COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 2

TODAY

Today:

- Investigate linearity of expectation and variance.
- Algorithmic application of linearity of expectation and variance.
- Introduce Markov's inequality, a fundamental concentration bound, that let us prove that a random variable lies close to its expectation with good probability.
- Learn about random hash functions, which are a key tool in randomized methods for data processing. Probabilistic analysis via linearity of expectation.

SOME PROBABILITY REVIEW

- Expectation:

$$
\mathbb{E}[\mathbf{X}]=\sum_{s \in S} \operatorname{Pr}(\mathbf{X}=s) \cdot s
$$

SOME PROBABILITY REVIEW

- Expectation:

$$
\mathbb{E}[\mathbf{X}]=\sum_{s \in S} \operatorname{Pr}(\mathbf{X}=s) \cdot s
$$

- Variance:

$$
\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{2}\right] .
$$

SOME PROBABILITY REVIEW

- Expectation:

$$
\mathbb{E}[\mathbf{X}]=\sum_{s \in S} \operatorname{Pr}(\mathbf{X}=s) \cdot s
$$

- Variance:

$$
\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{2}\right]
$$

- Two random variables \mathbf{X}, \mathbf{Y} are independent if for all $s, t,\{\mathbf{X}=s\}$ and $\{\mathbf{Y}=t\}$ are independent events. In other words:

$$
\operatorname{Pr}(\{\mathbf{X}=s\} \cap\{\mathbf{Y}=t\})=\operatorname{Pr}(\mathbf{X}=s) \cdot \operatorname{Pr}(\mathbf{Y}=t) .
$$

LINEARITY OF EXPECTATION AND VARIANCE

When are the expectation and variance linear?
I.e., under what conditions on \mathbf{X} and \mathbf{Y} do we have:

$$
\mathbb{E}[\mathbf{X}+\mathbf{Y}]=\mathbb{E}[\mathbf{X}]+\mathbb{E}[\mathbf{Y}]
$$

and

$$
\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}] .
$$

LINEARITY OF EXPECTATION AND VARIANCE

When are the expectation and variance linear?

l.e., under what conditions on \mathbf{X} and \mathbf{Y} do we have:

$$
\mathbb{E}[\mathbf{X}+\mathbf{Y}]=\mathbb{E}[\mathbf{X}]+\mathbb{E}[\mathbf{Y}]
$$

and

$$
\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}] .
$$

Last time we showed that linearity of expectation is true regardless of whether the random variables were independent.
\mathbf{X}, \mathbf{Y} : any two random variables.
$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.
Exercise 1: $\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[\mathbf{X}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}$

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.
Exercise 1: $\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[\mathbf{X}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}$ (via linearity of expectation)

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.
Exercise 1: $\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[\mathbf{X}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}$ (via linearity of expectation)
Exercise 2: $\mathbb{E}[\mathbf{X Y}]=\mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]$ when \mathbf{X}, \mathbf{Y} are independent.

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.
Exercise 1: $\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[\mathbf{X}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}$ (via linearity of expectation)
Exercise 2: $\mathbb{E}[\mathbf{X Y}]=\mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]$ when \mathbf{X}, \mathbf{Y} are independent.
Together give:

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.
Exercise 1: $\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[\mathbf{X}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}$ (via linearity of expectation)
Exercise 2: $\mathbb{E}[\mathbf{X Y}]=\mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]$ when \mathbf{X}, \mathbf{Y} are independent.
Together give:

$$
\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\mathbb{E}\left[(\mathbf{X}+\mathbf{Y})^{2}\right]-\mathbb{E}[\mathbf{X}+\mathbf{Y}]^{2}
$$

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.
Exercise 1: $\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[\mathbf{X}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}$ (via linearity of expectation)
Exercise 2: $\mathbb{E}[\mathbf{X Y}]=\mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]$ when \mathbf{X}, \mathbf{Y} are independent.
Together give:

$$
\begin{aligned}
& \operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\mathbb{E}\left[(\mathbf{X}+\mathbf{Y})^{2}\right]-\mathbb{E}[\mathbf{X}+\mathbf{Y}]^{2} \\
&=\mathbb{E}\left[\mathbf{X}^{2}\right]+2 \mathbb{E}[\mathbf{X Y}]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-(\mathbb{E}[\mathbf{X}]+\mathbb{E}[\mathbf{Y}])^{2} \\
& \quad \text { (linearity of expectation) }
\end{aligned}
$$

