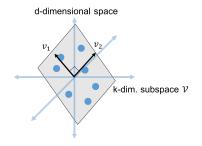
COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor

Lecture 14

LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points $\vec{x_1}, \ldots, \vec{x_n} \in \mathbb{R}^d$ lie in some *k*-dimensional subspace \mathcal{V} of \mathbb{R}^d .



Let $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2^2 = \|\vec{x}_i - \vec{x}_j\|_2^2.$$

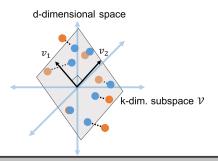
Letting $\tilde{x}_i = \mathbf{V}^T \vec{x}_i$, we have a perfect embedding from \mathcal{V} into \mathbb{R}^k .

LAST CLASS: PROJECTION VIEW

Warm-Up: If $\vec{x_1}, \ldots, \vec{x_n}$ lie in a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

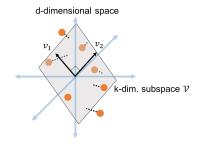
 $\mathbf{X} = \mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{C}\mathbf{V}^{\mathsf{T}}$

• **VV**^T is a projection matrix, which projects the rows of **X** (the data points $\vec{x}_1, \ldots, \vec{x}_n$) onto the subspace \mathcal{V} .



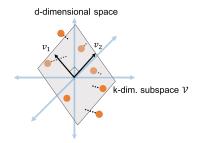
EMBEDDING WITH ASSUMPTIONS

Assume data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to some k-dimensional subspace \mathcal{V} :



EMBEDDING WITH ASSUMPTIONS

Assume data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to some k-dimensional subspace \mathcal{V} :

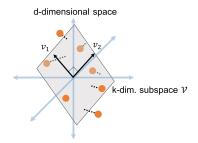


Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $\mathbf{x}_i \in \mathbb{R}^d$ and $\mathbf{X}\mathbf{V}\mathbf{V}^T$ is still a good approximation for \mathbf{X} in the sense:

$$\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}} = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\arg\min} \|\mathbf{X} - \mathbf{B}\|_{F}^{2}$$

EMBEDDING WITH ASSUMPTIONS

Assume data points $\vec{x_1}, \ldots, \vec{x_n}$ lie close to some k-dimensional subspace \mathcal{V} :



Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $\mathbf{x}_i \in \mathbb{R}^d$ and $\mathbf{X}\mathbf{V}\mathbf{V}^T$ is still a good approximation for \mathbf{X} in the sense:

$$\mathbf{X}\mathbf{V}\mathbf{V}^{\mathsf{T}} = \underset{\mathbf{B} \text{ with rows in } \mathcal{V}}{\arg\min} \|\mathbf{X} - \mathbf{B}\|_{F}^{2}.$$

Will show first show this and then investigate how do we find \mathcal{V} and \mathbf{V} ?

Exercise 1 : Show that \mathbf{VV}^{T} is idempotent. I.e., for any $\vec{y} \in \mathbb{R}^{d}$:

$$(\mathbf{V}\mathbf{V}^{\mathsf{T}})(\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y} = (\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}$$

Exercise 1 : Show that VV^T is idempotent. I.e., for any $\vec{y} \in \mathbb{R}^d$:

$$(\mathbf{V}\mathbf{V}^{\mathsf{T}})(\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y} = (\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}$$

Exercise 2: The projection is orthogonal to its complement: For any $\vec{y} \in \mathbb{R}^d$, $\langle \mathbf{V} \mathbf{V}^T \vec{y}, \vec{y} - \mathbf{V} \mathbf{V}^T \vec{y} \rangle = 0$

Exercise 1 : Show that VV^T is idempotent. I.e., for any $\vec{y} \in \mathbb{R}^d$:

$$(\mathbf{V}\mathbf{V}^{\mathsf{T}})(\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y} = (\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}$$

Exercise 2: The projection is orthogonal to its complement: For any $\vec{y} \in \mathbb{R}^d$, $\langle \mathbf{V}\mathbf{V}^T \vec{y}, \vec{y} - \mathbf{V}\mathbf{V}^T \vec{y} \rangle = 0$

