
compsci 514: algorithms for data science

Andrew McGregor

Lecture 16

0



1



summary

Last Class: Low-Rank Approximation, Eigendecomposition, PCA

• For any symmetric square matrix A, we can write A = VΛVT where columns

of V are orthonormal eigenvectors.

• Can approximate data lying close to in a k-dimensional subspace by

projecting data points into that space.

• Can find the best k-dimensional subspace via eigendecomposition applied to

XTX (PCA).

• Measuring error in terms of the eigenvalue spectrum.

This Class: SVD and Applications

• SVD and connection to eigenvalue value decomposition.

• Applications of low-rank approximation beyond compression.

2



singular value decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition

to asymmetric (even rectangular) matrices.

Any matrix X ∈ Rn×d with

rank(X) = r can be written as X = UΣVT .

• U has orthonormal columns ~u1, . . . , ~ur ∈ Rn (left singular vectors).

• V has orthonormal columns ~v1, . . . , ~vr ∈ Rd (right singular vectors).

• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular values).

The ‘swiss army knife’ of modern linear algebra.

3



singular value decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition

to asymmetric (even rectangular) matrices. Any matrix X ∈ Rn×d with

rank(X) = r can be written as X = UΣVT .

• U has orthonormal columns ~u1, . . . , ~ur ∈ Rn (left singular vectors).

• V has orthonormal columns ~v1, . . . , ~vr ∈ Rd (right singular vectors).

• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular values).

The ‘swiss army knife’ of modern linear algebra.

3



singular value decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition

to asymmetric (even rectangular) matrices. Any matrix X ∈ Rn×d with

rank(X) = r can be written as X = UΣVT .

• U has orthonormal columns ~u1, . . . , ~ur ∈ Rn (left singular vectors).

• V has orthonormal columns ~v1, . . . , ~vr ∈ Rd (right singular vectors).

• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular values).

The ‘swiss army knife’ of modern linear algebra.

3



singular value decomposition

The Singular Value Decomposition (SVD) generalizes the eigendecomposition

to asymmetric (even rectangular) matrices. Any matrix X ∈ Rn×d with

rank(X) = r can be written as X = UΣVT .

• U has orthonormal columns ~u1, . . . , ~ur ∈ Rn (left singular vectors).

• V has orthonormal columns ~v1, . . . , ~vr ∈ Rd (right singular vectors).

• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular values).

The ‘swiss army knife’ of modern linear algebra.

3



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT :

XTX =

VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT .

The right and left singular vectors are the eigenvectors of the covariance matrix

XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to ~v1, . . . , ~vk , we know that XVkVT
k

is the best rank-k approximation to X (given by PCA).

What about UkUT
k X where Uk ∈ Rn×k has columns equal to ~u1, . . . , ~uk?

Exercise: UkUT
k X = XVkVT

k = UkΣkVT
k

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X): matrix with orthonormal columns ~u1, ~u2, . . .

(left singular vectors), V ∈ Rd×rank(X): matrix with orthonormal columns ~v1, ~v2, . . . (right

singular vectors), Σ ∈ Rrank(X)×rank(X): positive diagonal matrix containing singular values

of X.

4



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT :

XTX = VΣUTUΣVT

= VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT .

The right and left singular vectors are the eigenvectors of the covariance matrix

XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to ~v1, . . . , ~vk , we know that XVkVT
k

is the best rank-k approximation to X (given by PCA).

What about UkUT
k X where Uk ∈ Rn×k has columns equal to ~u1, . . . , ~uk?

Exercise: UkUT
k X = XVkVT

k = UkΣkVT
k

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X): matrix with orthonormal columns ~u1, ~u2, . . .

(left singular vectors), V ∈ Rd×rank(X): matrix with orthonormal columns ~v1, ~v2, . . . (right

singular vectors), Σ ∈ Rrank(X)×rank(X): positive diagonal matrix containing singular values

of X.

4



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT :

XTX = VΣUTUΣVT = VΣ2VT

(the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT .

The right and left singular vectors are the eigenvectors of the covariance matrix

XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to ~v1, . . . , ~vk , we know that XVkVT
k

is the best rank-k approximation to X (given by PCA).

What about UkUT
k X where Uk ∈ Rn×k has columns equal to ~u1, . . . , ~uk?

Exercise: UkUT
k X = XVkVT

k = UkΣkVT
k

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X): matrix with orthonormal columns ~u1, ~u2, . . .