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.
Exercise 1: $\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[\mathbf{X}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}$ (via linearity of expectation)
Exercise 2: $\mathbb{E}[\mathbf{X Y}]=\mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]$ when \mathbf{X}, \mathbf{Y} are independent.
Together give:

$$
\begin{aligned}
\operatorname{Var}[\mathbf{X}+\mathbf{Y}] & =\mathbb{E}\left[(\mathbf{X}+\mathbf{Y})^{2}\right]-\mathbb{E}[\mathbf{X}+\mathbf{Y}]^{2} \\
& =\mathbb{E}\left[\mathbf{X}^{2}\right]+2 \mathbb{E}[\mathbf{X Y}]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-(\mathbb{E}[\mathbf{X}]+\mathbb{E}[\mathbf{Y}])^{2} \\
& \quad \text { (linearity of expectation) } \\
& =\mathbb{E}\left[\mathbf{X}^{2}\right]+2 \mathbb{E}[\mathbf{X Y}]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}-2 \mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]-\mathbb{E}[\mathbf{Y}]^{2}
\end{aligned}
$$

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.
Exercise 1: $\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[\mathbf{X}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}$ (via linearity of expectation)
Exercise 2: $\mathbb{E}[\mathbf{X Y}]=\mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]$ when \mathbf{X}, \mathbf{Y} are independent.
Together give:

$$
\begin{aligned}
\operatorname{Var}[\mathbf{X}+\mathbf{Y}] & =\mathbb{E}\left[(\mathbf{X}+\mathbf{Y})^{2}\right]-\mathbb{E}[\mathbf{X}+\mathbf{Y}]^{2} \\
& =\mathbb{E}\left[\mathbf{X}^{2}\right]+2 \mathbb{E}[\mathbf{X Y}]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-(\mathbb{E}[\mathbf{X}]+\mathbb{E}[\mathbf{Y}])^{2} \\
& \quad \text { (linearity of expectation) } \\
& =\mathbb{E}\left[\mathbf{X}^{2}\right]+2 \mathbb{E}[\mathbf{X Y}]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}-2 \mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]-\mathbb{E}[\mathbf{Y}]^{2}
\end{aligned}
$$

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.
Exercise 1: $\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[\mathbf{X}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}$ (via linearity of expectation)
Exercise 2: $\mathbb{E}[\mathbf{X Y}]=\mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]$ when \mathbf{X}, \mathbf{Y} are independent.
Together give:

$$
\begin{aligned}
& \operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\mathbb{E}\left[(\mathbf{X}+\mathbf{Y})^{2}\right]-\mathbb{E}[\mathbf{X}+\mathbf{Y}]^{2} \\
&=\mathbb{E}\left[\mathbf{X}^{2}\right]+2 \mathbb{E}[\mathbf{X Y}]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-(\mathbb{E}[\mathbf{X}]+\mathbb{E}[\mathbf{Y}])^{2} \\
& \quad \text { (linearity of expectation) } \\
&=\mathbb{E}\left[\mathbf{X}^{2}\right]+2 \mathbb{E}[\mathbf{X Y}]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}-2 \mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]-\mathbb{E}[\mathbf{Y}]^{2} \\
&=\mathbb{E}\left[\mathbf{X}^{2}\right]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}-\mathbb{E}[\mathbf{Y}]^{2}
\end{aligned}
$$

