COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 14



LAST CLASS: EMBEDDING WITH ASSUMPTIONS

Set Up: Assume that data points X1, ..., %, € R? lie in some k-dimensional
subspace V of R?.

d-dimensional space

k-dim. subspace V

Let vi,..., Vk be an orthonormal basis for V and V € RY%k be the matrix with

these vectors as its columns.
V7% = V75|53 = ||% — 5|I3.

Letting Xi = VT)?,-, we have a perfect embedding from V into R¥.



LAST CLASS: PROJECTION VIEW

Warm-Up: If Xi,..., X, lie in a k-dimensional subspace V with orthonormal
basis V € R7*¥, the data matrix can be written as

X=Xwv' =cv’

® VV7 is a projection matrix, which projects the rows of X (the data points
Xi,...,Xn) onto the subspace V.

d-dimensional space

k-dim. subspace V

Xiy-ooy Xn € R?: data points, X € R"%?: data matrix, Vi,.o.,Vk € RY: orthogonal

basis for subspace V. V € R?*k: matrix with columns v, . . ., V.
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d-dimensional space
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Letting ¥, ..., vk be an orthonormal basis for V and V € R?*¥ be the matrix
with these vectors as its columns, VX, € R is still a good embedding for
x; € RY and XVVT is still a good approximation for X in the sense:

XVV' = argmin ||X — BJ|7.

B with rows in V



EMBEDDING WITH ASSUMPTIONS

Assume data points X1, ..., X, lie close to some k-dimensional subspace V:

d-dimensional space

k-dim. subspace V

Letting ¥, ..., vk be an orthonormal basis for V and V € R?*¥ be the matrix
with these vectors as its columns, VX, € R is still a good embedding for
x; € RY and XVVT is still a good approximation for X in the sense:

XVV' = argmin ||X — BJ|7.

B with rows in V

Will show first show this and then investigate how do we find ¥ and V?
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Exercise 1 : Show that VV is idempotent. le., for any y € R:

(VW)W Ty = (VW T)y
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PROPERTIES OF PROJECTION MATRICES

Exercise 1 : Show that VV is idempotent. le., for any y € R:

(VW)W Ty = (VW T)y

Exercise 2: The projection is orthogonal to its complement: For any
yERI (WY 7 —VWW'j) =0

Implies the Pythagorean Theorem: Show that for any y € RY,
1713 = IOV 7S + 117 — (VW )53
Follows since y = (¥ — (VV7)y) + (VV ')y and

17+ blI3 = |3 + |63 +2(4. b) -



PROJECTION VECTOR IS CLOSEST POINT IN SUBSPACE

Let V € R"*k have orthonormal columns and let y € R". Then the
Pythagorean Theorem proves that VV 7y is the closest vector to y that
can be expressed as a linear combination of the columns of V
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Let V € R"*k have orthonormal columns and let y € R". Then the
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PROJECTION VECTOR IS CLOSEST POINT IN SUBSPACE

Let V € R"*k have orthonormal columns and let y € R". Then the
Pythagorean Theorem proves that VV 7y is the closest vector to y that
can be expressed as a linear combination of the columns of V

® Apply Pythagorus to y — Z for arbitrary zZ € R":
T Ti> o oo Tio =
Iy =23 = VW' (y -3+ Iy —Z - VWV (y - 2)|3
=Wy —VWVTZ5 +[ly - VW 7+ Z - VWV Z|3.

e |f 7= V¢ for some ¢ € R¥, then VV'Z=VV'VZ&= V=7 and the
above simplifies to

VW77 — 2|5+ 7 - W53

® To minimize this, set 7= VVTy.
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If Xi,...,X, are close to a k-dimensional subspace V with orthonormal basis
V € R?*K the data matrix can be approximated as XVV and XV gives
optimal embedding of X in V. How do we find V (equivalently V)?
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BEST FIT SUBSPACE

If Xi,...,X, are close to a k-dimensional subspace V with orthonormal basis
V € R?*K the data matrix can be approximated as XVV and XV gives
optimal embedding of X in V. How do we find V (equivalently V)?

X=XV = X7 —wIXT|}

n
= SR - Wk
i=1

n
= D IRIE VvV xS
i=1

So minimizing ||X — XVV||% is the same as maximizing

STIVWTRIE = STRTWIWTE = ST VT3



SOLUTION VIA EIGENDECOMPOSITION

V minimizing || X — XVVT|% is given by:

arg max kaHVT HQ—ZZ (v, %)

orthonormal VERY i—1 j=1 i=1

Xiyoeny Xn € R?: data points, X € R"%?: data matrix, Vi,.o.,Vk € RY: orthogonal
basis for subspace V. V € R?*k: matrix with columns v, . . ., V.
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2
2
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V minimizing || X — XVVT|% is given by:

k
arg max XkZuvT =3 S (757 = 3 X5
j=1

2
2

orthonormal VERY i=1 j=1 i=1
Surprisingly, can find the columns of V, v,..., Vi greedily.
iR 2
Vi = argmax [|XV|]5.

