COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 19

SUMMARY

Spectral Graph Partitioning

- Focus on separating graphs with small but relatively balanced cuts.
- Connection to second smallest eigenvector of graph Laplacian.
- Today: Provable guarantees for stochastic block model.

SPECTRAL CLUSTERING WITH GUARANTEES

- To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

$$
\vec{v}_{n-1}=\underset{\vec{v} \in \mathbb{R}^{n},\|\vec{v}\|=1, \vec{v}^{\top} \overrightarrow{1}=0}{\arg \min } \vec{v}^{T} L \vec{v}
$$

SPECTRAL CLUSTERING WITH GUARANTEES

- To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

$$
\vec{v}_{n-1}=\underset{\vec{v} \in \mathbb{R}^{n},\|\vec{v}\|=1, \vec{v}^{\top} \overrightarrow{1}=0}{\arg \min } \vec{v}^{T} L \vec{v}
$$

- We argued this "should" partition graph along a small cut that separates the graph into large pieces.

SPECTRAL CLUSTERING WITH GUARANTEES

- To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

$$
\vec{v}_{n-1}=\underset{\vec{v} \in \mathbb{R}^{n},\|\vec{v}\|=1, \vec{v}^{\top} \overrightarrow{1}=0}{\arg \min } \vec{v}^{\top} L \vec{v}
$$

- We argued this "should" partition graph along a small cut that separates the graph into large pieces.
- Haven't given formal guarantees; it's difficult for general input graphs. But can consider randoms "natural" graphs...
- To partition a graph, find the eigenvector of the Laplacian with the second smallest eigenvalue. Partition nodes based on whether corresponding value in eigenvector is positive/negative.

$$
\vec{v}_{n-1}=\underset{\vec{v} \in \mathbb{R}^{n},\|\vec{v}\|=1, \vec{v}^{\top} \vec{i}=0}{\arg \min } \vec{v}^{T} L \vec{v}
$$

- We argued this "should" partition graph along a small cut that separates the graph into large pieces.
- Haven't given formal guarantees; it's difficult for general input graphs. But can consider randoms "natural" graphs...
- Common Approach: Give a natural generative model for random inputs and analyze how the algorithm performs on inputs drawn from this model. Can be used to justify ℓ_{2} linear regression, k-means clustering, etc.

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model): Let $G_{n}(p, q)$ be a distribution over graphs on n nodes, split randomly into two groups B and C, each with $n / 2$ nodes.

- Any two nodes in the same group are connected with probability p (including self-loops).
- Any two nodes in different groups are connected with prob. $q<p$.
- Connections are independent.

LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from $G_{n}(p, q)$.

- Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G, ordered in terms of group ID.

$G_{n}(p, q)$: stochastic block model distribution. B, C : groups with $n / 2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from $G_{n}(p, q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i, j}=p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i, j}=q$ otherwise.

$G_{n}(p, q)$: stochastic block model distribution. B, C : groups with $n / 2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from $G_{n}(p, q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i, j}=p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i, j}=q$ otherwise.

> What is $\operatorname{rank}(\mathbb{E}[\mathbf{A}])$? What are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?

$G_{n}(p, q)$: stochastic block model distribution. B, C : groups with $n / 2$ nodes each. Connections are independent with probability p between nodes in the same group, and probability q between nodes not in the same group.

EXPECTED ADJACENCY SPECTRUM

If we compute \vec{v}_{2} then we recover the communities B and C !

EXPECTED ADJACENCY SPECTRUM

If we compute \vec{v}_{2} then we recover the communities B and C !

- Can show that for $G \sim G_{n}(p, q), \mathbf{A}$ is "close" to $\mathbb{E}[\mathbf{A}]$ in some appropriate sense (matrix concentration inequality).

EXPECTED ADJACENCY SPECTRUM

If we compute \vec{v}_{2} then we recover the communities B and C !

- Can show that for $G \sim G_{n}(p, q), \mathbf{A}$ is "close" to $\mathbb{E}[\mathbf{A}]$ in some appropriate sense (matrix concentration inequality).
- Second eigenvector of A is close to $[1,1,1, \ldots,-1,-1,-1]$ and gives a good estimate of the communities.

