COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 13

SUMMARY

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimensional data points to a smaller dimension m.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

SUMMARY

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimensional data points to a smaller dimension m.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we'll use:

- Vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are orthonormal if $\left\|\vec{v}_{i}\right\|_{2}=1$ and $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=0 \quad \forall i \neq j$

SUMMARY

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimensional data points to a smaller dimension m.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we'll use:

- Vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are orthonormal if $\left\|\vec{v}_{i}\right\|_{2}=1$ and $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=0 \quad \forall i \neq j$
- $\|\vec{v}\|_{2}^{2}=\vec{v}^{T} \vec{v}$ and $(A B)^{T}=B^{T} A^{T}$ where $(\cdot)^{T}$ means transpose, i.e., swapping rows and columns.

SUMMARY

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimensional data points to a smaller dimension m.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we'll use:

- Vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are orthonormal if $\left\|\vec{v}_{i}\right\|_{2}=1$ and $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=0 \quad \forall i \neq j$
- $\|\vec{v}\|_{2}^{2}=\vec{v}^{T} \vec{v}$ and $(A B)^{T}=B^{T} A^{T}$ where $(\cdot)^{T}$ means transpose, i.e., swapping rows and columns.
- A set of vectors \mathcal{B} is a basis for a set of vectors \mathcal{V}, if every vector in \mathcal{V} is a linear combination of vectors in \mathcal{B}.

SUMMARY

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimensional data points to a smaller dimension m.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

Will be using a fair amount of linear algebra. Today we'll use:

- Vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are orthonormal if $\left\|\vec{v}_{i}\right\|_{2}=1$ and $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=0 \quad \forall i \neq j$
- $\|\vec{v}\|_{2}^{2}=\vec{v}^{T} \vec{v}$ and $(A B)^{T}=B^{T} A^{T}$ where $(\cdot)^{T}$ means transpose, i.e., swapping rows and columns.
- A set of vectors \mathcal{B} is a basis for a set of vectors \mathcal{V}, if every vector in \mathcal{V} is a linear combination of vectors in \mathcal{B}.
- The dimension of \mathcal{V} is the size of its smallest basis.

EMBEDDING WITH ASSUMPTIONS

Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.
d-dimensional space

EMBEDDING WITH ASSUMPTIONS

Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. d-dimensional space

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_{i}, \vec{x}_{j} :

$$
\left\|\mathbf{V}^{\top} \vec{x}_{i}-\mathbf{V}^{\top} \vec{x}_{j}\right\|_{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

EMBEDDING WITH ASSUMPTIONS

Assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in some k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. d-dimensional space

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_{i}, \vec{x}_{j} :

$$
\left\|\mathbf{V}^{\top} \vec{x}_{i}-\mathbf{V}^{\top} \vec{x}_{j}\right\|_{2}=\left\|\vec{x}_{i}-\vec{x}_{j}\right\|_{2}
$$

That is, $\mathbf{V}^{T} \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_{1}, \ldots, \vec{x}_{n}$ into k dimensions with no distortion.

DOT PRODUCT TRANSFORMATION

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$
\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}=\|\vec{y}\|_{2} .
$$

Proof:

DOT PRODUCT TRANSFORMATION

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$
\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}=\|\vec{y}\|_{2} .
$$

Proof:

- If $\vec{y}=\sum_{i} c_{i} \vec{v}_{i}$ then $\vec{y}=\mathbf{V} \vec{c}$ where $\vec{c}^{T}=\left(c_{1}, \ldots, c_{k}\right)$

DOT PRODUCT TRANSFORMATION

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$
\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}=\|\vec{y}\|_{2} .
$$

Proof:

- If $\vec{y}=\sum_{i} c_{i} \vec{v}_{i}$ then $\vec{y}=\mathbf{V} \vec{c}$ where $\vec{c}^{T}=\left(c_{1}, \ldots, c_{k}\right)$
- $\|\vec{y}\|_{2}^{2}=\vec{y}^{\top} \vec{y}$

DOT PRODUCT TRANSFORMATION

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$
\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}=\|\vec{y}\|_{2} .
$$

Proof:

- If $\vec{y}=\sum_{i} c_{i} \vec{v}_{i}$ then $\vec{y}=\mathbf{V} \vec{c}$ where $\vec{c}^{T}=\left(c_{1}, \ldots, c_{k}\right)$
- $\|\vec{y}\|_{2}^{2}=\vec{y}^{\top} \vec{y}=(\mathbf{V} \vec{c})^{T}(\mathbf{V} \vec{c})$

DOT PRODUCT TRANSFORMATION

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$
\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}=\|\vec{y}\|_{2} .
$$

Proof:

- If $\vec{y}=\sum_{i} c_{i} \vec{v}_{i}$ then $\vec{y}=\mathbf{V} \vec{c}$ where $\vec{c}^{T}=\left(c_{1}, \ldots, c_{k}\right)$
- $\|\vec{y}\|_{2}^{2}=\vec{y}^{T} \vec{y}=(\mathbf{V} \vec{c})^{T}(\mathbf{V} \vec{c})=\vec{c}^{T} \mathbf{V}^{T} \mathbf{V} \vec{c}$

DOT PRODUCT TRANSFORMATION

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$
\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}=\|\vec{y}\|_{2} .
$$

Proof:

- If $\vec{y}=\sum_{i} c_{i} \vec{v}_{i}$ then $\vec{y}=\mathbf{V} \vec{c}$ where $\vec{c}^{T}=\left(c_{1}, \ldots, c_{k}\right)$
- $\|\vec{y}\|_{2}^{2}=\vec{y}^{T} \vec{y}=(\mathbf{V} \vec{c})^{T}(\mathbf{V} \vec{c})=\vec{c}^{\top} \mathbf{V}^{\top} \mathbf{V} \vec{c}$
- $\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}^{2}=\left(\mathbf{V}^{\top} \vec{y}\right)^{T}\left(\mathbf{V}^{\top} \vec{y}\right)=\vec{y}^{\top} \mathbf{V} \mathbf{V}^{\top} \vec{y}$

DOT PRODUCT TRANSFORMATION

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$
\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}=\|\vec{y}\|_{2} .
$$

Proof:

- If $\vec{y}=\sum_{i} c_{i} \vec{v}_{i}$ then $\vec{y}=\mathbf{V} \vec{c}$ where $\vec{c}^{T}=\left(c_{1}, \ldots, c_{k}\right)$
- $\|\vec{y}\|_{2}^{2}=\vec{y}^{T} \vec{y}=(\mathbf{V} \vec{c})^{T}(\mathbf{V} \vec{c})=\vec{c}^{T} \mathbf{V}^{T} \mathbf{V} \vec{c}$
- $\left\|\mathbf{V}^{T} \vec{y}\right\|_{2}^{2}=\left(\mathbf{V}^{T} \vec{y}\right)^{T}\left(\mathbf{V}^{\top} \vec{y}\right)=\vec{y}^{\top} \mathbf{V} \mathbf{V}^{\top} \vec{y}=\vec{c}^{\top} \mathbf{V}^{\top} \mathbf{V} \mathbf{V}^{\top} \mathbf{V} \vec{c}$

DOT PRODUCT TRANSFORMATION

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$
\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}=\|\vec{y}\|_{2} .
$$

Proof:

- If $\vec{y}=\sum_{i} c_{i} \vec{v}_{i}$ then $\vec{y}=\mathbf{V} \vec{c}$ where $\vec{c}^{T}=\left(c_{1}, \ldots, c_{k}\right)$
- $\|\vec{y}\|_{2}^{2}=\vec{y}^{T} \vec{y}=(\mathbf{V} \vec{c})^{T}(\mathbf{V} \vec{c})=\vec{c}^{T} \mathbf{V}^{T} \mathbf{V} \vec{c}$
- $\left\|\mathbf{V}^{T} \vec{y}\right\|_{2}^{2}=\left(\mathbf{V}^{T} \vec{y}\right)^{T}\left(\mathbf{V}^{\top} \vec{y}\right)=\vec{y}^{\top} \mathbf{V} \mathbf{V}^{\top} \vec{y}=\vec{c}^{T} \mathbf{V}^{\top} \mathbf{V} \mathbf{V}^{T} \mathbf{V} \vec{c}$
- But $\mathbf{V}^{\top} \mathbf{V}=$ I

