
compsci 514: algorithms for data science

Andrew McGregor

Lecture 18

0



summary

This Class: Spectral Clustering

• Finding good cuts via Laplacian eigenvectors.

• Start analysis via the stochastic block model.
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graph clustering



spectral clustering

A very common task is to partition or cluster vertices in a graph based on

similarity/connectivity.

Community detection in naturally occurring networks.

Can find this cut using eigendecomposition!
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cut minimization

Simple Idea: Partition clusters along minimum cut in graph.

Small cuts are often not informative.

Solution: Encourage cuts that separate large sections of the graph.

• Let ~v ∈ Rn be a cut indicator: ~v(i) = 1 if i ∈ S . ~v(i) = −1 if i ∈ T . Want

~v to have roughly equal numbers of 1s and −1s. I.e., ~vT~1 ≈ 0.
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the laplacian view

For a graph with adjacency matrix A and degree matrix D, L = D− A is the

graph Laplacian.

For any vector ~v , its ‘smoothness’ over the graph is given by:∑
(i,j)∈E

(~v(i)− ~v(j))2

= ~vTL~v .
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the laplacian view

For a cut indicator vector ~v ∈ {−1, 1}n with ~v(i) = −1 for i ∈ S and

~v(i) = 1 for i ∈ T :

1. ~vTL~v =
∑

(i,j)∈E (~v(i)− ~v(j))2 = 4 · cut(S ,T ).

2. ~vT~1 = |T | − |S |.

Want to minimize both ~vTL~v (cut size) and ~vT~1 (imbalance).

Next Step: See how this dual minimization problem is naturally solved

by eigendecomposition.
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smallest laplacian eigenvector

Assuming the graph is connected, the smallest eigenvector of the

Laplacian is:

~vn =
1√
n
·~1 = arg min

v∈Rn with ‖~v‖=1

~vTL~v

with eigenvalue ~vT
n L~vn = 0.

Why?

n: number of nodes in graph, A ∈ Rn×n: adjacency matrix, D ∈ Rn×n: diagonal degree

matrix, L ∈ Rn×n: Laplacian matrix L = D− A.
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smallest laplacian eigenvector
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second smallest laplacian eigenvector

By Courant-Fischer, the second smallest eigenvector is given by:

~vn−1 = arg min
v∈Rn with ‖~v‖=1, ~vT

n ~v=0

~vTL~v

If ~vn−1 were in
{
− 1√

n
, 1√

n

}n

it would have:

• ~vT
n−1L~vn−1 = 4

n · cut(S ,T ) as small as possible given that

~vT
n−1~vn =

1√
n
~vT
n−1

~1 =
|T | − |S |√

n
= 0 .

• I.e., ~vn−1 would indicate the smallest perfectly balanced cut.

• The eigenvector ~vn−1 ∈ Rn is not generally binary, but still satisfies a

‘relaxed’ version of this property.
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cutting with the second laplacian eigenvector

Find a good partition of the graph by computing

~vn−1 = arg min
v∈Rdwith ‖~v‖=1, ~vT

n−1
~1=0

~vTL~v

Set S to be all nodes with ~vn−1(i) < 0, T to be all with ~vn−1(i) ≥ 0.
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spectral clustering with guarantees

• Summary: To partition a graph, find the eigenvector of the Laplacian

with the second smallest eigenvalue. Partition nodes based on whether

corresponding value in eigenvector is positive/negative.

~vn−1 = arg min
~v∈Rn,‖~v‖=1,~vT~1=0

~vTL~v

• We argued this “should” partition graph along a small cut that

separates the graph into large pieces.

• Haven’t given formal guarantees; it’s difficult for general input graphs.

But can consider randoms “natural” graphs. . .

• Common Approach: Give a natural generative model for random

inputs and analyze how the algorithm performs on inputs drawn from

this model. Can be used to justify `2 linear regression, k-means

clustering, etc.
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stochastic block model

Stochastic Block Model (Planted Partition Model): Let Gn(p, q) be a

distribution over graphs on n nodes, split randomly into two groups B and C ,

each with n/2 nodes.

• Any two nodes in the same group are connected with probability p (including

self-loops).

• Any two nodes in different groups are connected with prob. q < p.

• Connections are independent.
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linear algebraic view

Let G be a stochastic block model graph drawn from Gn(p, q).

• Let A ∈ Rn×n be the adjacency matrix of G , ordered in terms of group

ID.

Gn(p, q): stochastic block model distribution. B,C : groups with n/2 nodes each. Con-

nections are independent with probability p between nodes in the same group, and prob-

ability q between nodes not in the same group.
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expected adjacency spectrum

Letting G be a stochastic block model graph drawn from Gn(p, q) and

A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for i , j in same group,

(E[A])i,j = q otherwise.

What is rank(E[A])? What

are the eigenvectors and

eigenvalues of E[A]?

Gn(p, q): stochastic block model distribution. B,C : groups with n/2 nodes each. Con-

nections are independent with probability p between nodes in the same group, and prob-

ability q between nodes not in the same group.
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expected adjacency spectrum

If we compute ~v2 then we recover the communities B and C !

• Can show that for G ∼ Gn(p, q), A is “close” to E[A] in some

appropriate sense (matrix concentration inequality).

• Second eigenvector of A is close to [1, 1, 1, . . . ,−1,−1,−1] and gives a

good estimate of the communities.

When rows/columns aren’t sorted by ID, second eigenvector is e.g.,

[1,−1, 1,−1, . . . , 1, 1,−1] and entries give community ids.
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expected laplacian spectrum

Letting G be a stochastic block model graph drawn from Gn(p, q),

A ∈ Rn×n be its adjacency matrix and L be its Laplacian, what are the

eigenvectors and eigenvalues of E[L]?