Implies the Pythagorean Theorem: Show that for any $\vec{y} \in \mathbb{R}^d$,

$$\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2}.$$

Exercise 1 : Show that VV^T is idempotent. I.e., for any $\vec{y} \in \mathbb{R}^d$:

$$(\mathbf{V}\mathbf{V}^{\mathsf{T}})(\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y} = (\mathbf{V}\mathbf{V}^{\mathsf{T}})\vec{y}$$

Exercise 2: The projection is orthogonal to its complement: For any $\vec{y} \in \mathbb{R}^d$, $\langle \mathbf{V}\mathbf{V}^T \vec{y}, \vec{y} - \mathbf{V}\mathbf{V}^T \vec{y} \rangle = 0$

Implies the Pythagorean Theorem: Show that for any $\vec{y} \in \mathbb{R}^d$,

$$\|\vec{y}\|_{2}^{2} = \|(\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2} + \|\vec{y} - (\mathbf{V}\mathbf{V}^{T})\vec{y}\|_{2}^{2}$$

Follows since $\vec{y} = (\vec{y} - (\mathbf{V}\mathbf{V}^T)\vec{y}) + (\mathbf{V}\mathbf{V}^T)\vec{y}$ and

$$\|\vec{a} + \vec{b}\|_2^2 = \|\vec{a}\|_2^2 + \|\vec{b}\|_2^2 + 2\langle \vec{a}, \vec{b} \rangle$$

Let $\mathbf{V} \in \mathbb{R}^{n \times k}$ have orthonormal columns and let $\vec{y} \in \mathbb{R}^n$. Then the Pythagorean Theorem proves that $\mathbf{V}\mathbf{V}^T\vec{y}$ is the closest vector to \vec{y} that can be expressed as a linear combination of the columns of \mathbf{V}

Let $\mathbf{V} \in \mathbb{R}^{n \times k}$ have orthonormal columns and let $\vec{y} \in \mathbb{R}^{n}$. Then the Pythagorean Theorem proves that $\mathbf{V}\mathbf{V}^{T}\vec{y}$ is the closest vector to \vec{y} that can be expressed as a linear combination of the columns of \mathbf{V}

• Apply Pythagorus to $\vec{y} - \vec{z}$ for arbitrary $\vec{z} \in \mathbb{R}^n$:

$$\begin{aligned} \|\vec{y} - \vec{z}\|_{2}^{2} &= \|\mathbf{V}\mathbf{V}^{T}(\vec{y} - \vec{z})\|_{2}^{2} + \|\vec{y} - \vec{z} - \mathbf{V}\mathbf{V}^{T}(\vec{y} - \vec{z})\|_{2}^{2} \\ &= \|\mathbf{V}\mathbf{V}^{T}\vec{y} - \mathbf{V}\mathbf{V}^{T}\vec{z}\|_{2}^{2} + \|\vec{y} - \mathbf{V}\mathbf{V}^{T}\vec{y} + \vec{z} - \mathbf{V}\mathbf{V}^{T}\vec{z}\|_{2}^{2}. \end{aligned}$$

Let $\mathbf{V} \in \mathbb{R}^{n \times k}$ have orthonormal columns and let $\vec{y} \in \mathbb{R}^{n}$. Then the Pythagorean Theorem proves that $\mathbf{V}\mathbf{V}^{T}\vec{y}$ is the closest vector to \vec{y} that can be expressed as a linear combination of the columns of \mathbf{V}

• Apply Pythagorus to $\vec{y} - \vec{z}$ for arbitrary $\vec{z} \in \mathbb{R}^n$:

$$\begin{aligned} \|\vec{y} - \vec{z}\|_{2}^{2} &= \|\mathbf{V}\mathbf{V}^{T}(\vec{y} - \vec{z})\|_{2}^{2} + \|\vec{y} - \vec{z} - \mathbf{V}\mathbf{V}^{T}(\vec{y} - \vec{z})\|_{2}^{2} \\ &= \|\mathbf{V}\mathbf{V}^{T}\vec{y} - \mathbf{V}\mathbf{V}^{T}\vec{z}\|_{2}^{2} + \|\vec{y} - \mathbf{V}\mathbf{V}^{T}\vec{y} + \vec{z} - \mathbf{V}\mathbf{V}^{T}\vec{z}\|_{2}^{2}. \end{aligned}$$