DOT PRODUCT TRANSFORMATION

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$
\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}=\|\vec{y}\|_{2} .
$$

Proof:

- If $\vec{y}=\sum_{i} c_{i} \vec{v}_{i}$ then $\vec{y}=\mathbf{V} \vec{c}$ where $\vec{c}^{T}=\left(c_{1}, \ldots, c_{k}\right)$
- $\|\vec{y}\|_{2}^{2}=\vec{y}^{T} \vec{y}=(\mathbf{V} \vec{c})^{T}(\mathbf{V} \vec{c})=\vec{c}^{\top} \mathbf{V}^{\top} \mathbf{V} \vec{c}$
- $\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}^{2}=\left(\mathbf{V}^{\top} \vec{y}\right)^{T}\left(\mathbf{V}^{\top} \vec{y}\right)=\vec{y}^{\top} \mathbf{V} \mathbf{V}^{\top} \vec{y}=\vec{c}^{\top} \mathbf{V}^{\top} \mathbf{V} \mathbf{V}^{T} \mathbf{V} \vec{c}$
- But $\mathbf{V}^{\top} \mathbf{V}=$ I since

$$
\left[\mathbf{V}^{T} \mathbf{V}\right]_{i, j}=\vec{v}_{i}^{T} \vec{v}_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

DOT PRODUCT TRANSFORMATION

Claim: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$
\left\|\mathbf{V}^{\top} \vec{y}\right\|_{2}=\|\vec{y}\|_{2} .
$$

Proof:

- If $\vec{y}=\sum_{i} c_{i} \vec{v}_{i}$ then $\vec{y}=\mathbf{V} \vec{c}$ where $\vec{c}^{T}=\left(c_{1}, \ldots, c_{k}\right)$
- $\|\vec{y}\|_{2}^{2}=\vec{y}^{\top} \vec{y}=(\mathbf{V} \vec{c})^{T}(\mathbf{V} \vec{c})=\vec{c}^{\top} \mathbf{V}^{\top} \mathbf{V} \vec{c}$
- $\left\|\mathbf{V}^{T} \vec{y}\right\|_{2}^{2}=\left(\mathbf{V}^{T} \vec{y}\right)^{T}\left(\mathbf{V}^{T} \vec{y}\right)=\vec{y}^{\top} \mathbf{V} \mathbf{V}^{\top} \vec{y}=\vec{c}^{T} \mathbf{V}^{\top} \mathbf{V} \mathbf{V}^{\top} \mathbf{V} \vec{c}$
- But $\mathbf{V}^{\top} \mathbf{V}=$ I since

$$
\left[\mathbf{V}^{\top} \mathbf{V}\right]_{i, j}=\vec{v}_{i}^{T} \vec{v}_{j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

- So $\|\vec{y}\|_{2}^{2}=\vec{c}^{\top} \vec{c}=\left\|\mathbf{V}^{T} \vec{y}\right\|_{2}^{2}$.

EMBEDDING WITH ASSUMPTIONS

Now assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.
d-dimensional space

EMBEDDING WITH ASSUMPTIONS

Now assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.
d-dimensional space

EMBEDDING WITH ASSUMPTIONS

Now assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{v}_{1}, \ldots, \overrightarrow{v_{k}}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^{\top} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$.

EMBEDDING WITH ASSUMPTIONS

Now assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{v}_{1}, \ldots, \overrightarrow{v_{k}}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^{T} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$. This is the key idea behind low-rank approximation and principal component analysis (PCA).

EMBEDDING WITH ASSUMPTIONS

Now assume that data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}.

Letting $\vec{v}_{1}, \ldots, \overrightarrow{v_{k}}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^{T} \vec{x}_{i} \in \mathbb{R}^{k}$ is still a good embedding for $x_{i} \in \mathbb{R}^{d}$. This is the key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and \mathbf{V} ?
- How good is the embedding?