LINEARITY OF VARIANCE

$\operatorname{Var}[\mathbf{X}+\mathbf{Y}]=\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}]$ when \mathbf{X} and \mathbf{Y} are independent.
Exercise 1: $\operatorname{Var}[\mathbf{X}]=\mathbb{E}\left[\mathbf{X}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}$ (via linearity of expectation)
Exercise 2: $\mathbb{E}[\mathbf{X Y}]=\mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]$ when \mathbf{X}, \mathbf{Y} are independent.
Together give:

$$
\begin{aligned}
\operatorname{Var}[\mathbf{X}+\mathbf{Y}] & =\mathbb{E}\left[(\mathbf{X}+\mathbf{Y})^{2}\right]-\mathbb{E}[\mathbf{X}+\mathbf{Y}]^{2} \\
& =\mathbb{E}\left[\mathbf{X}^{2}\right]+2 \mathbb{E}[\mathbf{X Y}]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-(\mathbb{E}[\mathbf{X}]+\mathbb{E}[\mathbf{Y}])^{2} \\
& \quad \text { (linearity of expectation) } \\
& =\mathbb{E}\left[\mathbf{X}^{2}\right]+2 \mathbb{E}[\mathbf{X Y}]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}-2 \mathbb{E}[\mathbf{X}] \cdot \mathbb{E}[\mathbf{Y}]-\mathbb{E}[\mathbf{Y}]^{2} \\
& =\mathbb{E}\left[\mathbf{X}^{2}\right]+\mathbb{E}\left[\mathbf{Y}^{2}\right]-\mathbb{E}[\mathbf{X}]^{2}-\mathbb{E}[\mathbf{Y}]^{2} \\
& =\operatorname{Var}[\mathbf{X}]+\operatorname{Var}[\mathbf{Y}] .
\end{aligned}
$$

AN ALGORITHMIC APPLICATION

You have contracted with a new company to provide CAPTCHAS for your website.

$$
\text { captcha } 246
$$

Type the word above:
10
GO

You have contracted with a new company to provide CAPTCHAS for your website.

$$
\text { captcha } 246
$$

Type the word above:
∞
GO

- They claim that they have a database of $1,000,000$ unique CAPTCHAS. A random one is chosen for each security check.
- You want to independently verify this claimed database size.

You have contracted with a new company to provide CAPTCHAS for your website.

$$
\text { captcha } 246
$$

Type the word above:
\cdots
GO

- They claim that they have a database of $1,000,000$ unique CAPTCHAS. A random one is chosen for each security check.
- You want to independently verify this claimed database size.
- You could make test checks until you see $1,000,000$ unique CAPTCHAS: would take $\geq 1,000,000$ checks!

An Idea: You run some test security checks and see if any duplicate CAPTCHAS show up. If you're seeing duplicates after not too many checks, the database size is probably not too big.

An Idea: You run some test security checks and see if any duplicate CAPTCHAS show up. If you're seeing duplicates after not too many checks, the database size is probably not too big.

'Mark and recapture' method in ecology.

An Idea: You run some test security checks and see if any duplicate CAPTCHAS show up. If you're seeing duplicates after not too many checks, the database size is probably not too big.

'Mark and recapture' method in ecology.

AN ALGORITHMIC APPLICATION

An Idea: You run some test security checks and see if any duplicate CAPTCHAS show up. If you're seeing duplicates after not too many checks, the database size is probably not too big.

'Mark and recapture' method in ecology.

Note that if the same CAPTCHA shows up four times this counts as $\binom{4}{2}$ duplicates.

LINEARITY OF EXPECTATION

Let $\mathbf{D}_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable.
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

LINEARITY OF EXPECTATION

Let $\mathbf{D}_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable.

n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

LINEARITY OF EXPECTATION

Let $\mathbf{D}_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable. The number of pairwise duplicates (a random variable) is:

$$
\mathbf{D}=\sum_{i, j \in[m], i<j} \mathbf{D}_{i, j} .
$$

n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

LINEARITY OF EXPECTATION

Let $\mathbf{D}_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable. The number of pairwise duplicates (a random variable) is:

$$
\mathbb{E}[\mathbf{D}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{D}_{i, j}\right] .
$$

n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

LINEARITY OF EXPECTATION

Let $\mathbf{D}_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable. The number of pairwise duplicates (a random variable) is:

$$
\mathbb{E}[\mathbf{D}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{D}_{i, j}\right] .
$$