• If $\vec{z} = \mathbf{V}\vec{c}$ for some $\vec{c} \in \mathbb{R}^k$, then $\mathbf{V}\mathbf{V}^T\vec{z} = \mathbf{V}\mathbf{V}^T\mathbf{V}\vec{c} = \mathbf{V}\vec{c} = \vec{z}$ and the above simplifies to

$$\|\mathbf{V}\mathbf{V}^{T}\vec{y} - \vec{z}\|_{2}^{2} + \|\vec{y} - \mathbf{V}\mathbf{V}^{T}\vec{y}\|_{2}^{2}$$

Let $\mathbf{V} \in \mathbb{R}^{n \times k}$ have orthonormal columns and let $\vec{y} \in \mathbb{R}^n$. Then the Pythagorean Theorem proves that $\mathbf{V}\mathbf{V}^T\vec{y}$ is the closest vector to \vec{y} that can be expressed as a linear combination of the columns of \mathbf{V}

• Apply Pythagorus to $\vec{y} - \vec{z}$ for arbitrary $\vec{z} \in \mathbb{R}^n$:

$$\begin{aligned} \|\vec{y} - \vec{z}\|_{2}^{2} &= \|\mathbf{V}\mathbf{V}^{T}(\vec{y} - \vec{z})\|_{2}^{2} + \|\vec{y} - \vec{z} - \mathbf{V}\mathbf{V}^{T}(\vec{y} - \vec{z})\|_{2}^{2} \\ &= \|\mathbf{V}\mathbf{V}^{T}\vec{y} - \mathbf{V}\mathbf{V}^{T}\vec{z}\|_{2}^{2} + \|\vec{y} - \mathbf{V}\mathbf{V}^{T}\vec{y} + \vec{z} - \mathbf{V}\mathbf{V}^{T}\vec{z}\|_{2}^{2}. \end{aligned}$$

• If $\vec{z} = \mathbf{V}\vec{c}$ for some $\vec{c} \in \mathbb{R}^k$, then $\mathbf{V}\mathbf{V}^T\vec{z} = \mathbf{V}\mathbf{V}^T\mathbf{V}\vec{c} = \mathbf{V}\vec{c} = \vec{z}$ and the above simplifies to

$$\|\mathbf{V}\mathbf{V}^{T}\vec{y} - \vec{z}\|_{2}^{2} + \|\vec{y} - \mathbf{V}\mathbf{V}^{T}\vec{y}\|_{2}^{2}$$

• To minimize this, set $\vec{z} = \mathbf{V}\mathbf{V}^T\vec{y}$.

If $\vec{x_1}, \ldots, \vec{x_n}$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T and \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . How do we find \mathcal{V} (equivalently \mathbf{V})?

If $\vec{x}_1, \ldots, \vec{x}_n$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X}\mathbf{V}\mathbf{V}^T$ and $\mathbf{X}\mathbf{V}$ gives optimal embedding of \mathbf{X} in \mathcal{V} . How do we find \mathcal{V} (equivalently \mathbf{V})?

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{T}\|_{F}^{2} = \|\mathbf{X}^{T} - \mathbf{V}\mathbf{V}^{T}\mathbf{X}^{T}\|_{F}^{2}$$

$$= \sum_{i=1}^{n} \|\vec{x}_{i} - \mathbf{V}\mathbf{V}^{T}\vec{x}_{i}\|_{2}^{2}$$

$$= \sum_{i=1}^{n} \|\vec{x}_{i}\|_{2}^{2} - \|\mathbf{V}\mathbf{V}^{T}\vec{x}_{i}\|_{2}^{2}$$

If $\vec{x_1}, \ldots, \vec{x_n}$ are close to a *k*-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as \mathbf{XVV}^T and \mathbf{XV} gives optimal embedding of \mathbf{X} in \mathcal{V} . How do we find \mathcal{V} (equivalently \mathbf{V})?

