COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 16

SUMMARY

Last Class: Low-Rank Approximation, Eigendecomposition, PCA

- For any symmetric square matrix A, we can write $\mathbf{A}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{T}$ where columns of \mathbf{V} are orthonormal eigenvectors.
- Can approximate data lying close to in a k-dimensional subspace by projecting data points into that space.
- Can find the best k-dimensional subspace via eigendecomposition applied to $\mathbf{X}^{T} \mathbf{X}$ (PCA).
- Measuring error in terms of the eigenvalue spectrum.

This Class: SVD and Applications

- SVD and connection to eigenvalue value decomposition.
- Applications of low-rank approximation beyond compression.

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices.

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathbf{X})=r$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- \mathbf{V} has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values).

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathbf{X})=r$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- \mathbf{V} has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values).

SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathbf{X})=r$ can be written as $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$.

- U has orthonormal columns $\vec{u}_{1}, \ldots, \vec{u}_{r} \in \mathbb{R}^{n}$ (left singular vectors).
- \mathbf{V} has orthonormal columns $\vec{v}_{1}, \ldots, \vec{v}_{r} \in \mathbb{R}^{d}$ (right singular vectors).
- $\boldsymbol{\Sigma}$ is diagonal with elements $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$ (singular values).

The 'swiss army knife' of modern linear algebra.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{T} \mathbf{X}=
$$

$\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(\mathbf{X}) \times \operatorname{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X}.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}
$$

$\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(\mathbf{X}) \times \operatorname{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X}.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top}
$$

$\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(\mathbf{X}) \times \operatorname{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X}.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{T} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T} \text { (the eigendecomposition) }
$$

$\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(\mathbf{X}) \times \operatorname{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X}.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{T} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\boldsymbol{T}} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\boldsymbol{T}}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\boldsymbol{T}}$.
$\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(\mathbf{X}) \times \operatorname{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X} \mathbf{X}^{T}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\boldsymbol{T}}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T}$.
The right and left singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix $\mathbf{X} \mathbf{X}^{\top}$ respectively.

```
\(\mathbf{X} \in \mathbb{R}^{n \times d}:\) data matrix, \(\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(\mathbf{X})}\) : matrix with orthonormal columns \(\vec{u}_{1}, \vec{u}_{2}, \ldots\)
```

(left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(\mathbf{X}) \times \operatorname{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X}.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{\top} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X} \mathbf{X}^{\top}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\boldsymbol{T}}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\boldsymbol{T}}$.
The right and left singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix $\mathbf{X X}{ }^{\top}$ respectively.

So, letting $\mathbf{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we know that $\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}$ is the best rank- k approximation to \mathbf{X} (given by PCA).
$\mathbf{X} \in \mathbb{R}^{n \times d}:$ data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(\mathbf{X}) \times \operatorname{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{T} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X}^{T}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\boldsymbol{T}}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{\boldsymbol{T}}$.
The right and left singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix $\mathbf{X X}{ }^{\top}$ respectively.

So, letting $\mathbf{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we know that $\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}$ is the best rank- k approximation to \mathbf{X} (given by PCA).
What about $\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}$ where $\mathbf{U}_{k} \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_{1}, \ldots, \vec{u}_{k}$?

```
\(\mathbf{X} \in \mathbb{R}^{n \times d}:\) data matrix, \(\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(\mathbf{X})}\) : matrix with orthonormal columns \(\vec{u}_{1}, \vec{u}_{2}, \ldots\)
```

(left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \vec{v}_{2}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(\mathbf{X}) \times \operatorname{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of X.

CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$:

$$
\mathbf{X}^{T} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\top} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{\top} \text { (the eigendecomposition) }
$$

Similarly: $\mathbf{X X} \mathbf{X}^{\boldsymbol{T}}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\boldsymbol{T}} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\boldsymbol{T}}=\mathbf{U} \boldsymbol{\Sigma}^{\mathbf{2}} \mathbf{U}^{\boldsymbol{T}}$.
The right and left singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^{\top} \mathbf{X}$ and the gram matrix $\mathbf{X X}{ }^{\top}$ respectively.