E[L] = E[D]− E[A] =

(
n(p + q)

2

)
I− E[A]

and so if E[A]~x = λ~x then

E[L]~x = (n(p + q)/2− λ)~x

Therefore the first and second eigenvalues of E[A] are the second and

first eigenvectors of E[L].
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expected laplacian spectrum

Upshot: The second smallest eigenvector of E[L] is χB,C – the indicator

vector for the cut between the communities.

• If the matrices A and L were exactly equal to their expectation,

partitioning using this eigenvector (i.e., spectral clustering) would

exactly recover the two communities B and C .

How do we show that a matrix is close to its expectation? Matrix

concentration inequalities.

• Analogous to scalar concentration inequalities like Markovs,

Chebyshevs, Bernsteins.

• Random matrix theory is a very recent and cutting edge subfield of

mathematics that is being actively applied in computer science,

statistics, and ML.
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matrix concentration

Matrix Concentration Inequality: If p ≥ O
(

log4 n
n

)
, then with high

probability

‖A− E[A]‖2 ≤ O(
√
pn).

where ‖ · ‖2 is the matrix spectral norm (operator norm).

For any X ∈ Rn×d , ‖X‖2 = maxz∈Rd :‖z‖2=1 ‖Xz‖2.

For the stochastic block model application, we want to show that the second

eigenvectors of A and E[A] are close. How does this relate to their difference in

spectral norm?
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eigenvector perturbation

Davis-Kahan Eigenvector Perturbation Theorem: Suppose

A,A ∈ Rd×d are symmetric with ‖A − A‖2 ≤ ε and eigenvec-

tors v1, v2, . . . , vd and v̄1, v̄2, . . . , v̄d . Letting θ(vi , v̄i ) denote the

angle between vi and v̄i , for all i :

sin[θ(vi , v̄i )] ≤ ε

minj 6=i |λi − λj |

where λ1, . . . , λd are the eigenvalues of A.

The errors get large if there’s eigenvalues with similar magnitudes.
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application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(

log4 n
n

)
,

‖A− E[A]‖2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(

log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(
√
pn)

minj 6=2 |λ2 − λj |

≤
O(
√
pn)

(p − q)n/2
= O

( √
p

(p − q)
√
n

)
Recall: E[A] has eigenvalues λ1 = (p+q)n

2
, λ2 = (p−q)n

2
, λi = 0 for i ≥ 3.

min
j 6=2
|λ2 − λj | = min

(
qn,

(p − q)n

2

)
.

Typically, (p−q)n
2

will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection probability

within clusters. q < p: connection probability between clusters. n: number of nodes.

v2, v̄2: second eigenvectors of A and E[A] respectively.

19



application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(

log4 n
n

)
,

‖A− E[A]‖2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(

log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(
√
pn)

minj 6=2 |λ2 − λj |

≤
O(
√
pn)

(p − q)n/2
= O

( √
p

(p − q)
√
n

)

Recall: E[A] has eigenvalues λ1 = (p+q)n
2

, λ2 = (p−q)n
2

, λi = 0 for i ≥ 3.

min
j 6=2
|λ2 − λj | = min

(
qn,

(p − q)n

2

)
.

Typically, (p−q)n
2

will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection probability

within clusters. q < p: connection probability between clusters. n: number of nodes.

v2, v̄2: second eigenvectors of A and E[A] respectively.

19



application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(

log4 n
n

)
,

‖A− E[A]‖2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(

log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(
√
pn)

minj 6=2 |λ2 − λj |

≤
O(
√
pn)

(p − q)n/2
= O

( √
p

(p − q)
√
n

)

Recall: E[A] has eigenvalues λ1 = (p+q)n
2

, λ2 = (p−q)n
2

, λi = 0 for i ≥ 3.

min
j 6=2
|λ2 − λj | = min

(
qn,

(p − q)n

2

)
.

Typically, (p−q)n
2

will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection probability

within clusters. q < p: connection probability between clusters. n: number of nodes.

v2, v̄2: second eigenvectors of A and E[A] respectively.

19



application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(

log4 n
n

)
,

‖A− E[A]‖2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(

log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(
√
pn)

minj 6=2 |λ2 − λj |

≤
O(
√
pn)

(p − q)n/2
= O

( √
p

(p − q)
√
n

)

Recall: E[A] has eigenvalues λ1 = (p+q)n
2

, λ2 = (p−q)n
2

, λi = 0 for i ≥ 3.

min
j 6=2
|λ2 − λj | = min

(
qn,

(p − q)n

2

)
.

Typically, (p−q)n
2

will be the minimum of these two gaps.

A adjacency matrix of random stochastic block model graph. p: connection probability

within clusters. q < p: connection probability between clusters. n: number of nodes.

v2, v̄2: second eigenvectors of A and E[A] respectively.
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application to stochastic block model

So Far: sin θ(v2, v̄2) ≤ O
( √

p

(p−q)
√
n

)
.

What does this give us?

• Can show that this implies ‖v2 − v̄2‖2
2 ≤ O

(
p

(p−q)2n

)
(exercise).

• v̄2 is 1√
n
χB,C : the community indicator vector.

• Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n

to ‖v2 − v̄2‖2
2.

• So they differ in sign in at most O
(

p
(p−q)2

)
positions.

A adjacency matrix of random stochastic block model graph. p: connection probability

within clusters. q < p: connection probability between clusters. n: number of nodes.

v2, v̄2: second eigenvectors of A and E[A] respectively.
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application to stochastic block model

Upshot: If G is a stochastic block model graph with adjacency matrix A,

if we compute its second large eigenvector v2 and assign nodes to

communities according to the sign pattern of this vector, we will correctly

assign all but O
(

p
(p−q)2

)
nodes.
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