$$\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^{T}\|_{F}^{2} = \|\mathbf{X}^{T} - \mathbf{V}\mathbf{V}^{T}\mathbf{X}^{T}\|_{F}^{2}$$
$$= \sum_{i=1}^{n} \|\vec{x}_{i} - \mathbf{V}\mathbf{V}^{T}\vec{x}_{i}\|_{2}^{2}$$
$$= \sum_{i=1}^{n} \|\vec{x}_{i}\|_{2}^{2} - \|\mathbf{V}\mathbf{V}^{T}\vec{x}_{i}\|_{2}^{2}$$

So minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is the same as maximizing

$$\sum_{i} \| \mathbf{V} \mathbf{V}^{\mathsf{T}} \vec{x}_{i} \|_{2}^{2} = \sum_{i} \vec{x}_{i}^{\mathsf{T}} \mathbf{V} \mathbf{V}^{\mathsf{T}} \mathbf{V} \mathbf{V}^{\mathsf{T}} \vec{x}_{i} = \sum_{i} \| \mathbf{V}^{\mathsf{T}} \vec{x}_{i} \|_{2}^{2}$$

 \boldsymbol{V} minimizing $\|\boldsymbol{X}-\boldsymbol{X}\boldsymbol{V}\boldsymbol{V}^{\mathcal{T}}\|_{\textit{F}}^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max} \sum_{i=1}^{n} \|\mathbf{V}^{\mathsf{T}} \vec{x_i}\|_2^2 = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v_j}, \vec{x_i} \rangle^2$$

 \boldsymbol{V} minimizing $\|\boldsymbol{X}-\boldsymbol{X}\boldsymbol{V}\boldsymbol{V}^{\mathcal{T}}\|_{\textit{F}}^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max} \sum_{i=1}^{n} \|\mathbf{V}^{\mathsf{T}} \vec{x}_{i}\|_{2}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v}_{j}, \vec{x}_{i} \rangle^{2} = \sum_{j=1}^{k} \|\mathbf{X} \vec{v}_{j}\|_{2}^{2}$$

 \boldsymbol{V} minimizing $\|\boldsymbol{X}-\boldsymbol{X}\boldsymbol{V}\boldsymbol{V}^{\mathcal{T}}\|_{\textit{F}}^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max} \sum_{i=1}^{n} \|\mathbf{V}^{T} \vec{x_{i}}\|_{2}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v_{j}}, \vec{x_{i}} \rangle^{2} = \sum_{j=1}^{k} \|\mathbf{X} \vec{v_{j}}\|_{2}^{2}$$

Surprisingly, can find the columns of **V**, $\vec{v_1}, \ldots, \vec{v_k}$ greedily.

$$ec{v}_1 = rgmax_{ec{v} ext{ with } \|v\|_2=1} \|\mathbf{X}ec{v}\|_2^2.$$

 \boldsymbol{V} minimizing $\|\boldsymbol{X}-\boldsymbol{X}\boldsymbol{V}\boldsymbol{V}^{\mathcal{T}}\|_{\textit{F}}^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \max} \sum_{i=1}^{n} \|\mathbf{V}^{T} \vec{x_{i}}\|_{2}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v_{j}}, \vec{x_{i}} \rangle^{2} = \sum_{j=1}^{k} \|\mathbf{X} \vec{v_{j}}\|_{2}^{2}$$

Surprisingly, can find the columns of **V**, $\vec{v}_1, \ldots, \vec{v}_k$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2=1}{\arg \max} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

 \boldsymbol{V} minimizing $\|\boldsymbol{X}-\boldsymbol{X}\boldsymbol{V}\boldsymbol{V}^{\mathcal{T}}\|_{\textit{F}}^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\operatorname{arg max}} \sum_{i=1}^{n} \|\mathbf{V}^{T} \vec{x_{i}}\|_{2}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v_{j}}, \vec{x_{i}} \rangle^{2} = \sum_{j=1}^{k} \|\mathbf{X} \vec{v_{j}}\|_{2}^{2}$$

Surprisingly, can find the columns of **V**, $\vec{v_1}, \ldots, \vec{v_k}$ greedily.