(left singular vectors), V ∈ Rd×rank(X): matrix with orthonormal columns ~v1, ~v2, . . . (right

singular vectors), Σ ∈ Rrank(X)×rank(X): positive diagonal matrix containing singular values

of X.

4



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT :

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT .

The right and left singular vectors are the eigenvectors of the covariance matrix

XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to ~v1, . . . , ~vk , we know that XVkVT
k

is the best rank-k approximation to X (given by PCA).

What about UkUT
k X where Uk ∈ Rn×k has columns equal to ~u1, . . . , ~uk?

Exercise: UkUT
k X = XVkVT

k = UkΣkVT
k

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X): matrix with orthonormal columns ~u1, ~u2, . . .

(left singular vectors), V ∈ Rd×rank(X): matrix with orthonormal columns ~v1, ~v2, . . . (right

singular vectors), Σ ∈ Rrank(X)×rank(X): positive diagonal matrix containing singular values

of X.

4



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT :

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT .

The right and left singular vectors are the eigenvectors of the covariance matrix

XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to ~v1, . . . , ~vk , we know that XVkVT
k

is the best rank-k approximation to X (given by PCA).

What about UkUT
k X where Uk ∈ Rn×k has columns equal to ~u1, . . . , ~uk?

Exercise: UkUT
k X = XVkVT

k = UkΣkVT
k

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X): matrix with orthonormal columns ~u1, ~u2, . . .

(left singular vectors), V ∈ Rd×rank(X): matrix with orthonormal columns ~v1, ~v2, . . . (right

singular vectors), Σ ∈ Rrank(X)×rank(X): positive diagonal matrix containing singular values

of X.

4



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT :

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT .

The right and left singular vectors are the eigenvectors of the covariance matrix

XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to ~v1, . . . , ~vk , we know that XVkVT
k

is the best rank-k approximation to X (given by PCA).

What about UkUT
k X where Uk ∈ Rn×k has columns equal to ~u1, . . . , ~uk?

Exercise: UkUT
k X = XVkVT

k = UkΣkVT
k

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X): matrix with orthonormal columns ~u1, ~u2, . . .

(left singular vectors), V ∈ Rd×rank(X): matrix with orthonormal columns ~v1, ~v2, . . . (right

singular vectors), Σ ∈ Rrank(X)×rank(X): positive diagonal matrix containing singular values

of X.

4



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT :

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT .

The right and left singular vectors are the eigenvectors of the covariance matrix

XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to ~v1, . . . , ~vk , we know that XVkVT
k

is the best rank-k approximation to X (given by PCA).

What about UkUT
k X where Uk ∈ Rn×k has columns equal to ~u1, . . . , ~uk?

Exercise: UkUT
k X = XVkVT

k = UkΣkVT
k

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X): matrix with orthonormal columns ~u1, ~u2, . . .

(left singular vectors), V ∈ Rd×rank(X): matrix with orthonormal columns ~v1, ~v2, . . . (right

singular vectors), Σ ∈ Rrank(X)×rank(X): positive diagonal matrix containing singular values

of X.

4



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT :

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT .

The right and left singular vectors are the eigenvectors of the covariance matrix

XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to ~v1, . . . , ~vk , we know that XVkVT
k

is the best rank-k approximation to X (given by PCA).

What about UkUT
k X where Uk ∈ Rn×k has columns equal to ~u1, . . . , ~uk?

Exercise: UkUT
k X = XVkVT

k = UkΣkVT
k

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X): matrix with orthonormal columns ~u1, ~u2, . . .

(left singular vectors), V ∈ Rd×rank(X): matrix with orthonormal columns ~v1, ~v2, . . . (right

singular vectors), Σ ∈ Rrank(X)×rank(X): positive diagonal matrix containing singular values

of X.

4



connection of the svd to eigendecomposition

Writing X ∈ Rn×d in its singular value decomposition X = UΣVT :

XTX = VΣUTUΣVT = VΣ2VT (the eigendecomposition)

Similarly: XXT = UΣVTVΣUT = UΣ2UT .

The right and left singular vectors are the eigenvectors of the covariance matrix

XTX and the gram matrix XXT respectively.

So, letting Vk ∈ Rd×k have columns equal to ~v1, . . . , ~vk , we know that XVkVT
k

is the best rank-k approximation to X (given by PCA).

What about UkUT
k X where Uk ∈ Rn×k has columns equal to ~u1, . . . , ~uk?

