# COMPSCI 514: ALGORITHMS FOR DATA SCIENCE 

Andrew McGregor
Lecture 17

## SUMMARY

Last Class:

## SUMMARY

## Last Class:

- SVD: Can write any matrix $\mathbf{X}$ with rank $r$ as $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ where $\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ is diagonal and columns of $\mathbf{U}$ and $\mathbf{V}$ are orthonormal.


## SUMMARY

## Last Class:

- SVD: Can write any matrix $\mathbf{X}$ with rank $r$ as $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ where $\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ is diagonal and columns of $\mathbf{U}$ and $\mathbf{V}$ are orthonormal.
- Low-Rank Matrix Completion: Predict missing entries, e.g., movie scores in the context of the Netflix prize.

Today: Latent Semantic Analysis.

## SUMMARY

## Last Class:

- SVD: Can write any matrix $\mathbf{X}$ with rank $r$ as $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ where $\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ is diagonal and columns of $\mathbf{U}$ and $\mathbf{V}$ are orthonormal.
- Low-Rank Matrix Completion: Predict missing entries, e.g., movie scores in the context of the Netflix prize.

Today: Latent Semantic Analysis.

- SVD Can reveal relationships between words and topics of documents.


## SUMMARY

## Last Class:

- SVD: Can write any matrix $\mathbf{X}$ with rank $r$ as $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ where $\boldsymbol{\Sigma} \in \mathbb{R}^{r \times r}$ is diagonal and columns of $\mathbf{U}$ and $\mathbf{V}$ are orthonormal.
- Low-Rank Matrix Completion: Predict missing entries, e.g., movie scores in the context of the Netflix prize.


## Today: Latent Semantic Analysis.

- SVD Can reveal relationships between words and topics of documents.


## Today: Spectral Graph Theory \& Spectral Clustering.

- Low-rank approximation on graph adjacency matrix for non-linear dimensionality reduction.
- Eigendecomposition to partition graphs into clusters.


## ENTITY EMBEDDINGS

Dimensionality reduction embeds $d$-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

## ENTITY EMBEDDINGS

Dimensionality reduction embeds $d$-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network


## ENTITY EMBEDDINGS

Dimensionality reduction embeds $d$-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation.



## EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X


Low-Rank Approximation via SVD



## EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix $\mathbf{X}$

| doc_1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| doc_2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| . | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| doc_n | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

Low-Rank Approximation via SVD


- If the error $\left\|\mathbf{X}-\mathbf{Y} \mathbf{Z}^{T}\right\|_{F}$ is small, then on average,

$$
\mathbf{X}_{i, a} \approx\left(\mathbf{Y} \mathbf{Z}^{T}\right)_{i, a}=\left\langle\vec{y}_{i}, \vec{z}_{\mathrm{a}}\right\rangle .
$$

## EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix $\mathbf{X}$

|  | $c_{q,} o_{q_{\eta}} h_{o_{s}}$ |  |  | . |  |  | $\%_{9} \%_{t}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| doc_1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| doc_2 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
| : | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| . | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| doc_n | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |

Low-Rank Approximation via SVD


- If the error $\left\|\mathbf{X}-\mathbf{Y Z}{ }^{T}\right\|_{F}$ is small, then on average,

$$
\mathbf{X}_{i, a} \approx\left(\mathbf{Y} \mathbf{Z}^{T}\right)_{i, a}=\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle .
$$

- I.e., $\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx 1$ when doc $_{i}$ contains word ${ }_{a}$.


## EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc $_{i}$ and doc $_{j}$ both contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx 1$ and $\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$ and so $\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle$. Similarly if both don't contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle$


Since this applies for all words, documents with that involve a similar set of words tend to have high dot product with each other.

