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Last Class:

e SVD: Can write any matrix X with rank r as UXV' where ¥ € R™*"
is diagonal and columns of U and V are orthonormal.

® | ow-Rank Matrix Completion: Predict missing entries, e.g., movie
scores in the context of the Netflix prize.

Today: Latent Semantic Analysis.
® SVD Can reveal relationships between words and topics of documents.
Today: Spectral Graph Theory & Spectral Clustering.

® | ow-rank approximation on graph adjacency matrix for non-linear
dimensionality reduction.

® Eigendecomposition to partition graphs into clusters.
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ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into k < d
dimensions. But what about when you want to embed objects other than
vectors?

® Documents (for topic-based search and classification)
® Words (to identify synonyms, translations, etc.)
® Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature
vector and then apply low-rank approximation.
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Term Document Matrix X Low-Rank Approximation via SVD
% ’Os/%e %y %
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® If the error |X — YZT || is small, then on average,
Xia~ (YZ)ia = (7, ).

® |e., (¥, Z:) ~ 1 when doc; contains word,.
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If doc; and doc;j both contain word., (yi,z:) ~ 1 and (y;,z:) ~ 1 and so
(¥i, Za) = (¥, Z»). Similarly if both don't contain word,, (yi, Zza) =~ (¥}, Z4)

Zq

Yj

doc_j

Since this applies for all words, documents with that involve a similar set of
words tend to have high dot product with each other.

Vi
doc_i

Another View: Column of Y represent ‘topics’. yi(j) indicates how much doc;
belongs to topic j. Z,(j) indicates how much word, associates with topic j. 6
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® Just like with documents, Z, and Z, will tend to have high dot product if

word, and wordp appear in many of the same documents.

® In an SVD decomposition we set Z' = XV} where columns of V are the
top k eigenvectors of X7 X.
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EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into k-dimensional space.

® Embedding is via low-rank approximation of X" X: where (X7 X), s is the
number of documents that both word, and word, appear in.

e Think about X" X as a similarity matrix (gram matrix, kernel matrix) with
entry (a, b) being the similarity between word, and word).

® Many ways to measure similarity: number of sentences both occur in,
number of times both appear in the same window of w words, in similar
positions of documents in different languages, etc.

® Replacing XX with these different metrics (sometimes appropriately
transformed) leads to popular word embedding algorithms: word2vec, GloVe,
fastText, etc.
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EXAMPLE: WORD EMBEDDING

woman .
man \ girl slower
\ father <‘ <on slow
cat king queen boy
dog \ mother 4‘ faster slowest
cats daughter fast
dogs France
) England longer
he fastest
Paris Italy \ she long
London \
el herself longest
Rome

Note: word2vec is typically described as a neural-network method, but it
is really just low-rank approximation of a specific similarity matrix. Neural
word embedding as implicit matrix factorization, Levy and Goldberg.
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NON-LINEAR DIMENSIONALITY REDUCTION

Is this set of points compressible? Does it lie close to a low-dimensional

subspace? (A 1-dimensional subspace of R?.)
A common way of automatically identifying this non-linear structure is to

connect data points in a graph. E.g., a k-nearest neighbor graph.

® Connect items to similar items, possibly with higher weight edges when they

are more similar.
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Once we have connected n data points xi, ..., x, into a graph, we can
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LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected n data points xi, ..., x, into a graph, we can
represent that graph by its (weighted) adjacency matrix.

A € R™" with A;; = edge weight between nodes i and j

PR O R
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O -~ -0
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THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D, L = D — A is the
graph Laplacian.

Xq D A
« 1000 0100 1100
4 0300 1011 -1 3-1-1
X - J—
2 oo20 | o101~ ]0-1241
0002 0110 0-1-12
X3

For any vector V, its ‘smoothness’ over the graph is given by:

> (W) = () = VL.

(i)eE
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REWRITING LAPLACIAN

Lemma:

Proof:

® |et L. be the Laplacian for graph just containing edge e.
® By linearity,
L =) VLV
ecE
e If e =(i,j), then VTL.V = (v(i) — v(j))?

14
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ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of A?

® Project onto the top k eigenvectors of ATA = A2. (Note these are
just the eigenvectors of A).

1. Ax AVkVZ— where V is the matrix with the top k eigenvectors as
columns.
2. Rows of AV, are an embedding of the nodes into R¥.

® Similar vertices (close with regards to graph proximity) should have
similar embeddings since

1(A)i — (A)jll2 = [[(AVV] )i — (AVV)jll2 = [[(AVi)i — (AV); ]2

where we showed the equality in Lecture 14.
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SPECTRAL EMBEDDING

Step 1: Produce a nearest neighbor
graph based on your input data in
R,

Step 2: Apply low-rank
approximation to the graph
adjacency matrix to produce
embeddings in R¥.

Step 3: Work with the data in the
embedded space. Where distances

approximate distances in your
original ‘non-linear space.’

16



	Graph Embeddings