So, letting $\mathbf{V}_{k} \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_{1}, \ldots, \vec{v}_{k}$, we know that $\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}$ is the best rank- k approximation to \mathbf{X} (given by PCA).
What about $\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}$ where $\mathbf{U}_{k} \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_{1}, \ldots, \vec{u}_{k}$?
Exercise: $\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}=\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}$
$\mathbf{X} \in \mathbb{R}^{n \times d}$: data matrix, $\mathbf{U} \in \mathbb{R}^{n \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{u}_{1}, \vec{u}_{2}, \ldots$ (left singular vectors), $\mathbf{V} \in \mathbb{R}^{d \times \operatorname{rank}(\mathbf{X})}$: matrix with orthonormal columns $\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots$ (right singular vectors), $\boldsymbol{\Sigma} \in \mathbb{R}^{\operatorname{rank}(\mathbf{X}) \times \operatorname{rank}(\mathbf{X})}$: positive diagonal matrix containing singular values of \mathbf{X}.

The best low-rank approximation to \mathbf{X}, i.e.,

$$
\mathbf{X}_{k}=\underset{\text { rank }-k}{\arg \min } \min _{\mathbb{R}^{n \times d}}\|\mathbf{X}-\mathbf{B}\|_{F}
$$

is given by $\mathbf{X}_{k}=\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}=\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}$

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to \mathbf{X}, i.e.,

$$
\mathbf{X}_{k}=\underset{\text { rank-k }}{\arg \min _{\mathbb{R}^{n \times d}}}\|\mathbf{X}-\mathbf{B}\|_{F}
$$

is given by $\mathbf{X}_{k}=\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}=\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}$
Corresponds to projecting the rows (data points) onto the span of \mathbf{V}_{k} or the columns (features) onto the span of \mathbf{U}_{k}

Row (data point) compression
projections onto 15
784 dimensional vectors

Column (feature) compression

	10000* bathrooms $+10^{*}$ (sq. ft.) \approx list price					
	bedrooms	bathrooms	sq.ft.	floors	list price	sale price
home 1	2	2	1800	2	200,000	195,000
home 2	4	2.5	2700	1	300,000	310,000
-	-	-	.	-	-	-
-	-	-	-	-	-	-
-	-	-	,	-	-	-
home n	5	3.5	3500	3	450,000	450,000

The best low-rank approximation to \mathbf{X}, i.e.,

$$
\mathbf{X}_{k}=\underset{\operatorname{rank}-k}{\arg \min } \min _{\mathbb{R}^{n \times d}}\|\mathbf{X}-\mathbf{B}\|_{F}
$$

is given by $\mathbf{X}_{k}=\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}=\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}$
Corresponds to projecting the rows (data points) onto the span of \mathbf{V}_{k} or the columns (features) onto the span of \mathbf{U}_{k}

THE SVD AND OPTIMAL LOW-RANK APPROXIMATION

The best low-rank approximation to \mathbf{X}, i.e.,

$$
\mathbf{X}_{k}=\underset{\text { rank-k } \mathbf{B} \in \mathbb{R}^{n \times d}}{\arg \min }\|\mathbf{X}-\mathbf{B}\|_{F}
$$

is given by $\mathbf{X}_{k}=\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}=\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}$
Corresponds to projecting the rows (data points) onto the span of \mathbf{V}_{k} or the columns (features) onto the span of \mathbf{U}_{k}
$\mathrm{n} \times \mathrm{d}$ (rank k)

orthonormal positive diagonal

orthonormal

The best low-rank approximation to \mathbf{X}, i.e.,

$$
\mathbf{X}_{k}=\underset{\text { rank-k }}{\arg \min \mathbb{R}^{n \times d}} \boldsymbol{\operatorname { m i n }}\|\mathbf{X}\|_{F}
$$

is given by $\mathbf{X}_{k}=\mathbf{X} \mathbf{V}_{k} \mathbf{V}_{k}^{T}=\mathbf{U}_{k} \mathbf{U}_{k}^{T} \mathbf{X}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}$
Corresponds to projecting the rows (data points) onto the span of \mathbf{V}_{k} or the columns (features) onto the span of \mathbf{U}_{k}

BASIC IDEA TO PROVE EXISTENCE OF SVD

- Let $\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots, \in \mathbb{R}^{d}$ be orthonormal eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.

BASIC IDEA TO PROVE EXISTENCE OF SVD

- Let $\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots, \in \mathbb{R}^{d}$ be orthonormal eigenvectors of $\mathbf{X}^{T} \mathbf{X}$.
- Let $\sigma_{i}=\left\|\mathbf{X} \vec{v}_{i}\right\|_{2}$ and define unit vector $\vec{u}_{i}=\frac{\mathbf{X} \vec{i}_{i}}{\sigma_{i}}$.