Exercise: UkUT
k X = XVkVT

k = UkΣkVT
k

X ∈ Rn×d : data matrix, U ∈ Rn×rank(X): matrix with orthonormal columns ~u1, ~u2, . . .

(left singular vectors), V ∈ Rd×rank(X): matrix with orthonormal columns ~v1, ~v2, . . . (right

singular vectors), Σ ∈ Rrank(X)×rank(X): positive diagonal matrix containing singular values

of X.

4



5



the svd and optimal low-rank approximation

The best low-rank approximation to X, i.e.,

Xk = arg min
rank -k B∈Rn×d

‖X− B‖F

is given by Xk = XVkVT
k = UkUT

k X = UkΣkVT
k

Corresponds to projecting the rows (data points) onto the span of Vk or

the columns (features) onto the span of Uk

6



the svd and optimal low-rank approximation

The best low-rank approximation to X, i.e.,

Xk = arg min
rank -k B∈Rn×d

‖X− B‖F

is given by Xk = XVkVT
k = UkUT

k X = UkΣkVT
k

Corresponds to projecting the rows (data points) onto the span of Vk or

the columns (features) onto the span of Uk

6



the svd and optimal low-rank approximation

The best low-rank approximation to X, i.e.,

Xk = arg min
rank -k B∈Rn×d

‖X− B‖F

is given by Xk = XVkVT
k = UkUT

k X = UkΣkVT
k

Corresponds to projecting the rows (data points) onto the span of Vk or

the columns (features) onto the span of Uk

6



the svd and optimal low-rank approximation

The best low-rank approximation to X, i.e.,

Xk = arg min
rank -k B∈Rn×d

‖X− B‖F

is given by Xk = XVkVT
k = UkUT

k X = UkΣkVT
k

Corresponds to projecting the rows (data points) onto the span of Vk or

the columns (features) onto the span of Uk

6



the svd and optimal low-rank approximation

The best low-rank approximation to X, i.e.,

Xk = arg min
rank -k B∈Rn×d

‖X− B‖F

is given by Xk = XVkVT
k = UkUT

k X = UkΣkVT
k

Corresponds to projecting the rows (data points) onto the span of Vk or

the columns (features) onto the span of Uk

6



basic idea to prove existence of svd

• Let ~v1, ~v2, . . . ,∈ Rd be orthonormal eigenvectors of XTX.

• Let σi = ‖X~vi‖2 and define unit vector ~ui = X~vi
σi

.

• Exercise: Show ~u1, ~u2, . . . are orthonormal.

• This establishes that XV = UΣ and that V and U have the required

properties.

• To see rest of the details, see https:

//math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf

7

https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf
https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf


basic idea to prove existence of svd

• Let ~v1, ~v2, . . . ,∈ Rd be orthonormal eigenvectors of XTX.

• Let σi = ‖X~vi‖2 and define unit vector ~ui = X~vi
σi

.

• Exercise: Show ~u1, ~u2, . . . are orthonormal.

• This establishes that XV = UΣ and that V and U have the required

properties.

• To see rest of the details, see https:

//math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf

7

https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf
https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf


basic idea to prove existence of svd

• Let ~v1, ~v2, . . . ,∈ Rd be orthonormal eigenvectors of XTX.

• Let σi = ‖X~vi‖2 and define unit vector ~ui = X~vi
σi

.

• Exercise: Show ~u1, ~u2, . . . are orthonormal.

• This establishes that XV = UΣ and that V and U have the required

properties.

• To see rest of the details, see https:

//math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf

7

https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf
https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf


basic idea to prove existence of svd

• Let ~v1, ~v2, . . . ,∈ Rd be orthonormal eigenvectors of XTX.

• Let σi = ‖X~vi‖2 and define unit vector ~ui = X~vi
σi

.

• Exercise: Show ~u1, ~u2, . . . are orthonormal.

• This establishes that XV = UΣ and that V and U have the required

properties.

• To see rest of the details, see https:

//math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf

7

https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf
https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf


basic idea to prove existence of svd

• Let ~v1, ~v2, . . . ,∈ Rd be orthonormal eigenvectors of XTX.

• Let σi = ‖X~vi‖2 and define unit vector ~ui = X~vi
σi

.

• Exercise: Show ~u1, ~u2, . . . are orthonormal.

• This establishes that XV = UΣ and that V and U have the required

properties.