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2=1}{\arg \max} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$ec{v}_2 = rgmax_{ec{v} ext{ with } \|v\|_2=1, \ \langle ec{v}, ec{v}_1
angle = 0} ec{v}^T \mathbf{X}^T \mathbf{X} ec{v}.$$

 \boldsymbol{V} minimizing $\|\boldsymbol{X}-\boldsymbol{X}\boldsymbol{V}\boldsymbol{V}^{\mathcal{T}}\|_{\textit{F}}^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\operatorname{arg max}} \sum_{i=1}^{n} \|\mathbf{V}^{T} \vec{x_{i}}\|_{2}^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v_{j}}, \vec{x_{i}} \rangle^{2} = \sum_{j=1}^{k} \|\mathbf{X} \vec{v_{j}}\|_{2}^{2}$$

Surprisingly, can find the columns of **V**, $\vec{v_1}, \ldots, \vec{v_k}$ greedily.

$$\vec{v}_1 = \arg\max_{\vec{v} \text{ with } \|v\|_2 = 1} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_2 = \operatorname*{arg\,max}_{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_{k} = \arg \max_{\vec{v} \text{ with } \|v\|_{2}=1, \ \langle \vec{v}, \vec{v}_{j} \rangle = 0 \ \forall j < k} \vec{v}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v}$$

V minimizing $\|\mathbf{X} - \mathbf{X}\mathbf{V}\mathbf{V}^T\|_F^2$ is given by:

$$\underset{\text{orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\operatorname{arg max}} \sum_{i=1}^{n} \|\mathbf{V}^{\mathsf{T}} \vec{x_i}\|_2^2 = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{v_j}, \vec{x_i} \rangle^2 = \sum_{j=1}^{k} \|\mathbf{X} \vec{v_j}\|_2^2$$

Surprisingly, can find the columns of **V**, $\vec{v_1}, \ldots, \vec{v_k}$ greedily.

$$\vec{v}_1 = \arg\max_{\vec{v} \text{ with } \|v\|_2 = 1} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$\vec{v}_2 = \operatorname*{arg\,max}_{\vec{v} \text{ with } \|v\|_2 = 1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0} \vec{v}^T \mathbf{X}^T \mathbf{X} \vec{v}.$$

$$ec{v}_k = rg\max_{ec{v} ext{ with } \|v\|_2 = 1, \ \langle ec{v}, ec{v}_j
angle = 0 \ \forall j < k} ec{v}^T \mathbf{X}^T \mathbf{X} ec{v}_k$$

. . .

These are exactly the top k eigenvectors of $\mathbf{X}^T \mathbf{X}$.

• That is, **A** just 'stretches' x.

- That is, **A** just 'stretches' x.
- If A is symmetric, it has d orthonormal eigenvectors v₁,..., v_d. Let
 V ∈ ℝ^{d×d} have these vectors as columns and Λ be the diagonal matrix
 with corresponding eigenvalues on the diagonal.

- That is, **A** just 'stretches' x.
- If A is symmetric, it has d orthonormal eigenvectors v₁,..., v_d. Let
 V ∈ ℝ^{d×d} have these vectors as columns and Λ be the diagonal matrix
 with corresponding eigenvalues on the diagonal.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{v_1} & \mathbf{A}\vec{v_2} & \cdots & \mathbf{A}\vec{v_d} \\ | & | & | & | \end{bmatrix}$$

- That is, **A** just 'stretches' x.
- If A is symmetric, it has d orthonormal eigenvectors v₁,..., v_d. Let
 V ∈ ℝ^{d×d} have these vectors as columns and Λ be the diagonal matrix
 with corresponding eigenvalues on the diagonal.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{v}_1 & \mathbf{A}\vec{v}_2 & \cdots & \mathbf{A}\vec{v}_d \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{v}_1 & \lambda_2\vec{v}_2 & \cdots & \lambda\vec{v}_d \\ | & | & | & | \end{bmatrix}$$

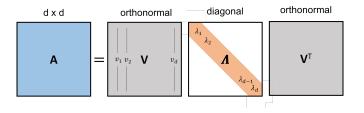
- That is, **A** just 'stretches' x.
- If A is symmetric, it has d orthonormal eigenvectors v₁,..., v_d. Let
 V ∈ ℝ^{d×d} have these vectors as columns and Λ be the diagonal matrix
 with corresponding eigenvalues on the diagonal.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{v_1} & \mathbf{A}\vec{v_2} & \cdots & \mathbf{A}\vec{v_d} \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{v_1} & \lambda_2\vec{v_2} & \cdots & \lambda\vec{v_d} \\ | & | & | & | \end{bmatrix} = \mathbf{V}\mathbf{\Lambda}$$