BASIC IDEA TO PROVE EXISTENCE OF SVD

- Let $\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots, \in \mathbb{R}^{d}$ be orthonormal eigenvectors of $\mathbf{X}^{T} \mathbf{X}$.
- Let $\sigma_{i}=\left\|\mathbf{X} \vec{v}_{i}\right\|_{2}$ and define unit vector $\vec{u}_{i}=\frac{\mathbf{X} \vec{i}_{i}}{\sigma_{i}}$.
- Exercise: Show $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots$ are orthonormal.

BASIC IDEA TO PROVE EXISTENCE OF SVD

- Let $\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots, \in \mathbb{R}^{d}$ be orthonormal eigenvectors of $\mathbf{X}^{T} \mathbf{X}$.
- Let $\sigma_{i}=\left\|\mathbf{X} \vec{v}_{i}\right\|_{2}$ and define unit vector $\vec{u}_{i}=\frac{\mathbf{X} \vec{i}_{i}}{\sigma_{i}}$.
- Exercise: Show $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots$ are orthonormal.
- This establishes that $\mathbf{X V}=\mathbf{U \Sigma}$ and that \mathbf{V} and \mathbf{U} have the required properties.

BASIC IDEA TO PROVE EXISTENCE OF SVD

- Let $\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots, \in \mathbb{R}^{d}$ be orthonormal eigenvectors of $\mathbf{X}^{T} \mathbf{X}$.
- Let $\sigma_{i}=\left\|\mathbf{X} \vec{v}_{i}\right\|_{2}$ and define unit vector $\vec{u}_{i}=\frac{\mathbf{X} \vec{i}_{i}}{\sigma_{i}}$.
- Exercise: Show $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots$ are orthonormal.
- This establishes that $\mathbf{X V}=\mathbf{U \Sigma}$ and that \mathbf{V} and \mathbf{U} have the required properties.
- To see rest of the details, see https:
//math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf

APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

- Used for many reasons other than dimensionality reduction/data compression.

MATRIX COMPLETION

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix).

MATRIX COMPLETION

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

MATRIX COMPLETION

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Movies

Solve: $\boldsymbol{Y}=\underset{\text { rank }-k \text { B }}{\arg \operatorname{mibserved}(j, k)} \sum_{\left.\mathbf{X}_{j, k}-\mathbf{B}_{j, k}\right]^{2}}$

MATRIX COMPLETION

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank- k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Movies

Users | 4.9 | 3.1 | 3 | 1.1 | 3.8 | 4.1 | 4.1 | 3.4 | 4.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.6 | $\mathbf{3}$ | 3 | 1.2 | 3.8 | 4.2 | 5 | 3.4 | 4.8 |
| 2.8 | 3 | 3 | 2.3 | 3 | 3 | 3 | 3 | 3.2 |
| 3.4 | 3 | 3 | 4 | 4.1 | 4.1 | 4.2 | 3 | 3 |
| 2.8 | 3 | 3 | 2.3 | 3 | 3 | 3 | 3 | 3.4 |
| 2.2 | $\mathbf{5}$ | 3 | 4 | 4.2 | 3.9 | 4.4 | 4 | 5.3 |
| 1 | 3.3 | 3 | 2.2 | 3.1 | 2.9 | 3.2 | 1.5 | 1.8 |

Solve: $\boldsymbol{Y}=\underset{\text { rank }-k \mathbf{B}}{\arg \min } \sum_{\text {observed }(j, k)}\left[\mathbf{X}_{j, k}-\mathbf{B}_{j, k}\right]^{2}$
Under certain assumptions, can show that \mathbf{Y} well approximates \mathbf{X} on both the observed and (most importantly) unobserved entries.

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation.

