
compsci 514: algorithms for data science

Andrew McGregor

Lecture 2

0

today

Today:

• Investigate linearity of expectation and variance.

• Algorithmic application of linearity of expectation and variance.

• Introduce Markov’s inequality, a fundamental concentration bound,

that let us prove that a random variable lies close to its expectation

with good probability.

• Learn about random hash functions, which are a key tool in

randomized methods for data processing. Probabilistic analysis via

linearity of expectation.

1

some probability review

• Expectation:

E[X] =
∑
s∈S

Pr(X = s) · s.

• Variance:

Var[X] = E[(X− E[X])2].

• Two random variables X, Y are independent if for all s, t, {X = s}
and {Y = t} are independent events. In other words:

Pr({X = s} ∩ {Y = t}) = Pr(X = s) · Pr(Y = t).

2

some probability review

• Expectation:

E[X] =
∑
s∈S

Pr(X = s) · s.

• Variance:

Var[X] = E[(X− E[X])2].

• Two random variables X, Y are independent if for all s, t, {X = s}
and {Y = t} are independent events. In other words:

Pr({X = s} ∩ {Y = t}) = Pr(X = s) · Pr(Y = t).

2

some probability review

• Expectation:

E[X] =
∑
s∈S

Pr(X = s) · s.

• Variance:

Var[X] = E[(X− E[X])2].

• Two random variables X, Y are independent if for all s, t, {X = s}
and {Y = t} are independent events. In other words:

Pr({X = s} ∩ {Y = t}) = Pr(X = s) · Pr(Y = t).

2

some probability review

• Expectation:

E[X] =
∑
s∈S

Pr(X = s) · s.

• Variance:

Var[X] = E[(X− E[X])2].

• Two random variables X, Y are independent if for all s, t, {X = s}
and {Y = t} are independent events. In other words:

Pr({X = s} ∩ {Y = t}) = Pr(X = s) · Pr(Y = t).

2

linearity of expectation and variance

When are the expectation and variance linear?

I.e., under what conditions on X and Y do we have:

E[X + Y] = E[X] + E[Y]

and

Var[X + Y] = Var[X] + Var[Y].

Last time we showed that linearity of expectation is true regardless of

whether the random variables were independent.

X,Y: any two random variables.

3

linearity of expectation and variance

When are the expectation and variance linear?

I.e., under what conditions on X and Y do we have:

E[X + Y] = E[X] + E[Y]

and

Var[X + Y] = Var[X] + Var[Y].

Last time we showed that linearity of expectation is true regardless of

whether the random variables were independent.

X,Y: any two random variables.

3

linearity of variance

Var[X + Y] = Var[X] + Var[Y]

when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2

(via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

linearity of variance

Var[X + Y] = Var[X] + Var[Y] when X and Y are independent.

Exercise 1: Var[X] = E[X2]− E[X]2 (via linearity of expectation)

Exercise 2: E[XY] = E[X] · E[Y] when X,Y are independent.

Together give:

Var[X + Y] = E[(X + Y)2]− E[X + Y]2

= E[X2] + 2E[XY] + E[Y2]− (E[X] + E[Y])2

(linearity of expectation)

= E[X2] + 2E[XY] + E[Y2]− E[X]2 − 2E[X] · E[Y]− E[Y]2

= E[X2] + E[Y2]− E[X]2 − E[Y]2

= Var[X] + Var[Y].

4

an algorithmic application

You have contracted with a new company to provide CAPTCHAS for

your website.

• They claim that they have a database of 1, 000, 000 unique

CAPTCHAS. A random one is chosen for each security check.

• You want to independently verify this claimed database size.

• You could make test checks until you see 1, 000, 000 unique

CAPTCHAS: would take ≥ 1, 000, 000 checks!

5

an algorithmic application

You have contracted with a new company to provide CAPTCHAS for

your website.

• They claim that they have a database of 1, 000, 000 unique

CAPTCHAS. A random one is chosen for each security check.

• You want to independently verify this claimed database size.

• You could make test checks until you see 1, 000, 000 unique

CAPTCHAS: would take ≥ 1, 000, 000 checks!

5

an algorithmic application

You have contracted with a new company to provide CAPTCHAS for

your website.

• They claim that they have a database of 1, 000, 000 unique

CAPTCHAS. A random one is chosen for each security check.