vV with ||v[[2=1

Xiyoooy Xn € R?: data points, X € R"%?: data matrix, Vi,...,Vk € RY: orthogonal
basis for subspace V. V € R?*k: matrix with columns ¥, . . ., V.
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arg max XkZuvT =3 S (757 = 3 X5
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2
2

orthonormal VERY i=1 j=1 i=1
Surprisingly, can find the columns of V, v,..., Vi greedily.
_ STy Ty
vi = argmax Vv X' Xv.

vV with ||v[[2=1

Xiyoooy Xn € R?: data points, X € R"%?: data matrix, Vi,...,Vk € RY: orthogonal
basis for subspace V. V € R?*k: matrix with columns ¥, . . ., V.




SOLUTION VIA EIGENDECOMPOSITION

V minimizing || X — XVVT|% is given by:

k
arg max XkZuvT =3 S (757 = 3 X5
j=1

2
2

orthonormal VERY i=1 j=1 i=1
Surprisingly, can find the columns of V, v,..., Vi greedily.
_ STy Ty
vi = argmax Vv X' Xv.

vV with ||v[[2=1

. Ty Ty =
Vo = arg max v X Xv.
v with |lv]2=1, (V,v4)=0
Xiyoooy Xn € R?: data points, X € R"%?: data matrix, Vi,...,Vk € RY: orthogonal

Rdxk

basis for subspace V. V € : matrix with columns W, . .., Vk.




SOLUTION VIA EIGENDECOMPOSITION

V minimizing || X — XVVT|% is given by:

k
arg max ZHVT =SS @R =S Ixd

2
2
orthonormal V& j=1 i=1

Surprisingly, can find the columns of V, v,..., Vi greedily.

. Ty Ty~
vi = argmax Vv X' Xv.
vV with ||v[[2=1

- Ty Ty~
Vo = arg max v X Xv.
7 with |v]lo=1, (7,7)=0
- Ty Ty~
k= arg max v X' XV.

7 with ||v[2=1, (7,%)=0 Vj<k

Xiyoooy Xn € R?: data points, X € R"%?: data matrix, Vi,...,Vk € RY: orthogonal
basis for subspace V. V € R?*k: matrix with columns ¥, . . ., V.




SOLUTION VIA EIGENDECOMPOSITION

V minimizing || X — XVVT|% is given by:

n k n k
agmax M |IVISE= D (7,77 =) XV
i=1 j=1

orthonormal VERA Xk *, 7 j=1

NN

Surprisingly, can find the columns of V, v,..., Vi greedily.

- STy Ty =
1= argmax vV X' XV.
vV with ||v[[2=1

- Ty Ty~
Vo = arg max v X Xv.
7 with |v]lo=1, (7,7)=0
- Ty Ty~
Vik = arg max v X' XV.

7 with ||v[2=1, (7,%)=0 Vj<k

These are exactly the top k eigenvectors of X' X.

LV E RY: orthogonal

Ri,..., %, € R data points, X € R"™9: data matrix, v, ..
RI*K: matrix with columns iy ooy Vk.

basis for subspace V. V €




EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € RY*9 if AX = \X
for some scalar A (the eigenvalue corresponding to X).
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EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: X € R? is an eigenvector of a matrix A € RY*9 if AX = \X
for some scalar A (the eigenvalue corresponding to X).

® That is, A just ‘stretches’ x.

® |f A is symmetric, it has d orthonormal eigenvectors v, ..., Vy. Let
V € R9%9 have these vectors as columns and A be the diagonal matrix
with corresponding eigenvalues on the diagonal.

| [ | [
AV = [AV Av - AV = [N Mib - M| = VA

Yields eigendecomposition: AVVT = A = VAV where the first
inequality follows since rows of A are in span of the eigenvectors.



REVIEW: EIGENVECTORS AND EIGENDECOMPOSITION

dxd orthonormal diagonal orthonormal

A
A2

A =| nv, V Va A \A

Ada-1

Typically order the eigenvectors in decreasing order:

M= > 2>y



COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via
the greedy optimization:

- ST A=
Vi = argmax vV AV.
V with [[v]|2=1

S T p =
h = arg max V' AV.
7 with [[vll2=1, (v,7)=0
o ST A=
Vg = arg max vV AV.

7 with [[v[2=1, (7,7)=0 Vj<d

10
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COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via
the greedy optimization:

- ST A=
Vi = argmax vV AV.
V with [[v]|2=1

S T p =
h = arg max V' AV.
7 with [[vll2=1, (v,7)=0
o ST A=
Vg = arg max vV AV.

7 with [[v[2=1, (7,7)=0 Vj<d

VAV = \; - V[V = ), the j™ largest eigenvalue.

The first k eigenvectors of XX (corresponding to the largest k eigenvalues)
are exactly the directions of greatest “variance” in X that we use for
low-rank approximation. We'll talk more about this next time.

10