For any pair $i, j \in[m], i<j: \quad \mathbb{E}\left[\mathbf{D}_{i, j}\right]=\operatorname{Pr}\left[\mathbf{D}_{i, j}=1\right]=\frac{1}{n}$.
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

LINEARITY OF EXPECTATION

Let $\mathbf{D}_{i, j}=1$ if tests i and j give the same CAPTCHA, and 0 otherwise. An indicator random variable. The number of pairwise duplicates (a random variable) is:

$$
\mathbb{E}[\mathbf{D}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{D}_{i, j}\right] .
$$

For any pair $i, j \in[m], i<j: \quad \mathbb{E}\left[\mathbf{D}_{i, j}\right]=\operatorname{Pr}\left[\mathbf{D}_{i, j}=1\right]=\frac{1}{n}$.

$$
\mathbb{E}[\mathbf{D}]=\sum_{i, j \in[m], i<j} \frac{1}{n}=\frac{\binom{m}{2}}{n}=\frac{m(m-1)}{2 n} .
$$

n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, D: number of pairwise duplicates in m random CAPTCHAS

LINEARITY OF EXPECTATION

You take $m=1000$ samples. If the database size is as claimed ($n=1,000,000$) then expected number of duplicates is:

$$
\mathbb{E}[\mathbf{D}]=\frac{m(m-1)}{2 n}=.4995
$$

n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, \mathbf{D} : number of pairwise duplicates in m random CAPTCHAS.

LINEARITY OF EXPECTATION

You take $m=1000$ samples. If the database size is as claimed ($n=1,000,000$) then expected number of duplicates is:

$$
\mathbb{E}[\mathbf{D}]=\frac{m(m-1)}{2 n}=.4995
$$

You see 10 pairwise duplicates and suspect that something is up. But how confident can you be in your test?
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, \mathbf{D} : number of pairwise duplicates in m random CAPTCHAS.

LINEARITY OF EXPECTATION

You take $m=1000$ samples. If the database size is as claimed ($n=1,000,000$) then expected number of duplicates is:

$$
\mathbb{E}[\mathbf{D}]=\frac{m(m-1)}{2 n}=.4995
$$

You see 10 pairwise duplicates and suspect that something is up. But how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a random variable deviates a certain distance from its mean.
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, \mathbf{D} : number of pairwise duplicates in m random CAPTCHAS.

LINEARITY OF EXPECTATION

You take $m=1000$ samples. If the database size is as claimed ($n=1,000,000$) then expected number of duplicates is:

$$
\mathbb{E}[\mathbf{D}]=\frac{m(m-1)}{2 n}=.4995
$$

You see 10 pairwise duplicates and suspect that something is up. But how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a random variable deviates a certain distance from its mean.

- Useful in understanding how statistical tests perform, the behavior of randomized algorithms, the behavior of data drawn from different distributions, etc.
n : number of CAPTCHAS in database, m : number of random CAPTCHAS drawn to check database size, \mathbf{D} : number of pairwise duplicates in m random CAPTCHAS.

MARKOV'S INEQUALITY

The simplest concentration bound: Markov's inequality.

MARKOV'S INEQUALITY

The simplest concentration bound: Markov's inequality.
For any non-negative random variable \mathbf{X} and any $t>0$:

$$
\operatorname{Pr}[\mathbf{X} \geq t] \leq \frac{\mathbb{E}[\mathbf{X}]}{t}
$$

MARKOV'S INEQUALITY

The simplest concentration bound: Markov's inequality.
For any non-negative random variable \mathbf{X} and any $t>0$:

$$
\operatorname{Pr}[\mathbf{X} \geq t] \leq \frac{\mathbb{E}[\mathbf{X}]}{t}
$$

Proof:

MARKOV'S INEQUALITY

The simplest concentration bound: Markov's inequality.
For any non-negative random variable \mathbf{X} and any $t>0$:

$$
\operatorname{Pr}[\mathbf{X} \geq t] \leq \frac{\mathbb{E}[\mathbf{X}]}{t}
$$

Proof:

$$
\mathbb{E}[\mathbf{X}]=\sum_{s} \operatorname{Pr}(\mathbf{X}=s) \cdot s
$$

MARKOV'S INEQUALITY

The simplest concentration bound: Markov's inequality.
For any non-negative random variable \mathbf{X} and any $t>0$:

$$
\operatorname{Pr}[\mathbf{X} \geq t] \leq \frac{\mathbb{E}[\mathbf{X}]}{t}
$$

Proof:

$$
\mathbb{E}[\mathbf{X}]=\sum_{s} \operatorname{Pr}(\mathbf{X}=s) \cdot s \geq \sum_{s \geq t} \operatorname{Pr}(\mathbf{X}=s) \cdot s
$$

MARKOV'S INEQUALITY

The simplest concentration bound: Markov's inequality.
For any non-negative random variable \mathbf{X} and any $t>0$:

$$
\operatorname{Pr}[\mathbf{X} \geq t] \leq \frac{\mathbb{E}[\mathbf{X}]}{t}
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[\mathbf{X}]=\sum_{s} \operatorname{Pr}(\mathbf{X}=s) \cdot s & \geq \sum_{s \geq t} \operatorname{Pr}(\mathbf{X}=s) \cdot s \\
& \geq \sum_{s \geq t} \operatorname{Pr}(\mathbf{X}=s) \cdot t
\end{aligned}
$$

MARKOV'S INEQUALITY

The simplest concentration bound: Markov's inequality.
For any non-negative random variable \mathbf{X} and any $t>0$:

$$
\operatorname{Pr}[\mathbf{X} \geq t] \leq \frac{\mathbb{E}[\mathbf{X}]}{t}
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[\mathbf{X}]=\sum_{s} \operatorname{Pr}(\mathbf{X}=s) \cdot s & \geq \sum_{s \geq t} \operatorname{Pr}(\mathbf{X}=s) \cdot s \\
& \geq \sum_{s \geq t} \operatorname{Pr}(\mathbf{X}=s) \cdot t \\
& =t \cdot \operatorname{Pr}(\mathbf{X} \geq t) .
\end{aligned}
$$

MARKOV'S INEQUALITY

The simplest concentration bound: Markov's inequality.
For any non-negative random variable \mathbf{X} and any $t>0$:

$$
\operatorname{Pr}[\mathbf{X} \geq t \cdot \mathbb{E}[\mathbf{X}]] \leq \frac{1}{t}
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[\mathbf{X}]=\sum_{s} \operatorname{Pr}(\mathbf{X}=s) \cdot s & \geq \sum_{s \geq t} \operatorname{Pr}(\mathbf{X}=s) \cdot s \\
& \geq \sum_{s \geq t} \operatorname{Pr}(\mathbf{X}=s) \cdot t \\
& =t \cdot \operatorname{Pr}(\mathbf{X} \geq t) .
\end{aligned}
$$

MARKOV'S INEQUALITY

The simplest concentration bound: Markov's inequality.
For any non-negative random variable \mathbf{X} and any $t>0$:

$$
\operatorname{Pr}[\mathbf{X} \geq t \cdot \mathbb{E}[\mathbf{X}]] \leq \frac{1}{t}
$$

Proof:

$$
\begin{aligned}
\mathbb{E}[\mathbf{X}]=\sum_{s} \operatorname{Pr}(\mathbf{X}=s) \cdot s & \geq \sum_{s \geq t} \operatorname{Pr}(\mathbf{X}=s) \cdot s \\
& \geq \sum_{s \geq t} \operatorname{Pr}(\mathbf{X}=s) \cdot t \\
& =t \cdot \operatorname{Pr}(\mathbf{X} \geq t) .
\end{aligned}
$$

The larger the deviation t, the smaller the probability.

BACK TO OUR APPLICATION

Expected number of duplicate CAPTCHAS:

$\mathbb{E}[\mathbf{D}]=\frac{m(m-1)}{2 n}=.4995$.
You see $\mathbf{D}=10$ duplicates.
n : number of CAPTCHAS in database ($n=1000000$ claimed), m : number of random CAPTCHAS drawn to check database size ($m=1000$ in this example), D: number of pairwise duplicates in m random CAPTCHAS.