• You want to independently verify this claimed database size.

• You could make test checks until you see 1, 000, 000 unique

CAPTCHAS: would take ≥ 1, 000, 000 checks!

5

an algorithmic application

An Idea: You run some test security checks and see if any duplicate

CAPTCHAS show up. If you’re seeing duplicates after not too many checks,

the database size is probably not too big.

‘Mark and recapture’ method

in ecology.

Note that if the same CAPTCHA shows up four times this counts as
(
4
2

)
duplicates.

6

an algorithmic application

An Idea: You run some test security checks and see if any duplicate

CAPTCHAS show up. If you’re seeing duplicates after not too many checks,

the database size is probably not too big.

‘Mark and recapture’ method

in ecology.

Note that if the same CAPTCHA shows up four times this counts as
(
4
2

)
duplicates.

6

an algorithmic application

An Idea: You run some test security checks and see if any duplicate

CAPTCHAS show up. If you’re seeing duplicates after not too many checks,

the database size is probably not too big.

‘Mark and recapture’ method

in ecology.

Note that if the same CAPTCHA shows up four times this counts as
(
4
2

)
duplicates.

6

an algorithmic application

An Idea: You run some test security checks and see if any duplicate

CAPTCHAS show up. If you’re seeing duplicates after not too many checks,

the database size is probably not too big.

‘Mark and recapture’ method

in ecology.

Note that if the same CAPTCHA shows up four times this counts as
(
4
2

)
duplicates.

6

linearity of expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0 otherwise.

An indicator random variable.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to

check database size, D: number of pairwise duplicates in m random CAPTCHAS

7

linearity of expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0 otherwise.

An indicator random variable.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to

check database size, D: number of pairwise duplicates in m random CAPTCHAS

7

linearity of expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0 otherwise.

An indicator random variable. The number of pairwise duplicates (a

random variable) is:

D =
∑

i,j∈[m],i<j

Di,j .

For any pair i , j ∈ [m], i < j : E[Di,j] = Pr[Di,j = 1]

= 1
n .

E[D] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to

check database size, D: number of pairwise duplicates in m random CAPTCHAS

7

linearity of expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0 otherwise.

An indicator random variable. The number of pairwise duplicates (a

random variable) is:

E[D] =
∑

i,j∈[m],i<j

E[Di,j].

For any pair i , j ∈ [m], i < j : E[Di,j] = Pr[Di,j = 1]

= 1
n .

E[D] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to

check database size, D: number of pairwise duplicates in m random CAPTCHAS

7

linearity of expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0 otherwise.

An indicator random variable. The number of pairwise duplicates (a

random variable) is:

E[D] =
∑

i,j∈[m],i<j

E[Di,j].

For any pair i , j ∈ [m], i < j : E[Di,j] = Pr[Di,j = 1] = 1
n .

E[D] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to

check database size, D: number of pairwise duplicates in m random CAPTCHAS

7

linearity of expectation

Let Di,j = 1 if tests i and j give the same CAPTCHA, and 0 otherwise.

An indicator random variable. The number of pairwise duplicates (a

random variable) is:

E[D] =
∑

i,j∈[m],i<j

E[Di,j].

For any pair i , j ∈ [m], i < j : E[Di,j] = Pr[Di,j = 1] = 1
n .

E[D] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to

check database size, D: number of pairwise duplicates in m random CAPTCHAS

7

linearity of expectation

You take m = 1000 samples. If the database size is as claimed

(n = 1, 000, 000) then expected number of duplicates is:

E[D] =
m(m − 1)

2n
= .4995

You see 10 pairwise duplicates and suspect that something is up. But

how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a random

variable deviates a certain distance from its mean.

• Useful in understanding how statistical tests perform, the behavior of

randomized algorithms, the behavior of data drawn from different

distributions, etc.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to

check database size, D: number of pairwise duplicates in m random CAPTCHAS.

8

linearity of expectation

You take m = 1000 samples. If the database size is as claimed

(n = 1, 000, 000) then expected number of duplicates is:

E[D] =
m(m − 1)

2n
= .4995

You see 10 pairwise duplicates and suspect that something is up. But

how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a random

variable deviates a certain distance from its mean.

• Useful in understanding how statistical tests perform, the behavior of

randomized algorithms, the behavior of data drawn from different

distributions, etc.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to

check database size, D: number of pairwise duplicates in m random CAPTCHAS.