• To see rest of the details, see https:

//math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf

7

https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf
https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf


applications of low-rank approximation

Rest of Class: Examples of how low-rank approximation is applied in a

variety of data science applications.

• Used for many reasons other than dimensionality reduction/data

compression.

8



applications of low-rank approximation

Rest of Class: Examples of how low-rank approximation is applied in a

variety of data science applications.

• Used for many reasons other than dimensionality reduction/data

compression.

8



matrix completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but believe is close

to rank-k (i.e., well approximated by a rank k matrix).

Classic example: the

Netflix prize problem.

Solve: Y = arg min
rank−k B

∑
observed (j,k)

[Xj,k − Bj,k ]2

Under certain assumptions, can show that Y well approximates X on both the

observed and (most importantly) unobserved entries.

9



matrix completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but believe is close

to rank-k (i.e., well approximated by a rank k matrix). Classic example: the

Netflix prize problem.

Solve: Y = arg min
rank−k B

∑
observed (j,k)

[Xj,k − Bj,k ]2

Under certain assumptions, can show that Y well approximates X on both the

observed and (most importantly) unobserved entries.

9



matrix completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but believe is close

to rank-k (i.e., well approximated by a rank k matrix). Classic example: the

Netflix prize problem.

Solve: Y = arg min
rank−k B

∑
observed (j,k)

[Xj,k − Bj,k ]2

Under certain assumptions, can show that Y well approximates X on both the

observed and (most importantly) unobserved entries.

9



matrix completion

Consider a matrix X ∈ Rn×d which we cannot fully observe but believe is close

to rank-k (i.e., well approximated by a rank k matrix). Classic example: the

Netflix prize problem.

Solve: Y = arg min
rank−k B

∑
observed (j,k)

[Xj,k − Bj,k ]2

Under certain assumptions, can show that Y well approximates X on both the

observed and (most importantly) unobserved entries.

9



entity embeddings

Dimensionality reduction embeds d-dimensional vectors into k � d

dimensions. But what about when you want to embed objects other than

vectors?

• Documents (for topic-based search and classification)

• Words (to identify synonyms, translations, etc.)

• Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature

vector and then apply low-rank approximation.

10



entity embeddings

Dimensionality reduction embeds d-dimensional vectors into k � d

dimensions. But what about when you want to embed objects other than

vectors?

• Documents (for topic-based search and classification)

• Words (to identify synonyms, translations, etc.)

• Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature

vector and then apply low-rank approximation.

10



entity embeddings

Dimensionality reduction embeds d-dimensional vectors into k � d

dimensions. But what about when you want to embed objects other than

vectors?

• Documents (for topic-based search and classification)

• Words (to identify synonyms, translations, etc.)

• Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature

vector and then apply low-rank approximation.

10



example: latent semantic analysis

11



example: latent semantic analysis

11



example: latent semantic analysis

• If the error ‖X− YZT‖F is small, then on average,

Xi,a ≈ (YZT )i,a = 〈~yi , ~za〉.

• I.e., 〈~yi , ~za〉 ≈ 1 when doci contains worda.

12



example: latent semantic analysis

• If the error ‖X− YZT‖F is small, then on average,

Xi,a ≈ (YZT )i,a = 〈~yi , ~za〉.

• I.e., 〈~yi , ~za〉 ≈ 1 when doci contains worda.

12



example: latent semantic analysis

• If the error ‖X− YZT‖F is small, then on average,

Xi,a ≈ (YZT )i,a = 〈~yi , ~za〉.

• I.e., 〈~yi , ~za〉 ≈ 1 when doci contains worda.

12



example: latent semantic analysis

If doci and docj both contain worda, 〈~yi , ~za〉 ≈ 〈~yj , ~za〉 ≈ 1 If doci and docj

both don’t contain worda, 〈~yi , ~za〉 ≈ 〈~yj , ~za〉 ≈ 0

Since this applies for all words, documents with that involve a similar set of

words tend to have high dot product with each other.

Another View: Column of Y represent ‘topics’. ~yi (j) indicates how much doci

belongs to topic j . ~za(j) indicates how much worda associates with that topic.

13



example: latent semantic analysis

If doci and docj both contain worda, 〈~yi , ~za〉 ≈ 〈~yj , ~za〉 ≈ 1 If doci and docj

both don’t contain worda, 〈~yi , ~za〉 ≈ 〈~yj , ~za〉 ≈ 0

Since this applies for all words, documents with that involve a similar set of

words tend to have high dot product with each other.