BACK TO OUR APPLICATION

Expected number of duplicate CAPTCHAS:

$\mathbb{E}[\mathbf{D}]=\frac{m(m-1)}{2 n}=.4995$.
You see $\mathbf{D}=10$ duplicates.
Applying Markov's inequality, if the real database size is $n=1000000$ the probability of this happening is:

$$
\operatorname{Pr}[\mathbf{D} \geq 10] \leq \frac{\mathbb{E}[\mathbf{D}]}{10}=\frac{.4995}{10} \approx .05
$$

[^0]
BACK TO OUR APPLICATION

Expected number of duplicate CAPTCHAS:

$\mathbb{E}[\mathbf{D}]=\frac{m(m-1)}{2 n}=.4995$.
You see $\mathbf{D}=10$ duplicates.
Applying Markov's inequality, if the real database size is $n=1000000$ the probability of this happening is:

$$
\operatorname{Pr}[\mathbf{D} \geq 10] \leq \frac{\mathbb{E}[\mathbf{D}]}{10}=\frac{.4995}{10} \approx .05
$$

This is pretty small and you feel pretty sure the number of unique CAPTCHAS is much less than 1000000 .
n : number of CAPTCHAS in database ($n=1000000$ claimed), m : number of random CAPTCHAS drawn to check database size ($m=1000$ in this example), D: number of pairwise duplicates in m random CAPTCHAS.

HASH TABLES

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128 -bit IP addresses).

HASH TABLES

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128 -bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.

HASH TABLES

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128 -bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.
Classic Solution:

HASH TABLES

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128 -bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.
Classic Solution: Hash tables

HASH TABLES

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128 -bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.
Classic Solution: Hash tables

- Static hashing since we won't worry about insertion and deletion today.

HASH TABLES

- hash function $h: U \rightarrow[n]$ maps elements from the universe to indices $1, \cdots, n$ of an array.

HASH TABLES

- hash function $h: U \rightarrow[n]$ maps elements from the universe to indices $1, \cdots, n$ of an array.
- Typically $|U| \gg n$. Many elements map to the same index.

HASH TABLES

- hash function $h: U \rightarrow[n]$ maps elements from the universe to indices $1, \cdots, n$ of an array.
- Typically $|U| \gg n$. Many elements map to the same index.
- Collisions: when we insert m items into the hash table we may have to store multiple items in the same location (typically as a linked list).

COLLISIONS

Query runtime: $O(c)$ when the maximum number of collisions in a table entry is c (i.e., must traverse a linked list of size c).

COLLISIONS

Query runtime: $O(c)$ when the maximum number of collisions in a table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c ?

Query runtime: $O(c)$ when the maximum number of collisions in a table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c ?

- In the worst case, could have $c=m$ (all items hash to the same location). In the best case, $c \approx m / n$.

RANDOM HASH FUNCTION

Let $\mathbf{h}: U \rightarrow[n]$ be a random hash function.

- Assume for the moment that \mathbf{h} is fully independent, i.e., if $U=\left\{x_{1}, x_{2}, \ldots\right\}$ then
a) $\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right)=j\right)=\frac{1}{n}$ for all $x_{i} \in U$ and $j \in[n]$ and
b) all $\mathbf{h}\left(x_{1}\right), \mathbf{h}\left(x_{2}\right), \mathbf{h}\left(x_{3}\right) \ldots$ are all independent.

RANDOM HASH FUNCTION

Let $\mathbf{h}: U \rightarrow[n]$ be a random hash function.

