COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor

Lecture 19

Spectral Graph Partitioning

- Focus on separating graphs with small but relatively balanced cuts.
- Connection to second smallest eigenvector of graph Laplacian.
- Today: Provable guarantees for stochastic block model.

$$\vec{v}_{n-1} = \operatorname*{arg\,min}_{\vec{v} \in \mathbb{R}^n, \|\vec{v}\| = 1, \vec{v}^T \vec{1} = 0} \vec{v}^T L \vec{v}$$

$$\vec{v}_{n-1} = \arg\min_{\vec{v} \in \mathbb{R}^n, \|\vec{v}\|=1, \vec{v}^T \vec{1}=0} \vec{v}^T L \vec{v}$$

• We argued this "should" partition graph along a small cut that separates the graph into large pieces.

$$\vec{v}_{n-1} = \operatorname*{arg\,min}_{\vec{v} \in \mathbb{R}^n, \|\vec{v}\|=1, \vec{v}^T \vec{1}=0} \vec{v}^T L \vec{v}$$

- We argued this "should" partition graph along a small cut that separates the graph into large pieces.
- Haven't given formal guarantees; it's difficult for general input graphs. But can consider randoms "natural" graphs...

$$\vec{v}_{n-1} = \operatorname*{arg\,min}_{\vec{v} \in \mathbb{R}^n, \|\vec{v}\|=1, \vec{v}^T \vec{1}=0} \vec{v}^T L \vec{v}$$

- We argued this "should" partition graph along a small cut that separates the graph into large pieces.
- Haven't given formal guarantees; it's difficult for general input graphs. But can consider randoms "natural" graphs...
- **Common Approach:** Give a natural generative model for random inputs and analyze how the algorithm performs on inputs drawn from this model. Can be used to justify ℓ_2 linear regression, *k*-means clustering, etc.

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let $G_n(p,q)$ be a distribution over graphs on *n* nodes, split randomly into two groups *B* and *C*, each with n/2 nodes.

- Any two nodes in the same group are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. *q* < *p*.
- Connections are independent.

LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from $G_n(p, q)$.

• Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms of group ID.

 $G_n(p, q)$: stochastic block model distribution. *B*, *C*: groups with n/2 nodes each. Connections are independent with probability *p* between nodes in the same group, and probability *q* between nodes not in the same group.

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

 $G_n(p, q)$: stochastic block model distribution. B, C: groups with n/2 nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.

What is rank($\mathbb{E}[\mathbf{A}]$)? What are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?

 $G_n(p, q)$: stochastic block model distribution. *B*, *C*: groups with n/2 nodes each. Connections are independent with probability *p* between nodes in the same group, and probability *q* between nodes not in the same group.

If we compute \vec{v}_2 then we recover the communities *B* and *C*!

If we compute \vec{v}_2 then we recover the communities *B* and *C*!

 Can show that for G ~ G_n(p, q), A is "close" to E[A] in some appropriate sense (matrix concentration inequality).

If we compute \vec{v}_2 then we recover the communities *B* and *C*!

- Can show that for G ~ G_n(p, q), A is "close" to E[A] in some appropriate sense (matrix concentration inequality).
- Second eigenvector of A is close to [1, 1, 1, ..., -1, -1, -1] and gives a good estimate of the communities.

If we compute \vec{v}_2 then we recover the communities *B* and *C*!

- Can show that for G ~ G_n(p, q), A is "close" to E[A] in some appropriate sense (matrix concentration inequality).
- Second eigenvector of A is close to [1, 1, 1, ..., -1, -1, -1] and gives a good estimate of the communities.

When rows/columns aren't sorted by ID, second eigenvector is e.g., $[1, -1, 1, -1, \ldots, 1, 1, -1]$ and entries give community ids.

Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$? Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

$$\mathbb{E}[\mathbf{L}] = \mathbb{E}[\mathbf{D}] - \mathbb{E}[\mathbf{A}] = \left(\frac{n(p+q)}{2}\right)\mathbf{I} - \mathbb{E}[\mathbf{A}]$$

and so if $\mathbb{E}[\mathbf{A}]\vec{x} = \lambda \vec{x}$ then

$$\mathbb{E}[\mathbf{L}]\vec{x} = (n(p+q)/2 - \lambda)\vec{x}$$

Letting G be a stochastic block model graph drawn from $G_n(p, q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

$$\mathbb{E}[\mathsf{L}] = \mathbb{E}[\mathsf{D}] - \mathbb{E}[\mathsf{A}] = \left(\frac{n(p+q)}{2}\right)\mathsf{I} - \mathbb{E}[\mathsf{A}]$$

and so if $\mathbb{E}[\mathbf{A}]\vec{x} = \lambda \vec{x}$ then

$$\mathbb{E}[\mathbf{L}]\vec{x} = (n(p+q)/2 - \lambda)\vec{x}$$

Therefore the first and second eigenvalues of $\mathbb{E}[A]$ are the second and first eigenvectors of $\mathbb{E}[L].$

Upshot: The second smallest eigenvector of $\mathbb{E}[\mathbf{L}]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

Upshot: The second smallest eigenvector of $\mathbb{E}[\mathbf{L}]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

• If the matrices **A** and **L** were exactly equal to their expectation, partitioning using this eigenvector (i.e., spectral clustering) would exactly recover the two communities *B* and *C*.

Upshot: The second smallest eigenvector of $\mathbb{E}[\mathbf{L}]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

• If the matrices **A** and **L** were exactly equal to their expectation, partitioning using this eigenvector (i.e., spectral clustering) would exactly recover the two communities *B* and *C*.

How do we show that a matrix is close to its expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.
- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \leq O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2 = 1} \|\mathbf{X}z\|_2$.

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \leq O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For any
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
, $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2 = 1} \|\mathbf{X}z\|_2$.

For the stochastic block model application, we want to show that the second eigenvectors of **A** and $\mathbb{E}[\mathbf{A}]$ are close. How does this relate to their difference in spectral norm?

Davis-Kahan Eigenvector Perturbation Theorem: Suppose $\mathbf{A}, \overline{\mathbf{A}} \in \mathbb{R}^{d \times d}$ are symmetric with $\|\mathbf{A} - \overline{\mathbf{A}}\|_2 \leq \epsilon$ and eigenvectors v_1, v_2, \ldots, v_d and $\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_d$. Letting $\theta(v_i, \overline{v}_i)$ denote the angle between v_i and \overline{v}_i , for all i:

$$\sin[\theta(v_i, \bar{v}_i)] \le \frac{\epsilon}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of $\overline{\mathbf{A}}$.

The errors get large if there's eigenvalues with similar magnitudes.

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$, $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin\theta(v_2,\bar{v}_2) \leq \frac{O(\sqrt{\rho n})}{\min_{j\neq 2}|\lambda_2 - \lambda_j|}$$

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$, $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin\theta(v_2,\bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq 2}|\lambda_2 - \lambda_j|}$$

Recall: $\mathbb{E}[\mathbf{A}]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$, $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin\theta(v_2,\bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq 2}|\lambda_2 - \lambda_j|}$$

Recall: $\mathbb{E}[\mathbf{A}]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

$$\min_{j\neq 2} |\lambda_2 - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$, $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin\theta(v_2,\bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq 2}|\lambda_2 - \lambda_j|}$$

Recall: $\mathbb{E}[\mathbf{A}]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

$$\min_{j\neq 2} |\lambda_2 - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

Typically, $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$, $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin\theta(v_2,\bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq 2}|\lambda_2-\lambda_j|} \leq \frac{O(\sqrt{pn})}{(p-q)n/2} = O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$

Recall: $\mathbb{E}[\mathbf{A}]$ has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

$$\min_{j\neq 2} |\lambda_2 - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

Typically, $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

So Far:
$$\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$
.

So Far: $\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

• Can show that this implies $\|v_2 - \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).

So Far: $\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\|v_2 \bar{v}_2\|_2^2 \leq O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.

So Far: $\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\|v_2 \bar{v}_2\|_2^2 \leq O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.

• Every *i* where $v_2(i)$, $\bar{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $||v_2 - \bar{v}_2||_2^2$.

So Far: $\sin \theta(v_2, \bar{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\|v_2 \bar{v}_2\|_2^2 \leq O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.

- Every *i* where $v_2(i)$, $\bar{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $||v_2 \bar{v}_2||_2^2$.
- So they differ in sign in at most $O\left(\frac{p}{(p-q)^2}\right)$ positions.

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