EXAMPLE: LATENT SEMANTIC ANALYSIS

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X

Low-Rank Approximation via SVD

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix \mathbf{X}

doc_1	0	0	1	0	0	1	1	0	0
doc_2	0	0	0	1	0	1	0	0	0
.	1	1	0	1	0	0	0	1	0
	0	0	0	0	0	0	0	1	1
doc_n	1	0	0	0	0	0	0	1	1

Low-Rank Approximation via SVD

- If the error $\left\|\mathbf{X}-\mathbf{Y} \mathbf{Z}^{T}\right\|_{F}$ is small, then on average,

$$
\mathbf{X}_{i, a} \approx\left(\mathbf{Y} \mathbf{Z}^{T}\right)_{i, a}=\left\langle\vec{y}_{i}, \vec{z}_{\mathrm{a}}\right\rangle .
$$

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix \mathbf{X}

	$c_{q,} o_{q_{\eta}} h_{o_{s}}$.			$\%_{9} \%_{t}$		
doc_1	0	0	1	0	0	1	1	0	0
doc_2	0	0	0	1	0	1	0	0	0
:	1	1	0	1	0	0	0	1	0
.	0	0	0	0	0	0	0	1	1
doc_n	1	0	0	0	0	0	0	1	1

Low-Rank Approximation via SVD

- If the error $\left\|\mathbf{X}-\mathbf{Y Z}{ }^{T}\right\|_{F}$ is small, then on average,

$$
\mathbf{X}_{i, a} \approx\left(\mathbf{Y} \mathbf{Z}^{T}\right)_{i, a}=\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle .
$$

- I.e., $\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx 1$ when doc $_{i}$ contains word ${ }_{a}$.

EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc i_{i} and doc $_{j}$ both contain word $_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$ If doc c_{i} and doc c_{j} both don't contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 0$

Since this applies for all words, documents with that involve a similar set of words tend to have high dot product with each other.

EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc i_{i} and doc $_{j}$ both contain word $_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$ If doc c_{i} and doc c_{j} both don't contain word $_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 0$

Since this applies for all words, documents with that involve a similar set of words tend to have high dot product with each other.

Another View: Column of \mathbf{Y} represent 'topics'. $\vec{y}_{i}(j)$ indicates how much doc $_{i}$ belongs to topic $j . \vec{z}_{a}(j)$ indicates how much word $_{a}$ associates with that topic.

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X

Low-Rank Approximation via SVD

\mathbf{Z}^{\top}

- Just like with documents, \vec{z}_{a} and \vec{z}_{b} will tend to have high dot product if word_{a} and word ${ }_{b}$ appear in many of the same documents.

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X

Low-Rank Approximation via SVD

\mathbf{Z}^{\top}
Y

- Just like with documents, \vec{z}_{a} and \vec{z}_{b} will tend to have high dot product if word_{a} and word ${ }_{b}$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^{T}=\boldsymbol{\Sigma}_{k} \mathbf{V}_{K}^{T}$ where columns of \mathbf{V}_{k} are the top k eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.

EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X

Low-Rank Approximation via SVD

$$
\mathbf{\Sigma} \mathbf{V}_{\mathrm{k}}^{\top}
$$

- Just like with documents, \vec{z}_{a} and \vec{z}_{b} will tend to have high dot product if word_{a} and word ${ }_{b}$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^{T}=\boldsymbol{\Sigma}_{k} \mathbf{V}_{K}^{T}$ where columns of \mathbf{V}_{k} are the top k eigenvectors of $\mathbf{X}^{T} \mathbf{X}$.

EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{T} \mathbf{X}$: where $\left(\mathbf{X}^{T} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word $_{b}$ appear in.

EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{T} \mathbf{X}$: where $\left(\mathbf{X}^{T} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word $_{b}$ appear in.
- Think about $\mathbf{X}^{T} \mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word $_{a}$ and word ${ }_{b}$.

EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{T} \mathbf{X}$: where $\left(\mathbf{X}^{T} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word $_{b}$ appear in.
- Think about $\mathbf{X}^{T} \mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word $_{a}$ and word $_{b}$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.

EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{T} \mathbf{X}$: where $\left(\mathbf{X}^{T} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word $_{b}$ appear in.
- Think about $\mathbf{X}^{T} \mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word $_{a}$ and word $_{b}$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing $\mathbf{X}^{T} \mathbf{X}$ with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

EXAMPLE: WORD EMBEDDING

EXAMPLE: WORD EMBEDDING

Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. Neural word embedding as implicit matrix factorization, Levy and Goldberg.

GRAPH EMBEDDINGS

NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^{d}.)

NON-LINEAR DIMENSIONALITY REDUCTION

$\stackrel{\bullet \bullet \bullet}{\bullet \bullet \bullet \bullet \bullet \cdot ~}$

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1 -dimensional subspace of \mathbb{R}^{d}.)

NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^{d}.)

A common way of automatically identifying this non-linear structure is to connect data points in a graph. E.g., a k-nearest neighbor graph.

- Connect items to similar items, possibly with higher weight edges when they are more similar.

LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points x_{1}, \ldots, x_{n} into a graph, we can represent that graph by its (weighted) adjacency matrix.
$\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i, j}=$ edge weight between nodes i and j

LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points x_{1}, \ldots, x_{n} into a graph, we can represent that graph by its (weighted) adjacency matrix.
$\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i, j}=$ edge weight between nodes i and j

ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of \mathbf{A} ?

ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of \mathbf{A} ?

- Project onto the top k eigenvectors of $\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$. (Note these are just the eigenvectors of \mathbf{A}).

ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of \mathbf{A} ?

- Project onto the top k eigenvectors of $\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$. (Note these are just the eigenvectors of \mathbf{A}).

1. $\mathbf{A} \approx \mathbf{A V}_{k} \mathbf{V}_{k}^{T}$ where \mathbf{V}_{k} is the matrix with the top k eigenvectors as columns.

ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of \mathbf{A} ?

- Project onto the top k eigenvectors of $\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$. (Note these are just the eigenvectors of \mathbf{A}).

1. $\mathbf{A} \approx \mathbf{A V}_{k} \mathbf{V}_{k}^{T}$ where \mathbf{V}_{k} is the matrix with the top k eigenvectors as columns.
2. Rows of $\mathbf{A} \mathbf{V}_{k}$ are an embedding of the nodes into \mathbb{R}^{k}.

ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of \mathbf{A} ?

- Project onto the top k eigenvectors of $\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$. (Note these are just the eigenvectors of \mathbf{A}).

1. $\mathbf{A} \approx \mathbf{A V}_{k} \mathbf{V}_{k}^{T}$ where \mathbf{V}_{k} is the matrix with the top k eigenvectors as columns.
2. Rows of $\mathbf{A} \mathbf{V}_{k}$ are an embedding of the nodes into \mathbb{R}^{k}.

- Similar vertices (close with regards to graph proximity) should have similar embeddings since

$$
\left\|(\mathbf{A})_{i}-(\mathbf{A})_{j}\right\|_{2} \approx\left\|\left(\mathbf{A} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right)_{i}-\left(\mathbf{A} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right)_{j}\right\|_{2}=\left\|\left(\mathbf{A} \mathbf{V}_{k}\right)_{i}-\left(\mathbf{A} \mathbf{V}_{k}\right)_{j}\right\|_{2}
$$

ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of \mathbf{A} ?

- Project onto the top k eigenvectors of $\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$. (Note these are just the eigenvectors of \mathbf{A}).

1. $\mathbf{A} \approx \mathbf{A V}_{k} \mathbf{V}_{k}^{T}$ where \mathbf{V}_{k} is the matrix with the top k eigenvectors as columns.
2. Rows of $\mathbf{A} \mathbf{V}_{k}$ are an embedding of the nodes into \mathbb{R}^{k}.

- Similar vertices (close with regards to graph proximity) should have similar embeddings since

$$
\left\|(\mathbf{A})_{i}-(\mathbf{A})_{j}\right\|_{2} \approx\left\|\left(\mathbf{A} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right)_{i}-\left(\mathbf{A} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right)_{j}\right\|_{2}=\left\|\left(\mathbf{A} \mathbf{V}_{k}\right)_{i}-\left(\mathbf{A} \mathbf{V}_{k}\right)_{j}\right\|_{2}
$$

where we showed the equality in Lecture 14.

SPECTRAL EMBEDDING

SPECTRAL EMBEDDING

Step 1: Produce a nearest neighbor graph based on your input data in \mathbb{R}^{d}.

SPECTRAL EMBEDDING

Step 1: Produce a nearest neighbor graph based on your input data in \mathbb{R}^{d}.
Step 2: Apply low-rank approximation to the graph adjacency matrix to produce embeddings in \mathbb{R}^{k}.

SPECTRAL EMBEDDING

Step 1: Produce a nearest neighbor graph based on your input data in \mathbb{R}^{d}.
Step 2: Apply low-rank approximation to the graph adjacency matrix to produce embeddings in \mathbb{R}^{k}.
Step 3: Work with the data in the embedded space. Where distances approximate distances in your original 'non-linear space.'

