COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 13

- Reduce *d*-dimensional data points to a smaller dimension *m*.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

- Reduce *d*-dimensional data points to a smaller dimension *m*.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we'll use:

• Vectors $\vec{v_1}, \dots, \vec{v_k}$ are orthonormal if $\|\vec{v_i}\|_2 = 1$ and $\langle \vec{v_i}, \vec{v_j} \rangle = 0$ $\forall i \neq j$

- Reduce *d*-dimensional data points to a smaller dimension *m*.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we'll use:

- Vectors $\vec{v_1}, \dots, \vec{v_k}$ are orthonormal if $\|\vec{v_i}\|_2 = 1$ and $\langle \vec{v_i}, \vec{v_j} \rangle = 0$ $\forall i \neq j$
- $\|\vec{v}\|_2^2 = \vec{v}^T \vec{v}$ and $(AB)^T = B^T A^T$ where $(\cdot)^T$ means transpose, i.e., swapping rows and columns.

- Reduce *d*-dimensional data points to a smaller dimension *m*.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we'll use:

- Vectors $\vec{v_1}, \dots, \vec{v_k}$ are orthonormal if $\|\vec{v_i}\|_2 = 1$ and $\langle \vec{v_i}, \vec{v_j} \rangle = 0$ $\forall i \neq j$
- $\|\vec{v}\|_2^2 = \vec{v}^T \vec{v}$ and $(AB)^T = B^T A^T$ where $(\cdot)^T$ means transpose, i.e., swapping rows and columns.
- A set of vectors B is a basis for a set of vectors V, if every vector in V is a linear combination of vectors in B.

- Reduce *d*-dimensional data points to a smaller dimension *m*.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we'll use:

- Vectors $\vec{v_1}, \dots, \vec{v_k}$ are orthonormal if $\|\vec{v_i}\|_2 = 1$ and $\langle \vec{v_i}, \vec{v_j} \rangle = 0$ $\forall i \neq j$
- $\|\vec{v}\|_2^2 = \vec{v}^T \vec{v}$ and $(AB)^T = B^T A^T$ where $(\cdot)^T$ means transpose, i.e., swapping rows and columns.
- A set of vectors B is a basis for a set of vectors V, if every vector in V is a linear combination of vectors in B.
- The dimension of $\mathcal V$ is the size of its smallest basis.

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_i :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

Claim: Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_i :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

That is, $\mathbf{V}^T \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_1, \ldots, \vec{x}_n$ into k dimensions with no distortion.

$$\|\mathbf{V}^T \vec{y}\|_2 = \|\vec{y}\|_2.$$

$$\|\mathbf{V}^T \vec{y}\|_2 = \|\vec{y}\|_2.$$

• If
$$\vec{y} = \sum_{i} c_i \vec{v}_i$$
 then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$

$$\|\mathbf{V}^T \vec{y}\|_2 = \|\vec{y}\|_2.$$

• If
$$\vec{y} = \sum_i c_i \vec{v}_i$$
 then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$
• $\|\vec{y}\|_2^2 = \vec{y}^T \vec{y}$

$$\|\mathbf{V}^T \vec{y}\|_2 = \|\vec{y}\|_2.$$

• If
$$\vec{y} = \sum_i c_i \vec{v}_i$$
 then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$

•
$$\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c})$$

$$\|\mathbf{V}^T \vec{y}\|_2 = \|\vec{y}\|_2.$$

• If
$$\vec{y} = \sum_i c_i \vec{v_i}$$
 then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$

•
$$\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$$

$$\|\mathbf{V}^T \vec{y}\|_2 = \|\vec{y}\|_2.$$

• If
$$\vec{y} = \sum_i c_i \vec{v}_i$$
 then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$