8

linearity of expectation

You take m = 1000 samples. If the database size is as claimed

(n = 1, 000, 000) then expected number of duplicates is:

E[D] =
m(m − 1)

2n
= .4995

You see 10 pairwise duplicates and suspect that something is up. But

how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a random

variable deviates a certain distance from its mean.

• Useful in understanding how statistical tests perform, the behavior of

randomized algorithms, the behavior of data drawn from different

distributions, etc.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to

check database size, D: number of pairwise duplicates in m random CAPTCHAS.

8

linearity of expectation

You take m = 1000 samples. If the database size is as claimed

(n = 1, 000, 000) then expected number of duplicates is:

E[D] =
m(m − 1)

2n
= .4995

You see 10 pairwise duplicates and suspect that something is up. But

how confident can you be in your test?

Concentration Inequalities: Bounds on the probability that a random

variable deviates a certain distance from its mean.

• Useful in understanding how statistical tests perform, the behavior of

randomized algorithms, the behavior of data drawn from different

distributions, etc.

n: number of CAPTCHAS in database, m: number of random CAPTCHAS drawn to

check database size, D: number of pairwise duplicates in m random CAPTCHAS.

8

markov’s inequality

The simplest concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]

t
.

Proof:

E[X] =
∑
s

Pr(X = s) · s ≥
∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).

The larger the deviation t, the smaller the probability.

9

markov’s inequality

The simplest concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]

t
.

Proof:

E[X] =
∑
s

Pr(X = s) · s ≥
∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).

The larger the deviation t, the smaller the probability.

9

markov’s inequality

The simplest concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]

t
.

Proof:

E[X] =
∑
s

Pr(X = s) · s ≥
∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).

The larger the deviation t, the smaller the probability.

9

markov’s inequality

The simplest concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]

t
.

Proof:

E[X] =
∑
s

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).

The larger the deviation t, the smaller the probability.

9

markov’s inequality

The simplest concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]

t
.

Proof:

E[X] =
∑
s

Pr(X = s) · s ≥
∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).

The larger the deviation t, the smaller the probability.

9

markov’s inequality

The simplest concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]

t
.

Proof:

E[X] =
∑
s

Pr(X = s) · s ≥
∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).

The larger the deviation t, the smaller the probability.

9

markov’s inequality

The simplest concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t] ≤ E[X]

t
.

Proof:

E[X] =
∑
s

Pr(X = s) · s ≥
∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).

The larger the deviation t, the smaller the probability.

9

markov’s inequality

The simplest concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t · E[X]] ≤ 1

t
.

Proof:

E[X] =
∑
s

Pr(X = s) · s ≥
∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).

The larger the deviation t, the smaller the probability.

9

markov’s inequality

The simplest concentration bound: Markov’s inequality.

For any non-negative random variable X and any t > 0:

Pr[X ≥ t · E[X]] ≤ 1

t
.

Proof:

E[X] =
∑
s

Pr(X = s) · s ≥
∑
s≥t

Pr(X = s) · s

≥
∑
s≥t

Pr(X = s) · t

= t · Pr(X ≥ t).

The larger the deviation t, the smaller the probability.

9

back to our application

Expected number of duplicate CAPTCHAS:

E[D] = m(m−1)
2n = .4995.

You see D = 10 duplicates.

Applying Markov’s inequality, if the real database size is n = 1000000 the

probability of this happening is:

Pr[D ≥ 10] ≤ E[D]

10
=

.4995

10
≈ .05

This is pretty small and you feel pretty sure the number of unique

CAPTCHAS is much less than 1000000.

n: number of CAPTCHAS in database (n = 1000000 claimed) , m: number of random

CAPTCHAS drawn to check database size (m = 1000 in this example), D: number of

pairwise duplicates in m random CAPTCHAS.

10

back to our application

Expected number of duplicate CAPTCHAS:

E[D] = m(m−1)
2n = .4995.

You see D = 10 duplicates.

Applying Markov’s inequality, if the real database size is n = 1000000 the

probability of this happening is:

Pr[D ≥ 10] ≤ E[D]

10
=

.4995

10
≈ .05

This is pretty small and you feel pretty sure the number of unique

CAPTCHAS is much less than 1000000.

n: number of CAPTCHAS in database (n = 1000000 claimed) , m: number of random

CAPTCHAS drawn to check database size (m = 1000 in this example), D: number of

pairwise duplicates in m random CAPTCHAS.