LOW-RANK FACTORIZATION

- Every data point \vec{x}_{i} (row of \mathbf{X}) can be written as

$$
\vec{x}_{i}=\mathbf{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k}
$$

LOW-RANK FACTORIZATION

- Every data point \vec{x}_{i} (row of \mathbf{X}) can be written as

$$
\vec{x}_{i}=\mathbf{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k}
$$

LOW-RANK FACTORIZATION

- Every data point \vec{x}_{i} (row of \mathbf{X}) can be written as

$$
\vec{x}_{i}=\mathbf{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k}
$$

- X can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.

LOW-RANK FACTORIZATION

- Every data point \vec{x}_{i} (row of \mathbf{X}) can be written as

$$
\vec{x}_{i}=\mathbf{V} \vec{c}_{i}=c_{i, 1} \cdot \vec{v}_{1}+\ldots+c_{i, k} \cdot \vec{v}_{k}
$$

- \mathbf{X} can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of \mathbf{X} are spanned by k vectors: the columns of $\mathbf{V} \Longrightarrow$ the columns of \mathbf{X} are spanned by k vectors: the columns of \mathbf{C}.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X}=\mathbf{C V}^{T}$.

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}:$ data points, $\mathbf{X} \in \mathbb{R}^{n \times d}:$ data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \overrightarrow{v_{k}}$.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X}=\mathbf{C V}^{T}$.

Exercise: What is this coefficient matrix \mathbf{C} ? Hint: Use that $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X}=\mathbf{C V}^{T}$.

Exercise: What is this coefficient matrix \mathbf{C} ? Hint: Use that $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$.

- $\mathbf{X}=\mathbf{C V}{ }^{T} \Longrightarrow \mathbf{X V}=\mathbf{C V}^{T} \mathbf{V}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X}=\mathbf{C V}^{T}$.

Exercise: What is this coefficient matrix \mathbf{C} ? Hint: Use that $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$.

- $\mathbf{X}=\mathbf{C V}{ }^{T} \Longrightarrow \mathbf{X V}=\mathbf{C V}^{\top} \mathbf{V} \Longrightarrow \mathbf{X V}=\mathbf{C}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$.

LOW-RANK FACTORIZATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X}=\mathbf{C V}^{T}$.

Exercise: What is this coefficient matrix \mathbf{C} ? Hint: Use that $\mathbf{V}^{\top} \mathbf{V}=\mathbf{I}$.

- $\mathbf{X}=\mathbf{C V}{ }^{T} \Longrightarrow \mathbf{X V}=\mathbf{C} \mathbf{V}^{\top} \mathbf{V} \Longrightarrow \mathbf{X V}=\mathbf{C}$
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{k}}$.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathbf{X}=\mathbf{C V}^{T}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthonormal basis for subspace \mathcal{V}. $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \overrightarrow{v_{k}}$.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathbf{X}=\mathbf{X} \mathbf{V} \mathbf{V}^{T}
$$

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthonormal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathbf{X}=\mathbf{X} \mathbf{V} \mathbf{V}^{T} .
$$

- $\mathbf{V} \mathbf{V}^{T}$ is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$) onto the subspace \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthonormal basis for subspace \mathcal{V}. $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \overrightarrow{v_{k}}$.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathbf{X}=\mathbf{X} \mathbf{V} \mathbf{V}^{\top} .
$$

- $\mathbf{V} \mathbf{V}^{T}$ is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$) onto the subspace \mathcal{V}.
d-dimensional space

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthonormal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathbf{X}=\mathbf{X} \mathbf{V} \mathbf{V}^{\top} .
$$

- $\mathbf{V} \mathbf{V}^{T}$ is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$) onto the subspace \mathcal{V}.
d-dimensional space

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthonormal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

PROJECTION VIEW

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$
\mathbf{X}=\mathbf{X} \mathbf{V} \mathbf{V}^{T} .
$$

- $\mathbf{V} \mathbf{V}^{T}$ is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$) onto the subspace \mathcal{V}.
d-dimensional space

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthonormal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK APPROXIMATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathbf{X} \approx \mathbf{X V V}^{\top}
$$

d-dimensional space

LOW-RANK APPROXIMATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathbf{X} \approx \mathbf{X V V}^{\top}
$$

d-dimensional space

Note: $\mathbf{X V V}{ }^{T}$ has rank k. It is a low-rank approximation of \mathbf{X}.