•
$$\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$$

•
$$\|\mathbf{V}^T \vec{y}\|_2^2 = (\mathbf{V}^T \vec{y})^T (\mathbf{V}^T \vec{y}) = \vec{y}^T \mathbf{V} \mathbf{V}^T \vec{y}$$

$$\|\mathbf{V}^T \vec{y}\|_2 = \|\vec{y}\|_2.$$

• If
$$\vec{y} = \sum_{i} c_{i} \vec{v}_{i}$$
 then $\vec{y} = \mathbf{V} \vec{c}$ where $\vec{c}^{T} = (c_{1}, \dots, c_{k})$

•
$$\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$$

•
$$\|\mathbf{V}^T \vec{y}\|_2^2 = (\mathbf{V}^T \vec{y})^T (\mathbf{V}^T \vec{y}) = \vec{y}^T \mathbf{V} \mathbf{V}^T \vec{y} = \vec{c}^T \mathbf{V}^T \mathbf{V} \mathbf{V}^T \mathbf{V} \vec{c}$$

$$\|\mathbf{V}^T \vec{y}\|_2 = \|\vec{y}\|_2.$$

• If
$$\vec{y} = \sum_{i} c_{i} \vec{v}_{i}$$
 then $\vec{y} = \mathbf{V} \vec{c}$ where $\vec{c}^{T} = (c_{1}, \dots, c_{k})$

•
$$\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$$

•
$$\|\mathbf{V}^T \vec{y}\|_2^2 = (\mathbf{V}^T \vec{y})^T (\mathbf{V}^T \vec{y}) = \vec{y}^T \mathbf{V} \mathbf{V}^T \vec{y} = \vec{c}^T \mathbf{V}^T \mathbf{V} \mathbf{V}^T \mathbf{V} \vec{c}$$

• But
$$\mathbf{V}^T \mathbf{V} = I$$

$$\|\mathbf{V}^T \vec{y}\|_2 = \|\vec{y}\|_2.$$

Proof:

• If
$$\vec{y} = \sum_i c_i \vec{v}_i$$
 then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$
• $\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$

•
$$\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$$

•
$$\|\mathbf{V}^T \vec{y}\|_2^2 = (\mathbf{V}^T \vec{y})^T (\mathbf{V}^T \vec{y}) = \vec{y}^T \mathbf{V} \mathbf{V}^T \vec{y} = \vec{c}^T \mathbf{V}^T \mathbf{V} \mathbf{V}^T \mathbf{V} \vec{c}$$

• But $\mathbf{V}^T \mathbf{V} = I$ since

$$[\mathbf{V}^{\mathsf{T}}\mathbf{V}]_{i,j} = \vec{v}_i^{\mathsf{T}}\vec{v}_j = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}$$

$$\|\mathbf{V}^T \vec{y}\|_2 = \|\vec{y}\|_2.$$

Proof:

• If
$$\vec{y} = \sum_i c_i \vec{v}_i$$
 then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$

•
$$\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$$

•
$$\|\mathbf{V}^T \vec{y}\|_2^2 = (\mathbf{V}^T \vec{y})^T (\mathbf{V}^T \vec{y}) = \vec{y}^T \mathbf{V} \mathbf{V}^T \vec{y} = \vec{c}^T \mathbf{V}^T \mathbf{V} \mathbf{V}^T \mathbf{V} \vec{c}$$

• But $\mathbf{V}^T \mathbf{V} = I$ since

$$[\mathbf{V}^{\mathsf{T}}\mathbf{V}]_{i,j} = \vec{v}_i^{\mathsf{T}}\vec{v}_j = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}$$

• So $\|\vec{y}\|_2^2 = \vec{c}^T \vec{c} = \|\mathbf{V}^T \vec{y}\|_2^2$.

Now assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Now assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Now assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$.

Now assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v_1}, \ldots, \vec{v_k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x_i} \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. This is the key idea behind low-rank approximation and principal component analysis (PCA).

Now assume that data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to any *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v_1}, \ldots, \vec{v_k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x_i} \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. This is the key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and \mathbf{V} ?
- How good is the embedding?