## EXAMPLE: LATENT SEMANTIC ANALYSIS

If doc $_{i}$ and doc $_{j}$ both contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx 1$ and $\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle \approx 1$ and so $\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle$. Similarly if both don't contain word ${ }_{a},\left\langle\vec{y}_{i}, \vec{z}_{a}\right\rangle \approx\left\langle\vec{y}_{j}, \vec{z}_{a}\right\rangle$


Since this applies for all words, documents with that involve a similar set of words tend to have high dot product with each other.

Another View: Column of $\mathbf{Y}$ represent 'topics'. $\vec{y}_{i}(j)$ indicates how much doc ${ }_{i}$ belongs to topic $j . \vec{z}_{a}(j)$ indicates how much word $_{a}$ associates with topic $j$.

## EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X


Low-Rank Approximation via SVD

$\mathbf{Z}^{\top}$

- Just like with documents, $\vec{z}_{a}$ and $\vec{z}_{b}$ will tend to have high dot product if $\operatorname{word}_{a}$ and word ${ }_{b}$ appear in many of the same documents.


## EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X


## Low-Rank Approximation via SVD


$\mathbf{Z}^{\top}$
Y

- Just like with documents, $\vec{z}_{a}$ and $\vec{z}_{b}$ will tend to have high dot product if $\operatorname{word}_{a}$ and word ${ }_{b}$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^{T}=\boldsymbol{\Sigma}_{k} \mathbf{V}_{K}^{T}$ where columns of $\mathbf{V}_{k}$ are the top $k$ eigenvectors of $\mathbf{X}^{\top} \mathbf{X}$.


## EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X


Low-Rank Approximation via SVD

$$
\mathbf{\Sigma} \mathbf{V}_{\mathrm{k}}^{\top}
$$

- Just like with documents, $\vec{z}_{a}$ and $\vec{z}_{b}$ will tend to have high dot product if $\operatorname{word}_{a}$ and word ${ }_{b}$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^{T}=\boldsymbol{\Sigma}_{k} \mathbf{V}_{K}^{T}$ where columns of $\mathbf{V}_{k}$ are the top $k$ eigenvectors of $\mathbf{X}^{T} \mathbf{X}$.


## EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into $k$-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{T} \mathbf{X}$ : where $\left(\mathbf{X}^{T} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word $_{b}$ appear in.


## EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into $k$-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{T} \mathbf{X}$ : where $\left(\mathbf{X}^{T} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word $_{b}$ appear in.
- Think about $\mathbf{X}^{T} \mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry $(a, b)$ being the similarity between word $_{a}$ and word ${ }_{b}$.


## EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into $k$-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{T} \mathbf{X}$ : where $\left(\mathbf{X}^{T} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word $_{b}$ appear in.
- Think about $\mathbf{X}^{T} \mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry $(a, b)$ being the similarity between word $_{a}$ and word $_{b}$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of $w$ words, in similar positions of documents in different languages, etc.


## EXAMPLE: WORD EMBEDDING

LSA gives a way of embedding words into $k$-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^{T} \mathbf{X}$ : where $\left(\mathbf{X}^{T} \mathbf{X}\right)_{a, b}$ is the number of documents that both word $_{a}$ and word $_{b}$ appear in.
- Think about $\mathbf{X}^{T} \mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry $(a, b)$ being the similarity between word $_{a}$ and word $_{b}$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of $w$ words, in similar positions of documents in different languages, etc.
- Replacing $\mathbf{X}^{T} \mathbf{X}$ with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.


## EXAMPLE: WORD EMBEDDING



## EXAMPLE: WORD EMBEDDING



Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. Neural word embedding as implicit matrix factorization, Levy and Goldberg.

## GRAPH EMBEDDINGS

## NON-LINEAR DIMENSIONALITY REDUCTION



Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of $\mathbb{R}^{d}$.)

## NON-LINEAR DIMENSIONALITY REDUCTION

## $\stackrel{\bullet \bullet \bullet}{\bullet \bullet \bullet \bullet \bullet \cdot ~}$

Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1 -dimensional subspace of $\mathbb{R}^{d}$.)

