COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 17

SVD: Can write any matrix X with rank r as UΣV^T where Σ ∈ ℝ^{r×r} is diagonal and columns of U and V are orthonormal.

- SVD: Can write any matrix X with rank r as UΣV^T where Σ ∈ ℝ^{r×r} is diagonal and columns of U and V are orthonormal.
- Low-Rank Matrix Completion: Predict missing entries, e.g., movie scores in the context of the Netflix prize.

Today: Latent Semantic Analysis.

- SVD: Can write any matrix X with rank r as UΣV^T where Σ ∈ ℝ^{r×r} is diagonal and columns of U and V are orthonormal.
- Low-Rank Matrix Completion: Predict missing entries, e.g., movie scores in the context of the Netflix prize.

Today: Latent Semantic Analysis.

• SVD Can reveal relationships between words and topics of documents.

- SVD: Can write any matrix X with rank r as UΣV^T where Σ ∈ ℝ^{r×r} is diagonal and columns of U and V are orthonormal.
- Low-Rank Matrix Completion: Predict missing entries, e.g., movie scores in the context of the Netflix prize.

Today: Latent Semantic Analysis.

• SVD Can reveal relationships between words and topics of documents.

Today: Spectral Graph Theory & Spectral Clustering.

- Low-rank approximation on graph adjacency matrix for non-linear dimensionality reduction.
- Eigendecomposition to partition graphs into clusters.

Dimensionality reduction embeds *d*-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

Dimensionality reduction embeds *d*-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Dimensionality reduction embeds *d*-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation.

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

 $\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

• I.e., $\langle \vec{y_i}, \vec{z_a} \rangle \approx 1$ when doc_i contains $word_a$.

If doc_i and doc_j both contain $word_a$, $\langle \vec{y_i}, \vec{z_a} \rangle \approx 1$ and $\langle \vec{y_j}, \vec{z_a} \rangle \approx 1$ and so $\langle \vec{y_i}, \vec{z_a} \rangle \approx \langle \vec{y_j}, \vec{z_a} \rangle$. Similarly if both don't contain $word_a$, $\langle \vec{y_i}, \vec{z_a} \rangle \approx \langle \vec{y_j}, \vec{z_a} \rangle$

Since this applies for all words, documents with that involve a similar set of words tend to have high dot product with each other.

If doc_i and doc_j both contain $word_a$, $\langle \vec{y_i}, \vec{z_a} \rangle \approx 1$ and $\langle \vec{y_j}, \vec{z_a} \rangle \approx 1$ and so $\langle \vec{y_i}, \vec{z_a} \rangle \approx \langle \vec{y_j}, \vec{z_a} \rangle$. Similarly if both don't contain $word_a$, $\langle \vec{y_i}, \vec{z_a} \rangle \approx \langle \vec{y_j}, \vec{z_a} \rangle$

Since this applies for all words, documents with that involve a similar set of words tend to have high dot product with each other.

Another View: Column of **Y** represent 'topics'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic j. $\vec{z_a}(j)$ indicates how much *word_a* associates with topic j.

 Just like with documents, *z_a* and *z_b* will tend to have high dot product if word_a and word_b appear in many of the same documents.

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word_a* and *word_b* appear in many of the same documents.
- In an SVD decomposition we set Z^T = Σ_kV_k^T where columns of V_k are the top k eigenvectors of X^TX.

- Just like with documents, \vec{z}_a and \vec{z}_b will tend to have high dot product if *word_a* and *word_b* appear in many of the same documents.
- In an SVD decomposition we set Z^T = Σ_kV_k^T where columns of V_k are the top k eigenvectors of X^TX.

 Embedding is via low-rank approximation of X^TX: where (X^TX)_{a,b} is the number of documents that both word_a and word_b appear in.

- Embedding is via low-rank approximation of **X**^T**X**: where (**X**^T**X**)_{*a,b*} is the number of documents that both *word_a* and *word_b* appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.

- Embedding is via low-rank approximation of **X**^T**X**: where (**X**^T**X**)_{*a,b*} is the number of documents that both *word_a* and *word_b* appear in.
- Think about **X**^T**X** as a similarity matrix (gram matrix, kernel matrix) with entry (*a*, *b*) being the similarity between *word*_a and *word*_b.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of *w* words, in similar positions of documents in different languages, etc.

- Embedding is via low-rank approximation of **X**^T**X**: where (**X**^T**X**)_{*a,b*} is the number of documents that both *word_a* and *word_b* appear in.
- Think about X^TX as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between word_a and word_b.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of *w* words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

EXAMPLE: WORD EMBEDDING

EXAMPLE: WORD EMBEDDING

Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.

GRAPH EMBEDDINGS

NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^d .)

NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^d .)

NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of \mathbb{R}^{d} .)

A common way of automatically identifying this non-linear structure is to connect data points in a graph. E.g., a *k*-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight edges when they are more similar.

Once we have connected *n* data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j}$ = edge weight between nodes *i* and *j*

Once we have connected *n* data points x_1, \ldots, x_n into a graph, we can represent that graph by its (weighted) adjacency matrix.