• Every data point \vec{x}_i (row of **X**) can be written as

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + \ldots + c_{i,k}\cdot\vec{v}_k$$

• Every data point \vec{x}_i (row of **X**) can be written as

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + \ldots + c_{i,k}\cdot\vec{v}_k$$

• Every data point \vec{x}_i (row of **X**) can be written as

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + \ldots + c_{i,k}\cdot\vec{v}_k$$

• **X** can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.

• Every data point \vec{x}_i (row of **X**) can be written as

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1}\cdot\vec{v}_1 + \ldots + c_{i,k}\cdot\vec{v}_k$$

- **X** can be represented by $(n + d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of V ⇒ the columns of X are spanned by k vectors: the columns of C.

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C} \mathbf{V}^T$.

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $\mathbf{V}^T \mathbf{V} = \mathbf{I}$.

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $\mathbf{V}^T \mathbf{V} = \mathbf{I}$.

• $\mathbf{X} = \mathbf{C}\mathbf{V}^T \implies \mathbf{X}\mathbf{V} = \mathbf{C}\mathbf{V}^T\mathbf{V}$

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $\mathbf{V}^T \mathbf{V} = \mathbf{I}$.

• $\mathbf{X} = \mathbf{C}\mathbf{V}^T \implies \mathbf{X}\mathbf{V} = \mathbf{C}\mathbf{V}^T\mathbf{V} \implies \mathbf{X}\mathbf{V} = \mathbf{C}$

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $\mathbf{V}^T \mathbf{V} = \mathbf{I}$.

• $\mathbf{X} = \mathbf{C}\mathbf{V}^T \implies \mathbf{X}\mathbf{V} = \mathbf{C}\mathbf{V}^T\mathbf{V} \implies \mathbf{X}\mathbf{V} = \mathbf{C}$

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{C}\mathbf{V}^{\mathsf{T}}.$

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

• **VV**^{*T*} is a projection matrix, which projects the rows of **X** (the data points $\vec{x}_1, \ldots, \vec{x}_n$) onto the subspace \mathcal{V} .

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

• **VV**^T is a projection matrix, which projects the rows of **X** (the data points $\vec{x}_1, \ldots, \vec{x}_n$) onto the subspace \mathcal{V} .

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

• **VV**^T is a projection matrix, which projects the rows of **X** (the data points $\vec{x}_1, \ldots, \vec{x}_n$) onto the subspace \mathcal{V} .

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}}.$

• **VV**^T is a projection matrix, which projects the rows of **X** (the data points $\vec{x}_1, \ldots, \vec{x}_n$) onto the subspace \mathcal{V} .

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}$

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}$

Note: XVV^T has rank k. It is a low-rank approximation of **X**.

Claim: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

 $\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}$

Note: XVV^{T} has rank k. It is a low-rank approximation of X. Later we'll show that:

$$\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}} = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\arg\min} \|\mathbf{X} - \mathbf{B}\|_{F}^{2}$$

where $\|\mathbf{A}\|_{F}$ is defined as $\sqrt{\sum_{i,j} \mathbf{A}_{i,j}^{2}}$.

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{T}$.

This is the closest approximation to $\boldsymbol{\mathsf{X}}$ with rows in $\mathcal V$).

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}.$

This is the closest approximation to \boldsymbol{X} with rows in $\mathcal V$).

Letting (XVV^T)_i, (XVV^T)_j be the ith and jth projected data points, i.e., the ith and jth rows of XVV^T:

$$\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_{i} - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_{j}\|_{2} = \|[(\mathbf{X}\mathbf{V})_{i} - (\mathbf{X}\mathbf{V})_{j}]\mathbf{V}^{\mathsf{T}}\|_{2} = \|(\mathbf{X}\mathbf{V})_{i} - (\mathbf{X}\mathbf{V})_{j}\|_{2}.$$

The first equality uses $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_i = (\mathbf{X}\mathbf{V})_i\mathbf{V}^T$, $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_j = (\mathbf{X}\mathbf{V})_j\mathbf{V}^T$ and the second equality uses the orthonormality of the columns of \mathbf{V} , i.e., for any row vector \mathbf{a}

$$\|\mathbf{a}\mathbf{V}^{\mathsf{T}}\|_2^2 = (\mathbf{a}\mathbf{V}^{\mathsf{T}})(\mathbf{a}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{a}\mathbf{V}^{\mathsf{T}}\mathbf{V}\mathbf{a}^{\mathsf{T}} = \mathbf{a}\mathbf{a}^{\mathsf{T}} = \|\mathbf{a}\|_2^2$$

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}.$

This is the closest approximation to \boldsymbol{X} with rows in $\mathcal V$).

