COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor

Lecture 15

SUMMARY

Last Classes: Low-Rank Approximation

- When data lies in a k-dimensional subspace \mathcal{V}, we can perfectly embed into k dimensions using an orthonormal span $\mathbf{V} \in \mathbb{R}^{d \times k}$.

SUMMARY

Last Classes: Low-Rank Approximation

- When data lies in a k-dimensional subspace \mathcal{V}, we can perfectly embed into k dimensions using an orthonormal span $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- When data lies close to \mathcal{V}, the optimal embedding in that space is given by projecting onto that space.

$$
\mathbf{X V V} \mathbf{V}^{T}=\underset{\mathbf{B} \text { with rows in } \mathcal{V}}{\arg \min }\|\mathbf{X}-\mathbf{B}\|_{F}^{2} .
$$

where $\mathbf{V} \mathbf{V}^{T} \in \mathbb{R}^{d \times d}$ is called the projection matrix.

SUMMARY

Last Classes: Low-Rank Approximation

- When data lies in a k-dimensional subspace \mathcal{V}, we can perfectly embed into k dimensions using an orthonormal span $\mathbf{V} \in \mathbb{R}^{d \times k}$.
- When data lies close to \mathcal{V}, the optimal embedding in that space is given by projecting onto that space.

$$
\mathbf{X V V} \mathbf{V}^{T}=\underset{\mathbf{B} \text { with rows in } \mathcal{V}}{\arg \min }\|\mathbf{X}-\mathbf{B}\|_{F}^{2} .
$$

where $\mathbf{V} \mathbf{V}^{T} \in \mathbb{R}^{d \times d}$ is called the projection matrix.

- The best subspace \mathcal{V} is the subspace spanned by the top k eigenvectors of $\mathbf{X}^{T} \mathbf{X}$. How good is this approximation?

RECAP: BASIC SET UP

Reminder of Set Up: Assume that $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{V} \mathbf{V}^{T} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V}.
- $\mathbf{X}\left(\mathbf{V} \mathbf{V}^{T}\right)$ gives the closest approximation to \mathbf{X} with rows in \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

RECAP: BASIC SET UP

Reminder of Set Up: Assume that $\vec{x}_{1}, \ldots, \vec{x}_{n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^{d}. Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ be the data matrix.

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns.

- $\mathbf{V} \mathbf{V}^{T} \in \mathbb{R}^{d \times d}$ is the projection matrix onto \mathcal{V}.
- $\mathbf{X}\left(\mathbf{V} \mathbf{V}^{T}\right)$ gives the closest approximation to \mathbf{X} with rows in \mathcal{V}.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: orthogonal basis for subspace $\mathcal{V} . \mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

RECAP: BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X V} \mathbf{V}^{T}$. XV gives optimal embedding of \mathbf{X} in \mathcal{V}. How do we find \mathcal{V} (equivalently orthonormal $\vec{v}_{1}, \ldots \vec{v}_{k}$)?

RECAP: BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X V} \mathbf{V}^{T}$. XV gives optimal embedding of \mathbf{X} in \mathcal{V}. How do we find \mathcal{V} (equivalently orthonormal $\vec{v}_{1}, \ldots \vec{v}_{k}$)?

$$
\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathbf{X}-\mathbf{X} \mathbf{V}^{T}\right\|_{F}^{2}=\underset{\text { orthonormal } \vec{v}_{1}, \ldots \vec{v}_{k} \in \mathbb{R}^{d}}{\arg \max } \sum_{j=1}^{k}\left\|\mathbf{X} \vec{v}_{j}\right\|_{2}^{2}
$$

RECAP: BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X V} \mathbf{V}^{T}$. XV gives optimal embedding of \mathbf{X} in \mathcal{V}. How do we find \mathcal{V} (equivalently orthonormal $\vec{v}_{1}, \ldots \vec{v}_{k}$)?

$$
\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathbf{X}-\mathbf{X} \mathbf{V} \mathbf{V}^{T}\right\|_{F}^{2}=\underset{\text { orthonormal } \vec{v}_{1}, \ldots \vec{v}_{k} \in \mathbb{R}^{d}}{\arg \max } \sum_{j=1}^{k}\left\|\mathbf{X} \vec{v}_{j}\right\|_{2}^{2} .
$$

Surprisingly, can choose $\vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.