LOW-RANK APPROXIMATION

Claim: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{T}
$$

d-dimensional space

Note: $\mathbf{X V V}{ }^{T}$ has rank k. It is a low-rank approximation of \mathbf{X}. Later we'll show that:

$$
\mathbf{X V} \mathbf{V}^{\boldsymbol{\top}}=\underset{\mathbf{B} \text { with rows in } \mathcal{V}}{\arg \min }\|\mathbf{X}-\mathbf{B}\|_{F}^{2}
$$

where $\|\mathbf{A}\|_{F}$ is defined as $\sqrt{\sum_{i, j} \mathbf{A}_{i, j}^{2}}$.

LOW-RANK APPROXIMATION

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathbf{X} \approx \mathbf{X V} \mathbf{V}^{\top} .
$$

This is the closest approximation to \mathbf{X} with rows in \mathcal{V}).

LOW-RANK APPROXIMATION

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathbf{X} \approx \mathbf{X V} \mathbf{V}^{T}
$$

This is the closest approximation to \mathbf{X} with rows in \mathcal{V}).

- Letting $\left(\mathbf{X V} \mathbf{V}^{T}\right)_{i},\left(\mathbf{X V} \mathbf{V}^{T}\right)_{j}$ be the $i^{\text {th }}$ and $j^{\text {th }}$ projected data points, i.e., the i th and j th rows of $\mathbf{X V} \mathbf{V}^{T}$:

$$
\left\|\left(\mathbf{X} \mathbf{V} \mathbf{V}^{T}\right)_{i}-\left(\mathbf{X} \mathbf{V} \mathbf{V}^{T}\right)_{j}\right\|_{2}=\left\|\left[(\mathbf{X} \mathbf{V})_{i}-(\mathbf{X} \mathbf{V})_{j}\right] \mathbf{V}^{T}\right\|_{2}=\left\|(\mathbf{X} \mathbf{V})_{i}-(\mathbf{X} \mathbf{V})_{j}\right\|_{2}
$$

The first equality uses $\left(\mathbf{X V} \mathbf{V}^{T}\right)_{i}=(\mathbf{X V})_{i} \mathbf{V}^{T},\left(\mathbf{X V} \mathbf{V}^{T}\right)_{j}=(\mathbf{X V})_{j} \mathbf{V}^{T}$ and the second equality uses the orthonormality of the columns of \mathbf{V}, i.e., for any row vector a

$$
\left\|\mathbf{a} \mathbf{V}^{T}\right\|_{2}^{2}=\left(\mathbf{a} \mathbf{V}^{T}\right)\left(\mathbf{a} \mathbf{V}^{T}\right)^{T}=\mathbf{a} \mathbf{V}^{T} \mathbf{V} \mathbf{a}^{T}=\mathbf{a} \mathbf{a}^{T}=\|\mathbf{a}\|_{2}^{2}
$$

LOW-RANK APPROXIMATION

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathbf{X} \approx \mathbf{X V} \mathbf{V}^{T}
$$

This is the closest approximation to \mathbf{X} with rows in \mathcal{V}).

- Letting $\left(\mathbf{X V} \mathbf{V}^{T}\right)_{i},\left(\mathbf{X V} \mathbf{V}^{T}\right)_{j}$ be the $i^{\text {th }}$ and $j^{\text {th }}$ projected data points, i.e., the i th and j th rows of $\mathbf{X V} \mathbf{V}^{T}$:

$$
\left\|\left(\mathbf{X} \mathbf{V} \mathbf{V}^{T}\right)_{i}-\left(\mathbf{X} \mathbf{V} \mathbf{V}^{T}\right)_{j}\right\|_{2}=\left\|\left[(\mathbf{X} \mathbf{V})_{i}-(\mathbf{X} \mathbf{V})_{j}\right] \mathbf{V}^{T}\right\|_{2}=\left\|(\mathbf{X} \mathbf{V})_{i}-(\mathbf{X} \mathbf{V})_{j}\right\|_{2}
$$