10

back to our application

Expected number of duplicate CAPTCHAS:

E[D] = m(m−1)
2n = .4995.

You see D = 10 duplicates.

Applying Markov’s inequality, if the real database size is n = 1000000 the

probability of this happening is:

Pr[D ≥ 10] ≤ E[D]

10
=

.4995

10
≈ .05

This is pretty small and you feel pretty sure the number of unique

CAPTCHAS is much less than 1000000.

n: number of CAPTCHAS in database (n = 1000000 claimed) , m: number of random

CAPTCHAS drawn to check database size (m = 1000 in this example), D: number of

pairwise duplicates in m random CAPTCHAS.

10

hash tables

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP

addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:

Hash tables

• Static hashing since we won’t worry about insertion and deletion today.

11

hash tables

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP

addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:

Hash tables

• Static hashing since we won’t worry about insertion and deletion today.

11

hash tables

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP

addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:

Hash tables

• Static hashing since we won’t worry about insertion and deletion today.

11

hash tables

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP

addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

• Static hashing since we won’t worry about insertion and deletion today.

11

hash tables

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP

addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

• Static hashing since we won’t worry about insertion and deletion today.

11

hash tables

• hash function h : U → [n] maps elements from the universe to indices

1, · · · , n of an array.

• Typically |U| � n. Many elements map to the same index.

• Collisions: when we insert m items into the hash table we may have

to store multiple items in the same location (typically as a linked list).

12

hash tables

• hash function h : U → [n] maps elements from the universe to indices

1, · · · , n of an array.

• Typically |U| � n. Many elements map to the same index.

• Collisions: when we insert m items into the hash table we may have

to store multiple items in the same location (typically as a linked list).

12

hash tables

• hash function h : U → [n] maps elements from the universe to indices

1, · · · , n of an array.

• Typically |U| � n. Many elements map to the same index.

• Collisions: when we insert m items into the hash table we may have

to store multiple items in the same location (typically as a linked list).

12

collisions

Query runtime: O(c) when the maximum number of collisions in a

table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c?

• In the worst case, could have c = m (all items hash to the same

location). In the best case, c ≈ m/n.

13

collisions

Query runtime: O(c) when the maximum number of collisions in a

table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c?

• In the worst case, could have c = m (all items hash to the same

location). In the best case, c ≈ m/n.

13

collisions

Query runtime: O(c) when the maximum number of collisions in a

table entry is c (i.e., must traverse a linked list of size c).

How Can We Bound c?

• In the worst case, could have c = m (all items hash to the same

location). In the best case, c ≈ m/n.

13

random hash function

Let h : U → [n] be a random hash function.

• Assume for the moment that h is fully independent, i.e., if

U = {x1, x2, . . .} then

a) Pr(h(xi) = j) = 1
n
for all xi ∈ U and j ∈ [n] and

b) all h(x1), h(x2), h(x3) . . . are all independent.

• Caveat 1: It is very expensive to represent and compute fully

independent random functions. Later, we will see how efficient hash

functions can be used instead.

• Caveat 2: In practice, often suffices to use hash functions like MD5,

SHA-2, etc. that ‘look random enough’.

14

random hash function

Let h : U → [n] be a random hash function.

• Assume for the moment that h is fully independent, i.e., if

U = {x1, x2, . . .} then

a) Pr(h(xi) = j) = 1
n
for all xi ∈ U and j ∈ [n] and

b) all h(x1), h(x2), h(x3) . . . are all independent.

• Caveat 1: It is very expensive to represent and compute fully

independent random functions. Later, we will see how efficient hash

functions can be used instead.

• Caveat 2: In practice, often suffices to use hash functions like MD5,

SHA-2, etc. that ‘look random enough’.

14

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise duplicates is:

C =
∑

i,j∈[m],i<j

Ci,j .

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)]

= 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

15

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise duplicates is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)]

= 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

15

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise duplicates is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)]

= 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

15

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise duplicates is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

15

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise duplicates is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

15

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise duplicates is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

15

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

16

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

16

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

16

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

16

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

16

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

16

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1]

≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

16

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8

=
7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

16

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

16

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

16

