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SUMMARY

Last Class: Low-Rank Approximation, Eigendecomposition, PCA
® For any symmetric square matrix A, we can write A = VAV where columns
of V are orthonormal eigenvectors.

® Can approximate data lying close to in a k-dimensional subspace by
projecting data points into that space.

® Can find the best k-dimensional subspace via eigendecomposition applied to
XX (PCA).

® Measuring error in terms of the eigenvalue spectrum.

This Class: SVD and Applications

® SVD and connection to eigenvalue value decomposition.

® Applications of low-rank approximation beyond compression.
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SINGULAR VALUE DECOMPOSITION

The Singular Value Decomposition (SVD) generalizes the eigendecomposition
to asymmetric (even rectangular) matrices. Any matrix X € R"*¢ with
rank(X) = r can be written as X = UXV’.

® U has orthonormal columns i, ..., d, € R" (left singular vectors).
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The ‘swiss army knife’ of modern linear algebra.




CONNECTION OF THE SVD TO EIGENDECOMPOSITION

Writing X € R"*¢ in its singular value decomposition X = UZV":

X'X =

X € R"™9: data matrix, U € R"%™"(X): matrix with orthonormal columns i, i», . . .
(left singular vectors), V € R9*¥12KX): matrix with orthonormal columns 7, ¥, . . . (right
singular vectors), ¥ € RIS positive diagonal matrix containing singular values
of X.
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Writing X € R"*¢ in its singular value decomposition X = UZV":
X"X =VEU'UEZV'™ = VE?V' (the eigendecomposition)

Similarly: XX = UZV'VZU™ = Ux?U".

The right and left singular vectors are the eigenvectors of the covariance matrix
XX and the gram matrix XX respectively.

So, letting Vi € R have columns equal to ¥, ..., vk, we know that XV, V]

is the best rank-k approximation to X (given by PCA).
What about U,U] X where U, € R™*¥ has columns equal to i, . .., i?

Exercise: UgUJX = XV, V] = U X, V]
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singular vectors), ¥ € RIS positive diagonal matrix containing singular values
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The best low-rank approximation to X, i.e.,

Xy = argmin || X —BJg
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The best low-rank approximation to X, i.e.,

IX = Bllr

is given by Xk = XVkVT = UkUZ—X = UkaVkT
Corresponds to projecting the rows (data points) onto the span of Vj or
the columns (features) onto the span of Uy
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rank-k BeRnxd
is given by X, = XVkaT = UkUkTX = UkaVkT
Corresponds to projecting the rows (data points) onto the span of Vj or
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BASIC IDEA TO PROVE EXISTENCE OF SVD

® Let Vj, ih,...,€ RY be orthonormal eigenvectors of X7 X.
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properties.
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® Let Vj, ih,...,€ RY be orthonormal eigenvectors of X7 X.
Xv;
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® Let g; = || XVi||2 and define unit vector J; =
® [Exercise: Show i, U, ... are orthonormal.

® This establishes that XV = UX and that V and U have the required
properties.

® To see rest of the details, see https:
//math.mit.edu/classes/18.095/2016IAP/1lec2/SVD_Notes.pdf


https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf
https://math.mit.edu/classes/18.095/2016IAP/lec2/SVD_Notes.pdf
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APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is applied in a
variety of data science applications.

® Used for many reasons other than dimensionality reduction/data
compression.
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MATRIX COMPLETION

Consider a matrix X € R"*¢ which we cannot fully observe but believe is close
to rank-k (i.e., well approximated by a rank k matrix). Classic example: the
Netflix prize problem.

Y Movies

49 (31| 3 |11(3.8|41(41|3.4|46

363 |3 (12(38|42|5 (3448

28| 3 3 (23] 3 3 3 3 (32
Users

34|13 (3|4 |41(41)|42] 3|3

28|33 (23|13 3|33 |34

22| 5 |3 |4 (42(39|44| 4 |53

1 (33| 3 (22]31(29(32|15|18

: 2
Solve: Y = argmin E [Xjk — Bj]
rank —k Bobserved (k)

Under certain assumptions, can show that Y well approximates X on both the
observed and (most importantly) unobserved entries.
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ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into k < d
dimensions. But what about when you want to embed objects other than
vectors?