RECAP: BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X V} \mathbf{V}^{T}$. XV gives optimal embedding of \mathbf{X} in \mathcal{V}. How do we find \mathcal{V} (equivalently orthonormal $\vec{v}_{1}, \ldots \vec{v}_{k}$)?

$$
\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathbf{X}-\mathbf{X} \mathbf{V} \mathbf{V}^{T}\right\|_{F}^{2}=\underset{\text { orthonormal } \vec{v}_{1}, \ldots \vec{v}_{k} \in \mathbb{R}^{d}}{\arg \max } \sum_{j=1}^{k}\left\|\mathbf{X} \vec{v}_{j}\right\|_{2}^{2} .
$$

Surprisingly, can choose $\vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{\top} \mathbf{X}^{T} \mathbf{X} \vec{v}
$$

RECAP: BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X V} \mathbf{V}^{T}$. XV gives optimal embedding of \mathbf{X} in \mathcal{V}. How do we find \mathcal{V} (equivalently orthonormal $\vec{v}_{1}, \ldots \vec{v}_{k}$)?

$$
\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathbf{X}-\mathbf{X} \mathbf{V} \mathbf{V}^{T}\right\|_{F}^{2}=\underset{\text { orthonormal } \vec{v}_{1}, \ldots \vec{v}_{k} \in \mathbb{R}^{d}}{\arg \max } \sum_{j=1}^{k}\left\|\mathbf{X} \overrightarrow{\vec{v}_{j}}\right\|_{2}^{2} .
$$

Surprisingly, can choose $\vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\begin{gathered}
\overrightarrow{v_{1}}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v} \\
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0}{\arg \max } \vec{v}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v} .
\end{gathered}
$$

RECAP: BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X V} \mathbf{V}^{T}$. XV gives optimal embedding of \mathbf{X} in \mathcal{V}. How do we find \mathcal{V} (equivalently orthonormal $\vec{v}_{1}, \ldots \vec{v}_{k}$)?

$$
\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathbf{X}-\mathbf{X} \mathbf{V} \mathbf{V}^{T}\right\|_{F}^{2}=\underset{\text { orthonormal } \vec{v}_{1}, \ldots \vec{v}_{k} \in \mathbb{R}^{d}}{\arg \max } \sum_{j=1}^{k}\left\|\mathbf{X} \overrightarrow{\vec{v}_{j}}\right\|_{2}^{2} .
$$

Surprisingly, can choose $\vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\begin{gathered}
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v} . \\
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0}{\arg \max } \vec{v}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v} . \\
\ldots \\
\vec{v}_{k}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{j}\right\rangle=0}{\arg \max } \forall j<k \\
\vec{v}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v} .
\end{gathered}
$$

RECAP: BEST FIT SUBSPACE

If $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as $\mathbf{X V} \mathbf{V}^{T}$. XV gives optimal embedding of \mathbf{X} in \mathcal{V}. How do we find \mathcal{V} (equivalently orthonormal $\vec{v}_{1}, \ldots \vec{v}_{k}$)?

$$
\underset{\text { orthonormal } \mathbf{V} \in \mathbb{R}^{d \times k}}{\arg \min }\left\|\mathbf{X}-\mathbf{X} \mathbf{V}^{T}\right\|_{F}^{2}=\underset{\text { orthonormal } \vec{v}_{1}, \ldots \vec{v}_{k} \in \mathbb{R}^{d}}{\arg \max } \sum_{j=1}^{k}\left\|\mathbf{X} \vec{v}_{j}\right\|_{2}^{2}
$$

Surprisingly, can choose $\vec{v}_{1}, \ldots, \vec{v}_{k}$ greedily.

$$
\begin{gathered}
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v} . \\
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0}{\arg \max } \vec{v}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v} . \\
\ldots \\
\vec{v}_{k}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{j}\right\rangle=0}{\arg \max } \forall j<k \\
\vec{v}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v} .
\end{gathered}
$$

These are exactly the top k eigenvectors of $\mathbf{X}^{T} \mathbf{X}$.

REVIEW: EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: $\vec{x} \in \mathbb{R}^{d}$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A} \vec{x}=\lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

REVIEW: EIGENVECTORS AND EIGENDECOMPOSITION

Eigenvector: $\vec{x} \in \mathbb{R}^{d}$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A} \vec{x}=\lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.

Eigenvector: $\vec{x} \in \mathbb{R}^{d}$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A} \vec{x}=\lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.
- If \mathbf{A} is symmetric, can find d orthonormal eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{d}$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns and $\boldsymbol{\Lambda}$ be the diagonal matrix with the corresponding eigenvalues on the diagonal.