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i,j}$ = edge weight between nodes *i* and *j*

For a graph with adjacency matrix ${\bf A}$ and degree matrix ${\bf D},\, {\bf L}={\bf D}-{\bf A}$ is the graph Laplacian.

For a graph with adjacency matrix ${\bf A}$ and degree matrix ${\bf D},\,{\bf L}={\bf D}-{\bf A}$ is the graph Laplacian.

For any vector \vec{v} , its 'smoothness' over the graph is given by:

$$\sum_{(i,j)\in E} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T \mathsf{L} \vec{v}.$$

Lemma:

$$\sum_{(i,j)\in E} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T \mathsf{L} \vec{v}$$

Lemma:

$$\sum_{(i,j)\in E} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T \mathbf{L} \vec{v}$$

Proof:

Lemma:

$$\sum_{(i,j)\in E} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T \mathbf{L} \vec{v}$$

Proof:

• Let L_e be the Laplacian for graph just containing edge e.

Lemma:

$$\sum_{(i,j)\in E} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T \mathbf{L} \vec{v}$$

Proof:

- Let L_e be the Laplacian for graph just containing edge e.
- By linearity,

$$\vec{v}^T \mathsf{L} \vec{v} = \sum_{e \in E} \vec{v}^T \mathsf{L}_e \vec{v}$$

Lemma:

$$\sum_{(i,j)\in E} (\vec{v}(i) - \vec{v}(j))^2 = \vec{v}^T \mathsf{L} \vec{v}$$

Proof:

- Let L_e be the Laplacian for graph just containing edge e.
- By linearity,

$$\vec{v}^T \mathbf{L} \vec{v} = \sum_{e \in E} \vec{v}^T \mathbf{L}_e \vec{v}$$

• If
$$e = (i, j)$$
, then $\vec{v}^T \mathbf{L}_e \vec{v} = (v(i) - v(j))^2$

Project onto the top k eigenvectors of A^TA = A². (Note these are just the eigenvectors of A).

- Project onto the top k eigenvectors of A^TA = A². (Note these are just the eigenvectors of A).
 - 1. $\mathbf{A} \approx \mathbf{A} \mathbf{V}_k \mathbf{V}_k^{\mathsf{T}}$ where \mathbf{V}_k is the matrix with the top k eigenvectors as columns.

- Project onto the top k eigenvectors of A^TA = A². (Note these are just the eigenvectors of A).
 - 1. $\mathbf{A} \approx \mathbf{A} \mathbf{V}_k \mathbf{V}_k^T$ where \mathbf{V}_k is the matrix with the top k eigenvectors as columns.
 - 2. Rows of \mathbf{AV}_k are an embedding of the nodes into \mathbb{R}^k .

- Project onto the top k eigenvectors of A^TA = A². (Note these are just the eigenvectors of A).
 - 1. $\mathbf{A} \approx \mathbf{A} \mathbf{V}_k \mathbf{V}_k^T$ where \mathbf{V}_k is the matrix with the top k eigenvectors as columns.
 - 2. Rows of \mathbf{AV}_k are an embedding of the nodes into \mathbb{R}^k .
- Similar vertices (close with regards to graph proximity) should have similar embeddings since

$$\|(\mathbf{A})_i - (\mathbf{A})_j\|_2 \approx \|(\mathbf{A}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}})_i - (\mathbf{A}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}})_j\|_2 = \|(\mathbf{A}\mathbf{V}_k)_i - (\mathbf{A}\mathbf{V}_k)_j\|_2$$

- Project onto the top k eigenvectors of A^TA = A². (Note these are just the eigenvectors of A).
 - 1. $\mathbf{A} \approx \mathbf{A} \mathbf{V}_k \mathbf{V}_k^T$ where \mathbf{V}_k is the matrix with the top k eigenvectors as columns.
 - 2. Rows of \mathbf{AV}_k are an embedding of the nodes into \mathbb{R}^k .
- Similar vertices (close with regards to graph proximity) should have similar embeddings since

$$\|(\mathbf{A})_i - (\mathbf{A})_j\|_2 \approx \|(\mathbf{A}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}})_i - (\mathbf{A}\mathbf{V}_k\mathbf{V}_k^{\mathsf{T}})_j\|_2 = \|(\mathbf{A}\mathbf{V}_k)_i - (\mathbf{A}\mathbf{V}_k)_j\|_2$$

where we showed the equality in Lecture 14.

Step 1: Produce a nearest neighbor graph based on your input data in \mathbb{R}^d .

Step 1: Produce a nearest neighbor graph based on your input data in \mathbb{R}^d .

Step 2: Apply low-rank approximation to the graph adjacency matrix to produce embeddings in \mathbb{R}^k .

Step 1: Produce a nearest neighbor graph based on your input data in \mathbb{R}^d .

Step 2: Apply low-rank approximation to the graph adjacency matrix to produce embeddings in \mathbb{R}^k . Step 3: Work with the data in the embedded space. Where distances approximate distances in your original 'non-linear space.'