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Last Classes: Low-Rank Approximation

® When data lies in a k-dimensional subspace V), we can perfectly embed
into k dimensions using an orthonormal span V € R9*k.

® When data lies close to V, the optimal embedding in that space is
given by projecting onto that space.

XVV' = argmin |X —BJ2.

B with rows in V

where VVT € R9%9 s called the projection matrix.

® The best subspace V is the subspace spanned by the top k
eigenvectors of X7 X. How good is this approximation?
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If Xi,...,X, are close to a k-dimensional subspace V with orthonormal basis
V € R¥¥, the data matrix can be approximated as XVV'. XV gives optimal
embedding of X in V. How do we find V (equivalently orthonormal v, ... Vi)?

K
. T2 2
arg min [IX = XVV'|r = arg max [|XV;]]3.
orthonormal VERd Xk orthonormal ,...7, €RY j=1
Surprisingly, can choose Vi, ..., Vi greedily.
N T Tv—
Vi = argmax Vv X XV.

vV with ||v|2=1

- ST v —
Vo = arg max v X Xv.
v with ||v|l2=1, (¥,1)=0
N T T v —
e = arg max v X' XV.

7 with [|v]la=1, (7,7)=0 Vj<k

These are exactly the top k eigenvectors of X' X.
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Eigenvector: X € R? is an eigenvector of a matrix A € RY*9 if AX = \X
for some scalar A (the eigenvalue corresponding to X).

® That is, A just ‘stretches’ x.

® |f A is symmetric, can find d orthonormal eigenvectors v, ..., Vy. Let
V € R9%9 have these vectors as columns and A be the diagonal matrix
with the corresponding eigenvalues on the diagonal.

| [ | [
AV = [AV A - AVl = [N b - M| = VA

Yields eigendecomposition: AVVT = A = VAV where the first
inequality follows since rows of A are in span of the eigenvectors.



REVIEW: EIGENVECTORS AND EIGENDECOMPOSITION

dxd orthonormal diagonal orthonormal

A
A2

A =| nv, V Va A \A

Ada-1

Typically order the eigenvectors in decreasing order:

M= > 2>y
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COURANT-FISCHER PRINCIPAL

Courant-Fischer Principal: For symmetric A, the eigenvectors are given via
the greedy optimization:
Vi = argmax V' AV.
V with [[v]|2=1

. ST A
Vo = arg max v AV.
7 with [[vllo=1, (7,%)=0
o ST A
Vg = arg max v AV.

7 with ||v]|a=1, (7,7)=0 Vj<d

\7J»TA\7J- =\ \7JT\7J = ), the j7 largest eigenvalue.
The first k eigenvectors of XX (corresponding to the largest k eigenvalues)

are exactly the directions of greatest variance in X that we use for low-rank
approximation. This follows because

TXTXV = (v, %)

i



LOW-RANK APPROX VIA EIGENDECOMPOSITION

XX =% 5|V A A

d-dimensional space

k-dim. subspace V

o A b o N & o
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Upshot: Letting V have columns vi, ..., vk corresponding to the top k
eigenvectors of the covariance matrix X7 X, V is the orthogonal basis

minimizing
X = XV V[,

This is principal component analysis (PCA). How accurate is this
low-rank approximation? Can understand via eigenvalues of X7 X.

® By applying the Pythagorus Theorem on each row:
IX[1E = [IX = XV V7 + [IXVeV 7

and note | XV, V/]||2 = || XV,||% because V is orthonormal.

i, ...,%, € R?: data points, X € R"*9: data matrix, 74, . .., vk € R%: top eigenvectors
of XTX, Vi € R¥*¥: matrix with columns iy ooy Vk.
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— Luj=1
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SPECTRUM ANALYSIS

Plotting the spectrum of the covariance matrix X7 X (its eigenvalues) shows
how compressible X is using low-rank approximation (i.e., how close xi,. .., X,
are to a low-dimensional subspace).
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SPECTRUM ANALYSIS

784 dimensional vectors

eigendecomposition

—

Eigenvalue

0o 5 2 » o
Eigenvalue Rank

NJs]-Jo

Exercise: Show that the eigenvalues of X7 X are always positive. Hint:
Use that \; = \7jTXTX\7j.
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SUMMARY

Many (most) datasets can be approximated via projection onto a

low-dimensional subspace.

Find this subspace via a maximization problem:

max || XV||%.

orthonormal V

Greedy solution via eigendecomposition of X X.

Columns of V are the top eigenvectors of X7 X.

® Error of best low-rank approximation is determined by the tail of
XTX's eigenvalue spectrum.
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Find this subspace via a maximization problem:

max || XV||%.

orthonormal V

Greedy solution via eigendecomposition of X X.

Columns of V are the top eigenvectors of X7 X.

® Error of best low-rank approximation is determined by the tail of
XTX's eigenvalue spectrum.

We'll return to the problem how to quickly compute the top
eigenvectors of X7 X.
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