## NON-LINEAR DIMENSIONALITY REDUCTION



Is this set of points compressible? Does it lie close to a low-dimensional subspace? (A 1-dimensional subspace of $\mathbb{R}^{d}$.)

A common way of automatically identifying this non-linear structure is to connect data points in a graph. E.g., a $k$-nearest neighbor graph.

- Connect items to similar items, possibly with higher weight edges when they are more similar.


## LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected $n$ data points $x_{1}, \ldots, x_{n}$ into a graph, we can represent that graph by its (weighted) adjacency matrix.
$\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i, j}=$ edge weight between nodes $i$ and $j$

## LINEAR ALGEBRAIC REPRESENTATION OF A GRAPH

Once we have connected $n$ data points $x_{1}, \ldots, x_{n}$ into a graph, we can represent that graph by its (weighted) adjacency matrix.
$\mathbf{A} \in \mathbb{R}^{n \times n}$ with $\mathbf{A}_{i, j}=$ edge weight between nodes $i$ and $j$


## THE LAPLACIAN VIEW

For a graph with adjacency matrix $\mathbf{A}$ and degree matrix $\mathbf{D}, \mathbf{L}=\mathbf{D}-\mathbf{A}$ is the graph Laplacian.


## THE LAPLACIAN VIEW

For a graph with adjacency matrix $\mathbf{A}$ and degree matrix $\mathbf{D}, \mathbf{L}=\mathbf{D}-\mathbf{A}$ is the graph Laplacian.


For any vector $\vec{v}$, its 'smoothness' over the graph is given by:

$$
\sum_{(i, j) \in E}(\vec{v}(i)-\vec{v}(j))^{2}=\vec{v}^{T} \mathbf{L} \vec{v} .
$$

## REWRITING LAPLACIAN

Lemma:

$$
\sum_{(i, j) \in E}(\vec{v}(i)-\vec{v}(j))^{2}=\vec{v}^{T} \mathbf{L} \vec{v}
$$

## REWRITING LAPLACIAN

Lemma:

$$
\sum_{(i, j) \in E}(\vec{v}(i)-\vec{v}(j))^{2}=\vec{v}^{\top} \mathbf{L} \vec{v}
$$

Proof:

## REWRITING LAPLACIAN

Lemma:

$$
\sum_{(i, j) \in E}(\vec{v}(i)-\vec{v}(j))^{2}=\vec{v}^{T} \mathbf{L} \vec{v}
$$

Proof:

- Let $L_{e}$ be the Laplacian for graph just containing edge $e$.


## REWRITING LAPLACIAN

Lemma:

$$
\sum_{(i, j) \in E}(\vec{v}(i)-\vec{v}(j))^{2}=\vec{v}^{\top} \mathbf{L} \vec{v}
$$

Proof:

- Let $L_{e}$ be the Laplacian for graph just containing edge $e$.
- By linearity,

$$
\vec{v}^{\top} \mathbf{L} \vec{v}=\sum_{e \in E} \vec{v}^{\top} \mathbf{L}_{e} \vec{v}
$$

## REWRITING LAPLACIAN

Lemma:

$$
\sum_{(i, j) \in E}(\vec{v}(i)-\vec{v}(j))^{2}=\vec{v}^{T} \mathbf{L} \vec{v}
$$

Proof:

- Let $L_{e}$ be the Laplacian for graph just containing edge $e$.
- By linearity,

$$
\vec{v}^{T} \mathbf{L} \vec{v}=\sum_{e \in E} \vec{v}^{T} \mathbf{L}_{e} \vec{v}
$$

- If $e=(i, j)$, then $\vec{v}^{\top} \mathbf{L}_{e} \vec{v}=(v(i)-v(j))^{2}$


## ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of $\mathbf{A}$ ?

## ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of $\mathbf{A}$ ?

- Project onto the top $k$ eigenvectors of $\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$. (Note these are just the eigenvectors of $\mathbf{A}$ ).


## ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of $\mathbf{A}$ ?

- Project onto the top $k$ eigenvectors of $\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$. (Note these are just the eigenvectors of $\mathbf{A}$ ).

1. $\mathbf{A} \approx \mathbf{A V}_{k} \mathbf{V}_{k}^{T}$ where $\mathbf{V}_{k}$ is the matrix with the top $k$ eigenvectors as columns.

## ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of $\mathbf{A}$ ?

- Project onto the top $k$ eigenvectors of $\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$. (Note these are just the eigenvectors of $\mathbf{A}$ ).

1. $\mathbf{A} \approx \mathbf{A V}_{k} \mathbf{V}_{k}^{T}$ where $\mathbf{V}_{k}$ is the matrix with the top $k$ eigenvectors as columns.
2. Rows of $\mathbf{A} \mathbf{V}_{k}$ are an embedding of the nodes into $\mathbb{R}^{k}$.

## ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of $\mathbf{A}$ ?

- Project onto the top $k$ eigenvectors of $\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$. (Note these are just the eigenvectors of $\mathbf{A}$ ).

1. $\mathbf{A} \approx \mathbf{A V}_{k} \mathbf{V}_{k}^{T}$ where $\mathbf{V}_{k}$ is the matrix with the top $k$ eigenvectors as columns.
2. Rows of $\mathbf{A} \mathbf{V}_{k}$ are an embedding of the nodes into $\mathbb{R}^{k}$.

- Similar vertices (close with regards to graph proximity) should have similar embeddings since

$$
\left\|(\mathbf{A})_{i}-(\mathbf{A})_{j}\right\|_{2} \approx\left\|\left(\mathbf{A} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right)_{i}-\left(\mathbf{A} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right)_{j}\right\|_{2}=\left\|\left(\mathbf{A} \mathbf{V}_{k}\right)_{i}-\left(\mathbf{A} \mathbf{V}_{k}\right)_{j}\right\|_{2}
$$

## ADJACENCY MATRIX EIGENVECTORS

How do we compute an optimal low-rank approximation of $\mathbf{A}$ ?

- Project onto the top $k$ eigenvectors of $\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$. (Note these are just the eigenvectors of $\mathbf{A}$ ).

1. $\mathbf{A} \approx \mathbf{A V}_{k} \mathbf{V}_{k}^{T}$ where $\mathbf{V}_{k}$ is the matrix with the top $k$ eigenvectors as columns.
2. Rows of $\mathbf{A} \mathbf{V}_{k}$ are an embedding of the nodes into $\mathbb{R}^{k}$.

- Similar vertices (close with regards to graph proximity) should have similar embeddings since

$$
\left\|(\mathbf{A})_{i}-(\mathbf{A})_{j}\right\|_{2} \approx\left\|\left(\mathbf{A} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right)_{i}-\left(\mathbf{A} \mathbf{V}_{k} \mathbf{V}_{k}^{T}\right)_{j}\right\|_{2}=\left\|\left(\mathbf{A} \mathbf{V}_{k}\right)_{i}-\left(\mathbf{A} \mathbf{V}_{k}\right)_{j}\right\|_{2}
$$

where we showed the equality in Lecture 14.

## SPECTRAL EMBEDDING



## SPECTRAL EMBEDDING



Step 1: Produce a nearest neighbor graph based on your input data in $\mathbb{R}^{d}$.


## SPECTRAL EMBEDDING



Step 1: Produce a nearest neighbor graph based on your input data in $\mathbb{R}^{d}$.
Step 2: Apply low-rank approximation to the graph adjacency matrix to produce embeddings in $\mathbb{R}^{k}$.

## SPECTRAL EMBEDDING



Step 1: Produce a nearest neighbor graph based on your input data in $\mathbb{R}^{d}$.
Step 2: Apply low-rank approximation to the graph adjacency matrix to produce embeddings in $\mathbb{R}^{k}$.
Step 3: Work with the data in the embedded space. Where distances approximate distances in your original 'non-linear space.'