EXPECTED ADJACENCY SPECTRUM

If we compute \vec{v}_{2} then we recover the communities B and C !

- Can show that for $G \sim G_{n}(p, q), \mathbf{A}$ is "close" to $\mathbb{E}[\mathbf{A}]$ in some appropriate sense (matrix concentration inequality).
- Second eigenvector of A is close to $[1,1,1, \ldots,-1,-1,-1]$ and gives a good estimate of the communities.

When rows/columns aren't sorted by ID, second eigenvector is e.g., $[1,-1,1,-1, \ldots, 1,1,-1]$ and entries give community ids.

EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from $G_{n}(p, q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from $G_{n}(p, q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

$$
\mathbb{E}[\mathbf{L}]=\mathbb{E}[\mathbf{D}]-\mathbb{E}[\mathbf{A}]=\left(\frac{n(p+q)}{2}\right) \mathbf{I}-\mathbb{E}[\mathbf{A}]
$$

and so if $\mathbb{E}[\mathbf{A}] \vec{x}=\lambda \vec{x}$ then

$$
\mathbb{E}[\mathbf{L}] \vec{x}=(n(p+q) / 2-\lambda) \vec{x}
$$

EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from $G_{n}(p, q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

$$
\mathbb{E}[\mathbf{L}]=\mathbb{E}[\mathbf{D}]-\mathbb{E}[\mathbf{A}]=\left(\frac{n(p+q)}{2}\right) \mathbf{I}-\mathbb{E}[\mathbf{A}]
$$

and so if $\mathbb{E}[\mathbf{A}] \vec{x}=\lambda \vec{x}$ then

$$
\mathbb{E}[\mathbf{L}] \vec{x}=(n(p+q) / 2-\lambda) \vec{x}
$$

Therefore the first and second eigenvalues of $\mathbb{E}[\mathbf{A}]$ are the second and first eigenvectors of $\mathbb{E}[\mathbf{L}]$.

EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of $\mathbb{E}[\mathbf{L}]$ is $\chi_{B, C}$ - the indicator vector for the cut between the communities.

EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of $\mathbb{E}[\mathbf{L}]$ is $\chi_{B, C}$ - the indicator vector for the cut between the communities.

- If the matrices \mathbf{A} and \mathbf{L} were exactly equal to their expectation, partitioning using this eigenvector (i.e., spectral clustering) would exactly recover the two communities B and C.

EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of $\mathbb{E}[\mathbf{L}]$ is $\chi_{B, C}$ - the indicator vector for the cut between the communities.

- If the matrices \mathbf{A} and \mathbf{L} were exactly equal to their expectation, partitioning using this eigenvector (i.e., spectral clustering) would exactly recover the two communities B and C.

How do we show that a matrix is close to its expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.
- Random matrix theory is a very recent and cutting edge subfield of mathematics that is being actively applied in computer science, statistics, and ML.

MATRIX CONCENTRATION

Matrix Concentration Inequality: If $p \geq O\left(\frac{\log ^{4} n}{n}\right)$, then with high probability

$$
\|\mathbf{A}-\mathbb{E}[\mathbf{A}]\|_{2} \leq O(\sqrt{p n})
$$

where $\|\cdot\|_{2}$ is the matrix spectral norm (operator norm).

For any $\mathbf{X} \in \mathbb{R}^{n \times d},\|\mathbf{X}\|_{2}=\max _{z \in \mathbb{R}^{d}:\|z\|_{2}=1}\|\mathbf{X} z\|_{2}$.

MATRIX CONCENTRATION

Matrix Concentration Inequality: If $p \geq O\left(\frac{\log ^{4} n}{n}\right)$, then with high probability

$$
\|\mathbf{A}-\mathbb{E}[\mathbf{A}]\|_{2} \leq O(\sqrt{p n})
$$

where $\|\cdot\|_{2}$ is the matrix spectral norm (operator norm).