® Documents (for topic-based search and classification)

® Words (to identify synonyms, translations, etc.)

® Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature
vector and then apply low-rank approximation.

10
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Term Document Matrix X Low-Rank Approximation via SVD
% ’Os/%e %y %
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® If the error |X — YZT || is small, then on average,
Xia~ (YZ)ia = (7, ).

® |e., (¥, Z:) ~ 1 when doc; contains word,.
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If doci and doc;j both contain word., (yi, Z2) ~ (yj, Zza) ~ 1 If doc; and doc;
both don't contain word,, (yi, Z:) ~ (¥, z,) = 0

Zq

Yj

doc_j

Since this applies for all words, documents with that involve a similar set of
words tend to have high dot product with each other.

Vi
doc_i

Another View: Column of Y represent ‘topics’. yi(j) indicates how much doc;
belongs to topic j. Z,(j) indicates how much word, associates with that topic. 13
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Term Document Matrix X Low-Rank Approximation via SVD
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top k eigenvectors of X7 X.
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Term Document Matrix X Low-Rank Approximation via SVD
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® Just like with documents, Z, and Z, will tend to have high dot product if

word, and wordp appear in many of the same documents.

® In an SVD decomposition we set Z' = XV} where columns of V are the
top k eigenvectors of X7 X.
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LSA gives a way of embedding words into k-dimensional space.

® Embedding is via low-rank approximation of X" X: where (X7 X), s is the
number of documents that both word, and word, appear in.

e Think about X" X as a similarity matrix (gram matrix, kernel matrix) with
entry (a, b) being the similarity between word, and word).

® Many ways to measure similarity: number of sentences both occur in,
number of times both appear in the same window of w words, in similar
positions of documents in different languages, etc.

® Replacing XX with these different metrics (sometimes appropriately
transformed) leads to popular word embedding algorithms: word2vec, GloVe,
fastText, etc.
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EXAMPLE: WORD EMBEDDING
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man '\ girl slower

\ father <‘ son slow
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slowest
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France
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EXAMPLE: WORD EMBEDDING

woman .
man \ girl slower
\ father <‘ <on slow
cat king queen boy
dog \ mother 4‘ faster slowest
cats daughter fast
dogs France
) England longer
he fastest
Paris Italy \ she long
London \
el herself longest
Rome

Note: word2vec is typically described as a neural-network method, but it
is really just low-rank approximation of a specific similarity matrix. Neural
word embedding as implicit matrix factorization, Levy and Goldberg.
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GRAPH EMBEDDINGS




NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional

subspace? (A 1-dimensional subspace of R?.)
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NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional

subspace? (A 1-dimensional subspace of R?.)
A common way of automatically identifying this non-linear structure is to

connect data points in a graph. E.g., a k-nearest neighbor graph.

® Connect items to similar items, possibly with higher weight edges when they

are more similar.



LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xi, ..., x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j
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LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xi, ..., x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j

PR O R
-~ O -0
O -~ -0

x
N
[N e )
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ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?
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ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?

® Project onto the top k eigenvectors of ATA = A2. (Note these are
just the eigenvectors of A).

1. Ax AVkVZ— where V is the matrix with the top k eigenvectors as
columns.
2. Rows of AV, are an embedding of the nodes into R¥.

® Similar vertices (close with regards to graph proximity) should have
similar embeddings since

1(A)i — (A)jll2 = [[(AVV] )i — (AVV)jll2 = [[(AVi)i — (AV); ]2

where we showed the equality in Lecture 14.
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SPECTRAL EMBEDDING

Step 1: Produce a nearest neighbor

graph based on your input data in
R,
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SPECTRAL EMBEDDING

Step 1: Produce a nearest neighbor
graph based on your input data in
R,

Step 2: Apply low-rank
approximation to the graph
adjacency matrix to produce
embeddings in R¥.

Step 3: Work with the data in the
embedded space. Where distances

approximate distances in your
original ‘non-linear space.’
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