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last class: embedding with assumptions

Set Up: Assume that data points ~x1, . . . , ~xn ∈ Rd lie in some k-dimensional

subspace V of Rd .

Let ~v1, . . . , ~vk be an orthonormal basis for V and V ∈ Rd×k be the matrix with

these vectors as its columns.

‖VT~xi − VT~xj‖22 = ‖~xi − ~xj‖22.

Letting x̃i = VT~xi , we have a perfect embedding from V into Rk .
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last class: projection view

Warm-Up: If ~x1, . . . , ~xn lie in a k-dimensional subspace V with orthonormal

basis V ∈ Rd×k , the data matrix can be written as

X = XVVT = CVT

• VVT is a projection matrix, which projects the rows of X (the data points

~x1, . . . , ~xn) onto the subspace V.

~x1, . . . , ~xn ∈ Rd : data points, X ∈ Rn×d : data matrix, ~v1, . . . , ~vk ∈ Rd : orthogonal

basis for subspace V. V ∈ Rd×k : matrix with columns ~v1, . . . , ~vk .
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embedding with assumptions

Assume data points ~x1, . . . , ~xn lie close to some k-dimensional subspace V:

Letting ~v1, . . . , ~vk be an orthonormal basis for V and V ∈ Rd×k be the matrix

with these vectors as its columns, VT~xi ∈ Rk is still a good embedding for

xi ∈ Rd and XVVT is still a good approximation for X in the sense:

XVVT = arg min
B with rows in V

‖X− B‖2F .

Will show first show this and then investigate how do we find V and V?
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properties of projection matrices

Exercise 1 : Show that VVT is idempotent. I.e., for any ~y ∈ Rd :

(VVT )(VVT )~y = (VVT )~y

Exercise 2: The projection is orthogonal to its complement: For any

~y ∈ Rd , 〈VVT~y , ~y − VVT~y〉 = 0

Implies the Pythagorean Theorem: Show that for any ~y ∈ Rd ,

‖~y‖22 = ‖(VVT )~y‖22 + ‖~y − (VVT )~y‖22.

Follows since ~y = (~y − (VVT )~y) + (VVT )~y and

‖~a + ~b‖22 = ‖~a‖22 + ‖~b‖22 + 2〈~a, ~b〉 .
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projection vector is closest point in subspace

Let V ∈ Rn×k have orthonormal columns and let ~y ∈ Rn. Then the

Pythagorean Theorem proves that VVT~y is the closest vector to ~y that

can be expressed as a linear combination of the columns of V

• Apply Pythagorus to ~y − ~z for arbitrary ~z ∈ Rn:

‖~y − ~z‖22 = ‖VVT (~y − ~z)‖22 + ‖~y − ~z − VVT (~y − ~z)‖22
= ‖VVT~y − VVT~z‖22 + ‖~y − VVT~y + ~z − VVT~z‖22.

• If ~z = V~c for some ~c ∈ Rk , then VVT~z = VVTV~c = V~c = ~z and the

above simplifies to

‖VVT~y − ~z‖22 + ‖~y − VVT~y‖22

• To minimize this, set ~z = VVT~y .
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best fit subspace

If ~x1, . . . , ~xn are close to a k-dimensional subspace V with orthonormal basis

V ∈ Rd×k , the data matrix can be approximated as XVVT and XV gives

optimal embedding of X in V. How do we find V (equivalently V)?

‖X− XVVT‖2F = ‖XT − VVTXT‖2F

=
n∑

i=1

‖~xi − VVT~xi‖22

=
n∑

i=1

‖~xi‖22 − ‖VVT~xi‖22

So minimizing ‖X− XVVT‖2F is the same as maximizing∑
i

‖VVT~xi‖22 =
∑
i

~xT
i VVTVVT~xi =

∑
i

‖VT~xi‖22
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solution via eigendecomposition

V minimizing ‖X− XVVT‖2F is given by:

arg max
orthonormal V∈Rd×k

n∑
i=1

‖VT~xi‖22 =
k∑

j=1

n∑
i=1

〈~vj , ~xi 〉2

=
k∑

j=1

‖X~vj‖22

Surprisingly, can find the columns of V, ~v1, . . . , ~vk greedily.

~v1 = arg max
~v with ‖v‖2=1

‖X~v‖22.

~v2 = arg max
~v with ‖v‖2=1, 〈~v,~v1〉=0

~vTXTX~v .

. . .

~vk = arg max
~v with ‖v‖2=1, 〈~v,~vj 〉=0 ∀j<k

~vTXTX~v .

These are exactly the top k eigenvectors of XTX.

~x1, . . . , ~xn ∈ Rd : data points, X ∈ Rn×d : data matrix, ~v1, . . . , ~vk ∈ Rd : orthogonal

basis for subspace V. V ∈ Rd×k : matrix with columns ~v1, . . . , ~vk .
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eigenvectors and eigendecomposition

Eigenvector: ~x ∈ Rd is an eigenvector of a matrix A ∈ Rd×d if A~x = λ~x

for some scalar λ (the eigenvalue corresponding to ~x).

• That is, A just ‘stretches’ x .

• If A is symmetric, it has d orthonormal eigenvectors ~v1, . . . , ~vd . Let

V ∈ Rd×d have these vectors as columns and Λ be the diagonal matrix

with corresponding eigenvalues on the diagonal.

AV =

 | | | |
A~v1 A~v2 · · · A~vd
| | | |



=

 | | | |
λ1~v1 λ2~v2 · · · λ~vd
| | | |

 = VΛ

Yields eigendecomposition: AVVT = A = VΛVT

where the first

inequality follows since rows of A are in span of the eigenvectors.
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review: eigenvectors and eigendecomposition

Typically order the eigenvectors in decreasing order:

λ1 ≥ λ2 ≥ . . . ≥ λd
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courant-fischer principal

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via

the greedy optimization:

~v1 = arg max
~v with ‖v‖2=1

~vTA~v .

~v2 = arg max
~v with ‖v‖2=1, 〈~v,~v1〉=0

~vTA~v .

. . .

~vd = arg max
~v with ‖v‖2=1, 〈~v,~vj 〉=0 ∀j<d

~vTA~v .

• ~vT
j A~vj = λj · ~vT

j ~vj = λj , the j th largest eigenvalue.

• The first k eigenvectors of XTX (corresponding to the largest k eigenvalues)

are exactly the directions of greatest “variance” in X that we use for

low-rank approximation. We’ll talk more about this next time.
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low-rank approximation. We’ll talk more about this next time.
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