For any $\mathbf{X} \in \mathbb{R}^{n \times d},\|\mathbf{X}\|_{2}=\max _{z \in \mathbb{R}^{d}:\|z\|_{2}=1}\|\mathbf{X} z\|_{2}$.
For the stochastic block model application, we want to show that the second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ are close. How does this relate to their difference in spectral norm?

EIGENVECTOR PERTURBATION

Davis-Kahan Eigenvector Perturbation Theorem: Suppose $\mathbf{A}, \overline{\mathbf{A}} \in \mathbb{R}^{d \times d}$ are symmetric with $\|\mathbf{A}-\overline{\mathbf{A}}\|_{2} \leq \epsilon$ and eigenvectors $v_{1}, v_{2}, \ldots, v_{d}$ and $\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{d}$. Letting $\theta\left(v_{i}, \bar{v}_{i}\right)$ denote the angle between v_{i} and \bar{v}_{i}, for all i :

$$
\sin \left[\theta\left(v_{i}, \bar{v}_{i}\right)\right] \leq \frac{\epsilon}{\min _{j \neq i}\left|\lambda_{i}-\lambda_{j}\right|}
$$

where $\lambda_{1}, \ldots, \lambda_{d}$ are the eigenvalues of $\overline{\mathbf{A}}$.

The errors get large if there's eigenvalues with similar magnitudes.

APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log ^{4} n}{n}\right)$,

$$
\|\mathbf{A}-\mathbb{E}[\mathbf{A}]\|_{2} \leq O(\sqrt{p n})
$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log ^{4} n}{n}\right)$,

$$
\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq \frac{O(\sqrt{p n})}{\min _{j \neq 2}\left|\lambda_{2}-\lambda_{j}\right|}
$$

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$: connection probability between clusters. n : number of nodes. v_{2}, \bar{v}_{2} : second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ respectively.

APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log ^{4} n}{n}\right)$,

$$
\|\mathbf{A}-\mathbb{E}[\mathbf{A}]\|_{2} \leq O(\sqrt{p n})
$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log ^{4} n}{n}\right)$,

$$
\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq \frac{O(\sqrt{p n})}{\min _{j \neq 2}\left|\lambda_{2}-\lambda_{j}\right|}
$$

Recall: $\mathbb{E}[\mathbf{A}]$ has eigenvalues $\lambda_{1}=\frac{(p+q) n}{2}, \lambda_{2}=\frac{(p-q) n}{2}, \lambda_{i}=0$ for $i \geq 3$.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$: connection probability between clusters. n : number of nodes. v_{2}, \bar{v}_{2} : second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ respectively.

APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log ^{4} n}{n}\right)$,

$$
\|\mathbf{A}-\mathbb{E}[\mathbf{A}]\|_{2} \leq O(\sqrt{p n})
$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log ^{4} n}{n}\right)$,

$$
\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq \frac{O(\sqrt{p n})}{\min _{j \neq 2}\left|\lambda_{2}-\lambda_{j}\right|}
$$

Recall: $\mathbb{E}[\mathbf{A}]$ has eigenvalues $\lambda_{1}=\frac{(p+q) n}{2}, \lambda_{2}=\frac{(p-q) n}{2}, \lambda_{i}=0$ for $i \geq 3$.

$$
\min _{j \neq 2}\left|\lambda_{2}-\lambda_{j}\right|=\min \left(q n, \frac{(p-q) n}{2}\right) .
$$

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$: connection probability between clusters. n : number of nodes. v_{2}, \bar{v}_{2} : second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ respectively.

APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log ^{4} n}{n}\right)$,

$$
\|\mathbf{A}-\mathbb{E}[\mathbf{A}]\|_{2} \leq O(\sqrt{p n})
$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log ^{4} n}{n}\right)$,

$$
\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq \frac{O(\sqrt{p n})}{\min _{j \neq 2}\left|\lambda_{2}-\lambda_{j}\right|}
$$

Recall: $\mathbb{E}[\mathbf{A}]$ has eigenvalues $\lambda_{1}=\frac{(p+q) n}{2}, \lambda_{2}=\frac{(p-q) n}{2}, \lambda_{i}=0$ for $i \geq 3$.

$$
\min _{j \neq 2}\left|\lambda_{2}-\lambda_{j}\right|=\min \left(q n, \frac{(p-q) n}{2}\right) .
$$

Typically, $\frac{(p-q) n}{2}$ will be the minimum of these two gaps.
A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$: connection probability between clusters. n : number of nodes. v_{2}, \bar{v}_{2} : second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ respectively.

APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \geq O\left(\frac{\log ^{4} n}{n}\right)$,

$$
\|\mathbf{A}-\mathbb{E}[\mathbf{A}]\|_{2} \leq O(\sqrt{p n})
$$

Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log ^{4} n}{n}\right)$,

$$
\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq \frac{O(\sqrt{p n})}{\min _{j \neq 2}\left|\lambda_{2}-\lambda_{j}\right|} \leq \frac{O(\sqrt{p n})}{(p-q) n / 2}=O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)
$$

Recall: $\mathbb{E}[\mathbf{A}]$ has eigenvalues $\lambda_{1}=\frac{(p+q) n}{2}, \lambda_{2}=\frac{(p-q) n}{2}, \lambda_{i}=0$ for $i \geq 3$.

$$
\min _{j \neq 2}\left|\lambda_{2}-\lambda_{j}\right|=\min \left(q n, \frac{(p-q) n}{2}\right) .
$$

Typically, $\frac{(p-q) n}{2}$ will be the minimum of these two gaps.
A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$: connection probability between clusters. n : number of nodes. v_{2}, \bar{v}_{2} : second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ respectively.

APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)$.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$: connection probability between clusters. n : number of nodes. v_{2}, \bar{v}_{2} : second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ respectively.

APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\left\|v_{2}-\bar{v}_{2}\right\|_{2}^{2} \leq O\left(\frac{p}{(p-q)^{2} n}\right)$ (exercise).

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$: connection probability between clusters. n : number of nodes. v_{2}, \bar{v}_{2} : second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ respectively.

APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\left\|v_{2}-\bar{v}_{2}\right\|_{2}^{2} \leq O\left(\frac{p}{(p-q)^{2} n}\right)$ (exercise).
- \bar{v}_{2} is $\frac{1}{\sqrt{n}} \chi_{B, C}$: the community indicator vector.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$: connection probability between clusters. n : number of nodes. v_{2}, \bar{v}_{2} : second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ respectively.

APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\left\|v_{2}-\bar{v}_{2}\right\|_{2}^{2} \leq O\left(\frac{p}{(p-q)^{2} n}\right)$ (exercise).
- \bar{v}_{2} is $\frac{1}{\sqrt{n}} \chi_{B, C}$: the community indicator vector.

- Every i where $v_{2}(i), \bar{v}_{2}(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $\left\|v_{2}-\bar{v}_{2}\right\|_{2}^{2}$.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$: connection probability between clusters. n : number of nodes. v_{2}, \bar{v}_{2} : second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ respectively.

APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta\left(v_{2}, \bar{v}_{2}\right) \leq O\left(\frac{\sqrt{p}}{(p-q) \sqrt{n}}\right)$. What does this give us?

- Can show that this implies $\left\|v_{2}-\bar{v}_{2}\right\|_{2}^{2} \leq O\left(\frac{p}{(p-q)^{2} n}\right)$ (exercise).
- \bar{v}_{2} is $\frac{1}{\sqrt{n}} \chi_{B, C}$: the community indicator vector.

- Every i where $v_{2}(i), \bar{v}_{2}(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $\left\|v_{2}-\bar{v}_{2}\right\|_{2}^{2}$.
- So they differ in sign in at most $O\left(\frac{p}{(p-q)^{2}}\right)$ positions.

A adjacency matrix of random stochastic block model graph. p: connection probability within clusters. $q<p$: connection probability between clusters. n : number of nodes. v_{2}, \bar{v}_{2} : second eigenvectors of \mathbf{A} and $\mathbb{E}[\mathbf{A}]$ respectively.

APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency matrix A, if we compute its second large eigenvector v_{2} and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^{2}}\right)$ nodes.