Letting (XVV^T)_i, (XVV^T)_j be the ith and jth projected data points, i.e., the ith and jth rows of XVV^T:

$$\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_{i} - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_{j}\|_{2} = \|[(\mathbf{X}\mathbf{V})_{i} - (\mathbf{X}\mathbf{V})_{j}]\mathbf{V}^{\mathsf{T}}\|_{2} = \|(\mathbf{X}\mathbf{V})_{i} - (\mathbf{X}\mathbf{V})_{j}\|_{2}.$$

The first equality uses $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_i = (\mathbf{X}\mathbf{V})_i\mathbf{V}^T$, $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_j = (\mathbf{X}\mathbf{V})_j\mathbf{V}^T$ and the second equality uses the orthonormality of the columns of \mathbf{V} , i.e., for any row vector \mathbf{a}

$$\|\mathbf{a}\mathbf{V}^{\mathsf{T}}\|_2^2 = (\mathbf{a}\mathbf{V}^{\mathsf{T}})(\mathbf{a}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{a}\mathbf{V}^{\mathsf{T}}\mathbf{V}\mathbf{a}^{\mathsf{T}} = \mathbf{a}\mathbf{a}^{\mathsf{T}} = \|\mathbf{a}\|_2^2$$

• Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

So Far: If $\vec{x_1}, \ldots, \vec{x_n}$ lie close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}.$

This is the closest approximation to X with rows in \mathcal{V}).

Letting (XVV^T)_i, (XVV^T)_j be the ith and jth projected data points, i.e., the ith and jth rows of XVV^T:

$$\|(\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_{i} - (\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}})_{j}\|_{2} = \|[(\mathbf{X}\mathbf{V})_{i} - (\mathbf{X}\mathbf{V})_{j}]\mathbf{V}^{\mathsf{T}}\|_{2} = \|(\mathbf{X}\mathbf{V})_{i} - (\mathbf{X}\mathbf{V})_{j}\|_{2}.$$

The first equality uses $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_i = (\mathbf{X}\mathbf{V})_i\mathbf{V}^T$, $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_j = (\mathbf{X}\mathbf{V})_j\mathbf{V}^T$ and the second equality uses the orthonormality of the columns of \mathbf{V} , i.e., for any row vector \mathbf{a}

$$\|\mathbf{a}\mathbf{V}^{\mathsf{T}}\|_2^2 = (\mathbf{a}\mathbf{V}^{\mathsf{T}})(\mathbf{a}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{a}\mathbf{V}^{\mathsf{T}}\mathbf{V}\mathbf{a}^{\mathsf{T}} = \mathbf{a}\mathbf{a}^{\mathsf{T}} = \|\mathbf{a}\|_2^2$$

• Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Next Time: How to find the subspace ${\mathcal V}$ and correspondingly ${\boldsymbol V}.$

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• The rows of **X** can be approximately reconstructed from a basis of k vectors.

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

The rows of X can be approximately reconstructed from a basis of k vectors.
 projections onto 15

orthonormal basis v_1, \dots, v_{15}

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•						
•	•	•	•	•		•
•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•						
•	•	•	•	•	•	•
•	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•	•	•	•	•		•
•	•	•	•	•	•	•
	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

Question: Why might we expect $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ to lie close to a *k*-dimensional subspace?

• Equivalently, the columns of X are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
•	•	•	•	•	•	•
•	•	•	•	•	•	•
	•	•	•	•	•	•
home n	5	3.5	3600	3	450,000	450,000

10000* bathrooms+ 10* (sq. ft.) \approx list price