Eigenvector: $\vec{x} \in \mathbb{R}^{d}$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A} \vec{x}=\lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.
- If \mathbf{A} is symmetric, can find d orthonormal eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{d}$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns and $\boldsymbol{\Lambda}$ be the diagonal matrix with the corresponding eigenvalues on the diagonal.

$$
\mathbf{A} \mathbf{V}=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\mathbf{A} \vec{v}_{1} & \mathbf{A} \vec{v}_{2} & \cdots & \mathbf{A} \vec{v}_{d} \\
\mid & \mid & \mid & \mid
\end{array}\right]
$$

Eigenvector: $\vec{x} \in \mathbb{R}^{d}$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A} \vec{x}=\lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.
- If \mathbf{A} is symmetric, can find d orthonormal eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{d}$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns and $\boldsymbol{\Lambda}$ be the diagonal matrix with the corresponding eigenvalues on the diagonal.

$$
\mathbf{A} \mathbf{V}=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\mathbf{A} \vec{v}_{1} & \mathbf{A} \vec{v}_{2} & \cdots & \mathbf{A} \vec{v}_{d} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\lambda_{1} \vec{v}_{1} & \lambda_{2} \vec{v}_{2} & \cdots & \lambda \vec{v}_{d} \\
\mid & \mid & \mid & \mid
\end{array}\right]
$$

Eigenvector: $\vec{x} \in \mathbb{R}^{d}$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A} \vec{x}=\lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.
- If \mathbf{A} is symmetric, can find d orthonormal eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{d}$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns and $\boldsymbol{\Lambda}$ be the diagonal matrix with the corresponding eigenvalues on the diagonal.

Eigenvector: $\vec{x} \in \mathbb{R}^{d}$ is an eigenvector of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ if $\mathbf{A} \vec{x}=\lambda \vec{x}$ for some scalar λ (the eigenvalue corresponding to \vec{x}).

- That is, A just 'stretches' x.
- If \mathbf{A} is symmetric, can find d orthonormal eigenvectors $\vec{v}_{1}, \ldots, \vec{v}_{d}$. Let $\mathbf{V} \in \mathbb{R}^{d \times d}$ have these vectors as columns and $\boldsymbol{\Lambda}$ be the diagonal matrix with the corresponding eigenvalues on the diagonal.

Yields eigendecomposition: $\mathbf{A V V}{ }^{\top}=\mathbf{A}=V \wedge \mathbf{V}^{\top}$ where the first inequality follows since rows of \mathbf{A} are in span of the eigenvectors.

REVIEW: EIGENVECTORS AND EIGENDECOMPOSITION

Typically order the eigenvectors in decreasing order:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{d}
$$

COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via the greedy optimization:

$$
\begin{gathered}
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{T} \mathbf{A} \vec{v} . \\
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0}{\arg \max } \vec{v}^{T} \mathbf{A} \vec{v} . \\
\cdots \\
\vec{v}_{d}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{j}\right\rangle=0}{\arg \max _{j j<d}} \vec{v}^{T} \mathbf{A} \vec{v} .
\end{gathered}
$$

COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via the greedy optimization:

$$
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{T} \mathbf{A} \vec{v}
$$

$$
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0}{\arg \max } \vec{v}^{T} \mathbf{A} \vec{v} .
$$

- $\vec{v}_{j}^{T} \mathbf{A} \vec{v}_{j}=\lambda_{j} \cdot \vec{v}_{j}^{T} \vec{v}_{j}=\lambda_{j}$, the $j^{\text {th }}$ largest eigenvalue.

COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via the greedy optimization:

$$
\begin{gathered}
\vec{v}_{1}=\underset{\vec{v} \text { with }\|v\|_{2}=1}{\arg \max } \vec{v}^{T} \mathbf{A} \vec{v} . \\
\vec{v}_{2}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{1}\right\rangle=0}{\arg \max } \vec{v}^{T} \mathbf{A} \vec{v} .
\end{gathered}
$$

$$
\vec{v}_{d}=\underset{\vec{v} \text { with }\|v\|_{2}=1,\left\langle\vec{v}, \vec{v}_{j}\right\rangle=0}{\arg \max _{\forall j<d}} \vec{v}^{T} \mathbf{A} \vec{v} .
$$

- $\vec{v}_{j}^{T} \mathbf{A} \vec{v}_{j}=\lambda_{j} \cdot \vec{v}_{j}^{T} \vec{v}_{j}=\lambda_{j}$, the $j^{\text {th }}$ largest eigenvalue.
- The first k eigenvectors of $\mathbf{X}^{T} \mathbf{X}$ (corresponding to the largest k eigenvalues) are exactly the directions of greatest variance in \mathbf{X} that we use for low-rank approximation. This follows because

$$
\vec{v}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v}=\sum_{i}\left\langle\vec{v}, \overrightarrow{x_{i}}\right\rangle^{2}
$$

