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summary

Last Class:

• SVD: Can write any matrix X with rank r as UΣVT where Σ ∈ Rr×r

is diagonal and columns of U and V are orthonormal.

• Low-Rank Matrix Completion: Predict missing entries, e.g., movie

scores in the context of the Netflix prize.

Today: Latent Semantic Analysis.

• SVD Can reveal relationships between words and topics of documents.

Today: Spectral Graph Theory & Spectral Clustering.

• Low-rank approximation on graph adjacency matrix for non-linear

dimensionality reduction.

• Eigendecomposition to partition graphs into clusters.
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entity embeddings

Dimensionality reduction embeds d-dimensional vectors into k � d

dimensions. But what about when you want to embed objects other than

vectors?

• Documents (for topic-based search and classification)

• Words (to identify synonyms, translations, etc.)

• Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature

vector and then apply low-rank approximation.
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example: latent semantic analysis
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example: latent semantic analysis

• If the error ‖X− YZT‖F is small, then on average,

Xi,a ≈ (YZT )i,a = 〈~yi , ~za〉.

• I.e., 〈~yi , ~za〉 ≈ 1 when doci contains worda.
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example: latent semantic analysis

If doci and docj both contain worda, 〈~yi , ~za〉 ≈ 1 and 〈~yj , ~za〉 ≈ 1 and so

〈~yi , ~za〉 ≈ 〈~yj , ~za〉. Similarly if both don’t contain worda, 〈~yi , ~za〉 ≈ 〈~yj , ~za〉

Since this applies for all words, documents with that involve a similar set of

words tend to have high dot product with each other.

Another View: Column of Y represent ‘topics’. ~yi (j) indicates how much doci

belongs to topic j . ~za(j) indicates how much worda associates with topic j .
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example: latent semantic analysis

• Just like with documents, ~za and ~zb will tend to have high dot product if

worda and wordb appear in many of the same documents.

• In an SVD decomposition we set ZT = ΣkVT
K where columns of Vk are the

top k eigenvectors of XTX.
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example: word embedding

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of XTX: where (XTX)a,b is the

number of documents that both worda and wordb appear in.

• Think about XTX as a similarity matrix (gram matrix, kernel matrix) with

entry (a, b) being the similarity between worda and wordb.

• Many ways to measure similarity: number of sentences both occur in,

number of times both appear in the same window of w words, in similar

positions of documents in different languages, etc.

• Replacing XTX with these different metrics (sometimes appropriately

transformed) leads to popular word embedding algorithms: word2vec, GloVe,

fastText, etc.
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example: word embedding

Note: word2vec is typically described as a neural-network method, but it

is really just low-rank approximation of a specific similarity matrix. Neural

word embedding as implicit matrix factorization, Levy and Goldberg.
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graph embeddings



non-linear dimensionality reduction

Is this set of points compressible? Does it lie close to a low-dimensional

subspace? (A 1-dimensional subspace of Rd .)

A common way of automatically identifying this non-linear structure is to

connect data points in a graph. E.g., a k-nearest neighbor graph.

• Connect items to similar items, possibly with higher weight edges when they

are more similar.
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linear algebraic representation of a graph

Once we have connected n data points x1, . . . , xn into a graph, we can

represent that graph by its (weighted) adjacency matrix.

A ∈ Rn×n with Ai,j = edge weight between nodes i and j
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the laplacian view

For a graph with adjacency matrix A and degree matrix D, L = D− A is the

graph Laplacian.

For any vector ~v , its ‘smoothness’ over the graph is given by:∑
(i,j)∈E

(~v(i)− ~v(j))2

= ~vTL~v .
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rewriting laplacian

Lemma: ∑
(i,j)∈E

(~v(i)− ~v(j))2 = ~vTL~v

Proof:

• Let Le be the Laplacian for graph just containing edge e.
• By linearity,

~vTL~v =
∑
e∈E

~vTLe~v

• If e = (i , j), then ~vTLe~v = (v(i)− v(j))2
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adjacency matrix eigenvectors

How do we compute an optimal low-rank approximation of A?

• Project onto the top k eigenvectors of ATA = A2. (Note these are

just the eigenvectors of A).

1. A ≈ AVkVT
k where Vk is the matrix with the top k eigenvectors as

columns.

2. Rows of AVk are an embedding of the nodes into Rk .

• Similar vertices (close with regards to graph proximity) should have

similar embeddings since

‖(A)i − (A)j‖2 ≈ ‖(AVkVT
k )i − (AVkVT

k )j‖2 = ‖(AVk)i − (AVk)j‖2

where we showed the equality in Lecture 14.
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spectral embedding

Step 1: Produce a nearest neighbor

graph based on your input data in

Rd .

Step 2: Apply low-rank

approximation to the graph

adjacency matrix to produce

embeddings in Rk .

Step 3: Work with the data in the

embedded space. Where distances

approximate distances in your

original ‘non-linear space.’
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	Graph Embeddings