The first equality uses $\left(\mathbf{X V} \mathbf{V}^{T}\right)_{i}=(\mathbf{X V})_{i} \mathbf{V}^{T},\left(\mathbf{X V} \mathbf{V}^{T}\right)_{j}=(\mathbf{X V})_{j} \mathbf{V}^{T}$ and the second equality uses the orthonormality of the columns of \mathbf{V}, i.e., for any row vector a

$$
\left\|\mathbf{a} \mathbf{V}^{T}\right\|_{2}^{2}=\left(\mathbf{a} \mathbf{V}^{T}\right)\left(\mathbf{a} \mathbf{V}^{T}\right)^{T}=\mathbf{a} \mathbf{V}^{T} \mathbf{V} \mathbf{a}^{T}=\mathbf{a} \mathbf{a}^{T}=\|\mathbf{a}\|_{2}^{2}
$$

- Can use $\mathbf{X V} \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

LOW-RANK APPROXIMATION

So Far: If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$
\mathbf{X} \approx \mathbf{X V} \mathbf{V}^{T}
$$

This is the closest approximation to \mathbf{X} with rows in \mathcal{V}).

- Letting $\left(\mathbf{X V} \mathbf{V}^{T}\right)_{i},\left(\mathbf{X V} \mathbf{V}^{T}\right)_{j}$ be the $i^{\text {th }}$ and $j^{\text {th }}$ projected data points, i.e., the i th and j th rows of $\mathbf{X V} \mathbf{V}^{T}$:

$$
\left\|\left(\mathbf{X} \mathbf{V} \mathbf{V}^{T}\right)_{i}-\left(\mathbf{X} \mathbf{V} \mathbf{V}^{T}\right)_{j}\right\|_{2}=\left\|\left[(\mathbf{X} \mathbf{V})_{i}-(\mathbf{X} \mathbf{V})_{j}\right] \mathbf{V}^{T}\right\|_{2}=\left\|(\mathbf{X} \mathbf{V})_{i}-(\mathbf{X} \mathbf{V})_{j}\right\|_{2}
$$

The first equality uses $\left(\mathbf{X V} \mathbf{V}^{T}\right)_{i}=(\mathbf{X V})_{i} \mathbf{V}^{T},\left(\mathbf{X V} \mathbf{V}^{T}\right)_{j}=(\mathbf{X V})_{j} \mathbf{V}^{T}$ and the second equality uses the orthonormality of the columns of \mathbf{V}, i.e., for any row vector a

$$
\left\|\mathbf{a} \mathbf{V}^{T}\right\|_{2}^{2}=\left(\mathbf{a} \mathbf{V}^{T}\right)\left(\mathbf{a} \mathbf{V}^{T}\right)^{T}=\mathbf{a} \mathbf{V}^{T} \mathbf{V} \mathbf{a}^{T}=\mathbf{a} \mathbf{a}^{T}=\|\mathbf{a}\|_{2}^{2}
$$

- Can use $\mathbf{X V} \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Next Time: How to find the subspace \mathcal{V} and correspondingly \mathbf{V}.

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- The rows of \mathbf{X} can be approximately reconstructed from a basis of k vectors.

A STEP BACK: WHY LOW-RANK APPROXIMATION?

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- The rows of \mathbf{X} can be approximately reconstructed from a basis of k vectors.

DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors.

DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
.	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	
home n	5	3.5	3600	3	450,000	450,000

DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-		
home n	5	3.5	3600	3	450,000	450,000

DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
.	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	
home n	5	3.5	3600	3	450,000	450,000

DUAL VIEW OF LOW-RANK APPROXIMATION

Question: Why might we expect $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$ to lie close to a k-dimensional subspace?

- Equivalently, the columns of \mathbf{X} are approx. spanned by k vectors.

Linearly Dependent Variables:

	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	-	-	-	-
-	-	-	-	-	-	
-	-	-	-	-	-	-
home n	5	3.5	3600	3	450,000	450,000