Another View: Column of Y represent ‘topics’. ~yi (j) indicates how much doci

belongs to topic j . ~za(j) indicates how much worda associates with that topic. 13



example: latent semantic analysis

• Just like with documents, ~za and ~zb will tend to have high dot product if

worda and wordb appear in many of the same documents.

• In an SVD decomposition we set ZT = ΣkVT
K where columns of Vk are the

top k eigenvectors of XTX.

14



example: latent semantic analysis

• Just like with documents, ~za and ~zb will tend to have high dot product if

worda and wordb appear in many of the same documents.

• In an SVD decomposition we set ZT = ΣkVT
K where columns of Vk are the

top k eigenvectors of XTX.

14



example: latent semantic analysis

• Just like with documents, ~za and ~zb will tend to have high dot product if

worda and wordb appear in many of the same documents.

• In an SVD decomposition we set ZT = ΣkVT
K where columns of Vk are the

top k eigenvectors of XTX.

14



example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XTX: where (XTX)a,b is the

number of documents that both worda and wordb appear in.

• Think about XTX as a similarity matrix (gram matrix, kernel matrix) with

entry (a, b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur in,

number of times both appear in the same window of w words, in similar

positions of documents in different languages, etc.

• Replacing XTX with these different metrics (sometimes appropriately

transformed) leads to popular word embedding algorithms: word2vec, GloVe,

fastText, etc.

15



example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XTX: where (XTX)a,b is the

number of documents that both worda and wordb appear in.

• Think about XTX as a similarity matrix (gram matrix, kernel matrix) with

entry (a, b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur in,

number of times both appear in the same window of w words, in similar

positions of documents in different languages, etc.

• Replacing XTX with these different metrics (sometimes appropriately

transformed) leads to popular word embedding algorithms: word2vec, GloVe,

fastText, etc.

15



example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XTX: where (XTX)a,b is the

number of documents that both worda and wordb appear in.

• Think about XTX as a similarity matrix (gram matrix, kernel matrix) with

entry (a, b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur in,

number of times both appear in the same window of w words, in similar

positions of documents in different languages, etc.

• Replacing XTX with these different metrics (sometimes appropriately

transformed) leads to popular word embedding algorithms: word2vec, GloVe,

fastText, etc.

15



example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XTX: where (XTX)a,b is the

number of documents that both worda and wordb appear in.

• Think about XTX as a similarity matrix (gram matrix, kernel matrix) with

entry (a, b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur in,

number of times both appear in the same window of w words, in similar

positions of documents in different languages, etc.

• Replacing XTX with these different metrics (sometimes appropriately

transformed) leads to popular word embedding algorithms: word2vec, GloVe,

fastText, etc.

15



example: word embedding

Note: word2vec is typically described as a neural-network method, but it

is really just low-rank approximation of a specific similarity matrix. Neural

word embedding as implicit matrix factorization, Levy and Goldberg.

16



example: word embedding

Note: word2vec is typically described as a neural-network method, but it

is really just low-rank approximation of a specific similarity matrix. Neural

word embedding as implicit matrix factorization, Levy and Goldberg.

16



graph embeddings



non-linear dimensionality reduction

Is this set of points compressible? Does it lie close to a low-dimensional

subspace? (A 1-dimensional subspace of Rd .)

A common way of automatically identifying this non-linear structure is to

connect data points in a graph. E.g., a k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight edges when they

are more similar.

18



non-linear dimensionality reduction

Is this set of points compressible? Does it lie close to a low-dimensional

subspace? (A 1-dimensional subspace of Rd .)

A common way of automatically identifying this non-linear structure is to

connect data points in a graph. E.g., a k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight edges when they

are more similar.

18



non-linear dimensionality reduction

Is this set of points compressible? Does it lie close to a low-dimensional

subspace? (A 1-dimensional subspace of Rd .)

A common way of automatically identifying this non-linear structure is to

connect data points in a graph. E.g., a k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight edges when they

are more similar.

18



linear algebraic representation of a graph

Once we have connected n data points x1, . . . , xn into a graph, we can

represent that graph by its (weighted) adjacency matrix.

A ∈ Rn×n with Ai,j = edge weight between nodes i and j

19



linear algebraic representation of a graph

Once we have connected n data points x1, . . . , xn into a graph, we can

represent that graph by its (weighted) adjacency matrix.