LOW-RANK APPROX VIA EIGENDECOMPOSITION

LOW-RANK APPROX VIA EIGENDECOMPOSITION

Upshot: Letting \mathbf{V}_{k} have columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}
$$

LOW-RANK APPROX VIA EIGENDECOMPOSITION

Upshot: Letting \mathbf{V}_{k} have columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}
$$

This is principal component analysis (PCA).
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK APPROX VIA EIGENDECOMPOSITION

Upshot: Letting \mathbf{V}_{k} have columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}
$$

This is principal component analysis (PCA). How accurate is this low-rank approximation?
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK APPROX VIA EIGENDECOMPOSITION

Upshot: Letting \mathbf{V}_{k} have columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}
$$

This is principal component analysis (PCA). How accurate is this low-rank approximation? Can understand via eigenvalues of $\mathbf{X}^{T} \mathbf{X}$.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

LOW-RANK APPROX VIA EIGENDECOMPOSITION

Upshot: Letting \mathbf{V}_{k} have columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$ corresponding to the top k eigenvectors of the covariance matrix $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k}$ is the orthogonal basis minimizing

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}
$$

This is principal component analysis (PCA). How accurate is this low-rank approximation? Can understand via eigenvalues of $\mathbf{X}^{T} \mathbf{X}$.

- By applying the Pythagorus Theorem on each row:

$$
\|\mathbf{X}\|_{F}^{2}=\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}+\left\|\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}
$$

and note $\left\|\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}=\left\|\mathbf{X} \mathbf{V}_{k}\right\|_{F}^{2}$ because \mathbf{V}_{k} is orthonormal.

$$
\begin{aligned}
& \vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}: \text { data points, } \mathbf{X} \in \mathbb{R}^{n \times d}: \text { data matrix, } \vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}: \text { top eigenvectors } \\
& \text { of } \mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}: \text { matrix with columns } \vec{v}_{1}, \ldots, \vec{v}_{k}
\end{aligned}
$$

SPECTRUM ANALYSIS

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components) and λ_{i} be the eigenvalue corresponding to \vec{v}_{i}. Approximation error is:

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}
$$

SPECTRUM ANALYSIS

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components) and λ_{i} be the eigenvalue corresponding to \vec{v}_{i}. Approximation error is:

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}=\|\mathbf{X}\|_{F}^{2}-\left\|\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}
$$

SPECTRUM ANALYSIS

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components) and λ_{i} be the eigenvalue corresponding to \vec{v}_{i}. Approximation error is:

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}=\|\mathbf{X}\|_{F}^{2}-\left\|\mathbf{X} \mathbf{V}_{k}\right\|_{F}^{2}
$$

SPECTRUM ANALYSIS

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components) and λ_{i} be the eigenvalue corresponding to \vec{v}_{i}.
Approximation error is:

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}=\|\mathbf{X}\|_{F}^{2}-\left\|\mathbf{X} \mathbf{V}_{k}\right\|_{F}^{2}
$$

- For any matrix $\mathbf{A},\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)=$ sum of diagonal entries $=$ sum eigenvalues.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components) and λ_{i} be the eigenvalue corresponding to \vec{v}_{i}.
Approximation error is:

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}=\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X}\right)-\operatorname{tr}\left(\mathbf{V}_{k}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{V}_{k}\right)
$$

- For any matrix $\mathbf{A},\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{A}\right)=$ sum of diagonal entries $=$ sum eigenvalues.

$$
\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}: \text { data points, } \mathbf{X} \in \mathbb{R}^{n \times d}: \text { data matrix, } \vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}: \text { top eigenvectors }
$$ of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components) and λ_{i} be the eigenvalue corresponding to \vec{v}_{i}.
Approximation error is:

$$
\begin{aligned}
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2} & =\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X}\right)-\operatorname{tr}\left(\mathbf{V}_{k}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{V}_{k}\right) \\
& =\sum_{i=1}^{d} \lambda_{i}-\sum_{i=1}^{k} \vec{v}_{i}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v}_{i}
\end{aligned}
$$

- For any matrix $\mathbf{A},\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{A}\right)=$ sum of diagonal entries $=$ sum eigenvalues.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components) and λ_{i} be the eigenvalue corresponding to \vec{v}_{i}.
Approximation error is:

$$
\begin{aligned}
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2} & =\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X}\right)-\operatorname{tr}\left(\mathbf{V}_{k}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{V}_{k}\right) \\
& =\sum_{i=1}^{d} \lambda_{i}-\sum_{i=1}^{k} \vec{v}_{i}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v}_{i} \\
& =\sum_{i=1}^{d} \lambda_{i}-\sum_{i=1}^{k} \lambda_{i}
\end{aligned}
$$