- That is, **A** just 'stretches' x.
- If A is symmetric, it has d orthonormal eigenvectors v₁,..., v_d. Let
 V ∈ ℝ^{d×d} have these vectors as columns and Λ be the diagonal matrix
 with corresponding eigenvalues on the diagonal.

$$\mathbf{AV} = \begin{bmatrix} | & | & | & | \\ \mathbf{A}\vec{v_1} & \mathbf{A}\vec{v_2} & \cdots & \mathbf{A}\vec{v_d} \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1\vec{v_1} & \lambda_2\vec{v_2} & \cdots & \lambda\vec{v_d} \\ | & | & | & | \end{bmatrix} = \mathbf{V}\mathbf{\Lambda}$$

Yields eigendecomposition: $AVV^T = A = V\Lambda V^T$ where the first inequality follows since rows of **A** are in span of the eigenvectors.



Typically order the eigenvectors in decreasing order:

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$$

Courant-Fischer Principal: For symmetric **A**, the eigenvectors are given via the greedy optimization:

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2=1}{\arg \max} \vec{v}^T \mathbf{A} \vec{v}.$$
$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|v\|_2=1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\arg \max} \vec{v}^T \mathbf{A} \vec{v}.$$
$$\cdots$$
$$\vec{v}_d = \underset{\vec{v} \text{ with } \|v\|_2=1, \ \langle \vec{v}, \vec{v}_i \rangle = 0}{\arg \max} \vec{v}^T \mathbf{A} \vec{v}.$$

Courant-Fischer Principal: For symmetric **A**, the eigenvectors are given via the greedy optimization:

$$\vec{v}_1 = \underset{\vec{v} \text{ with } \|v\|_2=1}{\arg \max} \vec{v}^T \mathbf{A} \vec{v}.$$
$$\vec{v}_2 = \underset{\vec{v} \text{ with } \|v\|_2=1, \ \langle \vec{v}, \vec{v}_1 \rangle = 0}{\arg \max} \vec{v}^T \mathbf{A} \vec{v}.$$
$$\cdots$$
$$\vec{v}_d = \arg \max \qquad \vec{v}^T \mathbf{A} \vec{v}.$$

$$\vec{v}$$
 with $\|v\|_2 = 1$, $\langle \vec{v}, \vec{v}_j \rangle = 0 \quad \forall j < d$

•
$$\vec{v}_j^T \mathbf{A} \vec{v}_j = \lambda_j \cdot \vec{v}_j^T \vec{v}_j = \lambda_j$$
, the j^{th} largest eigenvalue.

Courant-Fischer Principal: For symmetric **A**, the eigenvectors are given via the greedy optimization:

$$\vec{v}_{1} = \underset{\vec{v} \text{ with } \|v\|_{2}=1}{\arg \max} \vec{v}^{T} \mathbf{A} \vec{v}.$$
$$\vec{v}_{2} = \underset{\vec{v} \text{ with } \|v\|_{2}=1, \ \langle \vec{v}, \vec{v}_{1} \rangle = 0}{\arg \max} \vec{v}^{T} \mathbf{A} \vec{v}.$$
$$\cdots$$
$$\vec{v}_{d} = \underset{\vec{v} \text{ with } \|v\|_{2}=1, \ \langle \vec{v}, \vec{v}_{i} \rangle = 0}{\arg \max} \vec{v}^{T} \mathbf{A} \vec{v}.$$

• $\vec{v}_j^T \mathbf{A} \vec{v}_j = \lambda_j \cdot \vec{v}_j^T \vec{v}_j = \lambda_j$, the j^{th} largest eigenvalue.

The first k eigenvectors of X^TX (corresponding to the largest k eigenvalues) are exactly the directions of greatest "variance" in X that we use for low-rank approximation. We'll talk more about this next time.