A ∈ Rn×n with Ai,j = edge weight between nodes i and j

19



adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2. (Note these are

just the eigenvectors of A).

1. A ≈ AVkVT
k where Vk is the matrix with the top k eigenvectors as

columns.

2. Rows of AVk are an embedding of the nodes into Rk .

• Similar vertices (close with regards to graph proximity) should have

similar embeddings since

‖(A)i − (A)j‖2 ≈ ‖(AVkVT
k )i − (AVkVT

k )j‖2 = ‖(AVk)i − (AVk)j‖2

where we showed the equality in Lecture 14.

20



adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2. (Note these are

just the eigenvectors of A).

1. A ≈ AVkVT
k where Vk is the matrix with the top k eigenvectors as

columns.

2. Rows of AVk are an embedding of the nodes into Rk .

• Similar vertices (close with regards to graph proximity) should have

similar embeddings since

‖(A)i − (A)j‖2 ≈ ‖(AVkVT
k )i − (AVkVT

k )j‖2 = ‖(AVk)i − (AVk)j‖2

where we showed the equality in Lecture 14.

20



adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2. (Note these are

just the eigenvectors of A).

1. A ≈ AVkVT
k where Vk is the matrix with the top k eigenvectors as

columns.

2. Rows of AVk are an embedding of the nodes into Rk .

• Similar vertices (close with regards to graph proximity) should have

similar embeddings since

‖(A)i − (A)j‖2 ≈ ‖(AVkVT
k )i − (AVkVT

k )j‖2 = ‖(AVk)i − (AVk)j‖2

where we showed the equality in Lecture 14.

20



adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2. (Note these are

just the eigenvectors of A).

1. A ≈ AVkVT
k where Vk is the matrix with the top k eigenvectors as

columns.

2. Rows of AVk are an embedding of the nodes into Rk .

• Similar vertices (close with regards to graph proximity) should have

similar embeddings since

‖(A)i − (A)j‖2 ≈ ‖(AVkVT
k )i − (AVkVT

k )j‖2 = ‖(AVk)i − (AVk)j‖2

where we showed the equality in Lecture 14.

20



adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2. (Note these are

just the eigenvectors of A).

1. A ≈ AVkVT
k where Vk is the matrix with the top k eigenvectors as

columns.

2. Rows of AVk are an embedding of the nodes into Rk .

• Similar vertices (close with regards to graph proximity) should have

similar embeddings since

‖(A)i − (A)j‖2 ≈ ‖(AVkVT
k )i − (AVkVT

k )j‖2 = ‖(AVk)i − (AVk)j‖2

where we showed the equality in Lecture 14.

20



adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2. (Note these are

just the eigenvectors of A).

1. A ≈ AVkVT
k where Vk is the matrix with the top k eigenvectors as

columns.

2. Rows of AVk are an embedding of the nodes into Rk .

• Similar vertices (close with regards to graph proximity) should have

similar embeddings since

‖(A)i − (A)j‖2 ≈ ‖(AVkVT
k )i − (AVkVT

k )j‖2 = ‖(AVk)i − (AVk)j‖2

where we showed the equality in Lecture 14.

20



spectral embedding

Step 1: Produce a nearest neighbor

graph based on your input data in

Rd .

Step 2: Apply low-rank

approximation to the graph

adjacency matrix to produce

embeddings in Rk .

Step 3: Work with the data in the

embedded space. Where distances

approximate distances in your

original ‘non-linear space.’

21



spectral embedding

Step 1: Produce a nearest neighbor

graph based on your input data in

Rd .

Step 2: Apply low-rank

approximation to the graph

adjacency matrix to produce

embeddings in Rk .

Step 3: Work with the data in the

embedded space. Where distances

approximate distances in your

original ‘non-linear space.’

21



spectral embedding

Step 1: Produce a nearest neighbor

graph based on your input data in

Rd .

Step 2: Apply low-rank

approximation to the graph

adjacency matrix to produce

embeddings in Rk .

Step 3: Work with the data in the

embedded space. Where distances

approximate distances in your

original ‘non-linear space.’

21



spectral embedding

Step 1: Produce a nearest neighbor

graph based on your input data in

Rd .

Step 2: Apply low-rank

approximation to the graph

adjacency matrix to produce

embeddings in Rk .

Step 3: Work with the data in the

embedded space. Where distances

approximate distances in your

original ‘non-linear space.’

21