- Assume for the moment that \mathbf{h} is fully independent, i.e., if $U=\left\{x_{1}, x_{2}, \ldots\right\}$ then
a) $\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right)=j\right)=\frac{1}{n}$ for all $x_{i} \in U$ and $j \in[n]$ and
b) all $\mathbf{h}\left(x_{1}\right), \mathbf{h}\left(x_{2}\right), \mathbf{h}\left(x_{3}\right) \ldots$ are all independent.
- Caveat 1: It is very expensive to represent and compute fully independent random functions. Later, we will see how efficient hash functions can be used instead.
- Caveat 2: In practice, often suffices to use hash functions like MD5, SHA-2, etc. that 'look random enough'.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise duplicates is:

$$
\mathbf{C}=\sum_{i, j \in[m], i<j} \mathbf{C}_{i, j} .
$$

x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table, \mathbf{h} : random hash function.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise duplicates is:

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{C}_{i, j}\right] . \quad \quad \text { (linearity of expectation) }
$$

x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table, \mathbf{h} : random hash function.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise duplicates is:

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{C}_{i, j}\right] . \quad \quad \text { (linearity of expectation) }
$$

For any pair $i, j, i<j$:
$\mathbb{E}\left[\mathbf{C}_{i, j}\right]=\operatorname{Pr}\left[\mathbf{C}_{i, j}=1\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right]$
x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table, \mathbf{h} : random hash function.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise duplicates is:

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{C}_{i, j}\right] . \quad \quad \text { (linearity of expectation) }
$$

For any pair $i, j, i<j$:
$\mathbb{E}\left[\mathbf{C}_{i, j}\right]=\operatorname{Pr}\left[\mathbf{C}_{i, j}=1\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right]=\frac{1}{n}$.
x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table, \mathbf{h} : random hash function.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise duplicates is:

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{C}_{i, j}\right] . \quad \quad \text { (linearity of expectation) }
$$

For any pair $i, j, i<j$:
$\mathbb{E}\left[\mathbf{C}_{i, j}\right]=\operatorname{Pr}\left[\mathbf{C}_{i, j}=1\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right]=\frac{1}{n}$.

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \frac{1}{n}=\frac{\binom{m}{2}}{n}=\frac{m(m-1)}{2 n} .
$$

x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, C: total pairwise collisions in table, \mathbf{h} : random hash function.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise duplicates is:

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{C}_{i, j}\right] . \quad \quad \text { (linearity of expectation) }
$$

For any pair $i, j, i<j$:
$\mathbb{E}\left[\mathbf{C}_{i, j}\right]=\operatorname{Pr}\left[\mathbf{C}_{i, j}=1\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right]=\frac{1}{n}$.

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \frac{1}{n}=\frac{\binom{m}{2}}{n}=\frac{m(m-1)}{2 n} .
$$

Identical to the CAPTCHA analysis!
x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, C: total pairwise collisions in table, \mathbf{h} : random hash function.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.
m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.
m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality:

m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathbf{C}]}{1}$
m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathrm{C}]}{1}=\frac{1}{8}$.
m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathbf{C}]}{1}=\frac{1}{8}$.

$$
\operatorname{Pr}[\mathbf{C}=0]=1-\operatorname{Pr}[\mathbf{C} \geq 1]
$$

m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathbf{C}]}{1}=\frac{1}{8}$.

$$
\operatorname{Pr}[\mathbf{C}=0]=1-\operatorname{Pr}[\mathbf{C} \geq 1] \geq 1-\frac{1}{8}
$$

m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathrm{C}]}{1}=\frac{1}{8}$.

$$
\operatorname{Pr}[\mathbf{C}=0]=1-\operatorname{Pr}[\mathbf{C} \geq 1] \geq 1-\frac{1}{8}=\frac{7}{8} .
$$

m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathbf{C}]}{1}=\frac{1}{8}$.

$$
\operatorname{Pr}[\mathbf{C}=0]=1-\operatorname{Pr}[\mathbf{C} \geq 1] \geq 1-\frac{1}{8}=\frac{7}{8}
$$

Pretty good but we are using $O\left(m^{2}\right)$ space to store m items.
m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

[^0]: n : number of CAPTCHAS in database ($n=1000000$ claimed), m : number of random CAPTCHAS drawn to check database size ($m=1000$ in this example), D: number of pairwise duplicates in m random CAPTCHAS.