- For any matrix $\mathbf{A},\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{A}\right)=$ sum of diagonal entries $=$ sum eigenvalues.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$ (the top k principal components) and λ_{i} be the eigenvalue corresponding to \vec{v}_{i}.
Approximation error is:

$$
\begin{aligned}
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2} & =\operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X}\right)-\operatorname{tr}\left(\mathbf{V}_{k}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{V}_{k}\right) \\
& =\sum_{i=1}^{d} \lambda_{i}-\sum_{i=1}^{k} \vec{v}_{i}^{T} \mathbf{X}^{T} \mathbf{X} \vec{v}_{i} \\
& =\sum_{i=1}^{d} \lambda_{i}-\sum_{i=1}^{k} \lambda_{i}=\sum_{i=k+1}^{d} \lambda_{i}
\end{aligned}
$$

- For any matrix $\mathbf{A},\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{d}\left\|\vec{a}_{i}\right\|_{2}^{2}=\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{A}\right)=$ sum of diagonal entries $=$ sum eigenvalues.
$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Claim: The error in approximating \mathbf{X} with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^{T} \mathbf{X}$) is:

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}
$$

SPECTRUM ANALYSIS

Claim: The error in approximating \mathbf{X} with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^{T} \mathbf{X}$) is:

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}
$$

[^0]
SPECTRUM ANALYSIS

Claim: The error in approximating \mathbf{X} with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^{T} \mathbf{X}$) is:

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}
$$

784 dimensional vectors

eigendecomposition

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Claim: The error in approximating \mathbf{X} with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^{T} \mathbf{X}$) is:

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}
$$

784 dimensional vectors

eigendecomposition

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Claim: The error in approximating \mathbf{X} with the best rank k approximation (projecting onto the top k eigenvectors of $\mathbf{X}^{T} \mathbf{X}$) is:

$$
\left\|\mathbf{X}-\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right\|_{F}^{2}=\sum_{i=k+1}^{d} \lambda_{i}
$$

784 dimensional vectors

eigendecomposition

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace). of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix $\mathbf{X}^{T} \mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace).

784 dimensional vectors

eigendecomposition

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace).

784 dimensional vectors

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix $\mathbf{X}^{T} \mathbf{X}$ (its eigenvalues) shows how compressible \mathbf{X} is using low-rank approximation (i.e., how close $\vec{x}_{1}, \ldots, \vec{x}_{n}$ are to a low-dimensional subspace).

$\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \vec{v}_{k}$.

SPECTRUM ANALYSIS

Exercise: Show that the eigenvalues of $\mathbf{X}^{\top} \mathbf{X}$ are always positive. Hint: Use that $\lambda_{j}=\vec{v}_{j}^{\top} \mathbf{X}^{T} \mathbf{X} \vec{v}_{j}$.

SUMMARY

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:

$$
\max _{\text {orthonormal } \mathbf{V}}\|\mathbf{X V}\|_{F}^{2} \text {. }
$$

- Greedy solution via eigendecomposition of $\mathbf{X}^{T} \mathbf{X}$.
- Columns of \mathbf{V} are the top eigenvectors of $\mathbf{X}^{T} \mathbf{X}$.
- Error of best low-rank approximation is determined by the tail of $\mathbf{X}^{T} \mathbf{X}$'s eigenvalue spectrum.

SUMMARY

- Many (most) datasets can be approximated via projection onto a low-dimensional subspace.
- Find this subspace via a maximization problem:

$$
\max _{\text {orthonormal } \mathbf{V}}\|\mathbf{X V}\|_{F}^{2} \text {. }
$$

- Greedy solution via eigendecomposition of $\mathbf{X}^{T} \mathbf{X}$.
- Columns of \mathbf{V} are the top eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.
- Error of best low-rank approximation is determined by the tail of $\mathbf{X}^{T} \mathbf{X}$'s eigenvalue spectrum.
- We'll return to the problem how to quickly compute the top eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.

[^0]: $\vec{x}_{1}, \ldots, \vec{x}_{n} \in \mathbb{R}^{d}$: data points, $\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{d}$: top eigenvectors of $\mathbf{X}^{T} \mathbf{X}, \mathbf{V}_{k} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_{1}, \ldots, \overrightarrow{v_{k}}$.

