVT is a projection matrix, which projects the rows of X (the data points

~x1, . . . , ~xn) onto the subspace V.

~x1, . . . , ~xn ∈ Rd : data points, X ∈ Rn×d : data matrix, ~v1, . . . , ~vk ∈ Rd : orthonormal

basis for subspace V. V ∈ Rd×k : matrix with columns ~v1, . . . , ~vk .
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low-rank approximation

Claim: If ~x1, . . . , ~xn lie close to a k-dimensional subspace V with orthonormal

basis V ∈ Rd×k , the data matrix can be approximated as:

X ≈ XVVT

Note: XVVT has rank k. It is a low-rank approximation of X. Later we’ll show

that:

XVVT = arg min
B with rows in V

‖X− B‖2F

where ‖A‖F is defined as
√∑

i,j A
2
i,j .
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low-rank approximation

So Far: If ~x1, . . . , ~xn lie close to a k-dimensional subspace V with orthonormal

basis V ∈ Rd×k , the data matrix can be approximated as:

X ≈ XVVT .

This is the closest approximation to X with rows in V ).

• Letting (XVVT )i , (XVVT )j be the i th and j th projected data points, i.e., the

ith and jth rows of XVVT :

‖(XVVT )i − (XVVT )j‖2 = ‖[(XV)i − (XV)j ]V
T‖2 = ‖(XV)i − (XV)j‖2.

The first equality uses (XVVT )i = (XV)iV
T , (XVVT )j = (XV)jV

T and the
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a step back: why low-rank approximation?

Question: Why might we expect ~x1, . . . , ~xn ∈ Rd to lie close to a

k-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of k

vectors.

10



a step back: why low-rank approximation?

Question: Why might we expect ~x1, . . . , ~xn ∈ Rd to lie close to a

k-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of k

vectors.

10



a step back: why low-rank approximation?

Question: Why might we expect ~x1, . . . , ~xn ∈ Rd to lie close to a

k-dimensional subspace?

• The rows of X can be approximately reconstructed from a basis of k

vectors.

10



dual view of low-rank approximation

Question: Why might we expect ~x1, . . . , ~xn ∈ Rd to lie close to a

k-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:
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