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SUMMARY

Computing the SVD/eigendecomposition

® Efficient algorithms for SVD /eigendecomposition.

® High level: a glimpse into fast methods for linear algebraic computation,
which are workhorses behind data science.



EFFICIENT EIGENDECOMPOSITION AND SVD

We have talked about the eigendecomposition and SVD as ways to
compress data, to embed entities like words and documents, to
compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on massive datasets?



POWER METHOD

Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing k =1
eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A € R9%? with eigendecomposition A = VAV,
find Z which is an approximation to the top eigenvector v; of A.
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Power Method: The most fundamental iterative method for
approximate SVD/eigendecomposition. Applies to computing k =1
eigenvectors, but can be generalized to larger k.

Goal: Given symmetric A € R9%? with eigendecomposition A = VAV,
find Z which is an approximation to the top eigenvector v; of A.

e Initialize: Choose (%) randomly. E.g. 7(9(i) ~ N(0,1).

® Fori=1,...,t
o F0) .= AL H-D
- A7)
Y e z
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Return Z;
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POWER METHOD ANALYSIS

Write 29 in A’s eigenvector basis:

0 — - -
Z—’():C1V1+C2V2+...+Cdvd.

A € R4 input matrix with eigendecomposition A = VAV . ¥,: top eigenvector, being
computed, 70 iterate at step i, converging to V.




POWER METHOD ANALYSIS

Write 29 in A’s eigenvector basis:

0 — - -
Z—’():C1V1+C2V2+...+Cdvd.

Update step: 210 = A - 20~ = VAV . Z/=Y (then normalize)
viFO =
AV =

A —wvavT . FHO =

A € R4 input matrix with eigendecomposition A = VAV . V,: top eigenvector, being
computed, 70 iterate at step i, converging to V.
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POWER METHOD ANALYSIS

Claim 1 : Writing 70 = Vi + Vo + ...+ cqVy,

Z(l) =C /\1\71 +C - /\2\72 + ...+ cCq- /\d‘7d-

72 = A7) = vAVT D =

Claim 2:

Z(t) = Cl . )\5\71 +C2 M /\5\72 + P + Cd N /\i/Vd

A € RIX9: input matrix with eigendecomposition A = VAVT. &: top eigenvector, being
computed, Z7): iterate at step i, converging to V.




POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other components.

2(0) =cVi+ovh+t...+cyvy = Z(t) = C1/\§\71 + C2,\£\72 + ...+ cd/\ng
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POWER METHOD CONVERGENCE

After t iterations, we have ‘powered’ up the eigenvalues, making the
component in the direction of v; much larger, relative to the other components.

0 — — — t t - t - t -
2( ) — cvi+ v+ ...+ cgvyg —> Z( ) — CMVIF+ MoVvo+ .+ Cg g Vy

Iteration 13

When will convergence be slow?
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POWER METHOD CONVERGENCE RATE

0 — — — t t— t— t =
Z_()=C1V1+C2V2+...+Cdvd — f():Cl/\lvl+Cz/\2V2+..A+Cd)\2Vd

Write [Xa| = (1 — )|\ for ‘gap’ v = Pafiel.
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POWER METHOD CONVERGENCE RATE

0 — — — t t— t— t =
Z_()=C1V1+C2V2+...+Cdvd — f():Cl/\lvl+Cz/\2V2+..A+Cd)\2Vd

Write |)\2| = (]_ —fy)|)\1| for ‘gap’ v = %

[A1]

How many iterations t does it take to have |X\o|* < 6|7 '”({Y/‘S)

Will have for all i > 1, |\i]" < |X2]" <& [\

How small must we set § to ensure that c; A\ dominates all other components
and so 2% is very close to ¥ ?

A € RY%?: input matrix with eigendecomposition A = VAV, #: top eigenvector, being
computed, Z(): iterate at step i, converging to V.




RANDOM INITIALIZATION

Claim: When z® is chosen with random Gaussian entries, writing
20— i+ o+ + c4 V4, with high probability, for all i

0(1/d*) < |ei| < O(log d)
Corollary:

S

(&)

< 0(d”log d).

max
J

A € RYX?: input matrix with eigendecomposition A = VAV, #: top eigenvector, being
computed, 70 iterate at step i, converging to V.

10
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TECHNICAL PRELIMINARIES

e Claim: For 0 < ¢ < [|x]|2:

x y
Ixllz v ll2

X Yy

¢yl

2 2

® Proof by geometry: Try drawing a picture.

® Claim: For any vector z € RY,

1zll2 < llzllx = [2()] + [2(2)] + ... + |2(d)]

® Proof follows from ||z||7 = (|z(1)| + ... + |z(d)])* > ||z]3

11



RANDOM INITIALIZATION

Claim 1: If 2 is chosen with random Gaussian entries, writing
9| < O(d?logd).

29 = @ + ... + cqVy, with high probability, max; )?1

Claim 2: For gap v = Ml“ “AQ‘, and t = '”(17/5), i—;t‘ < 4 for all i.
1

A € RYX?: input matrix with eigendecomposition A = VAV, #: top eigenvector, being
computed, #0: iterate at step i, converging to V.
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1
(1) . C1A1\71 + ...+ Cd>\;\7d

HC1)\tV1—|— .+Cd)\td\7d‘|2
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Claim 2: For gap v = Ml“ “AQ‘, and t = '”(17/5), i—;t‘ < 4 for all i.
1
(1) . C1A1\71 + ...+ Cd>\;\7d

HC1)\tV1—|— .+Cd)\td\7d‘|2

t =
c1)\1v1+...+cd>\dvd o

= 0)
= — V;
AR '

— 2 <

2

A € RYX?: input matrix with eigendecomposition A = VAV, #: top eigenvector, being
computed, #0: iterate at step i, converging to V.
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RANDOM INITIALIZATION

Claim 1: If 2 is chosen with random Gaussian entries, writing
+ cqVa, with high probability, max; )% < O(d2 log d).

Z(O) =V +...

t
al=ldal gng ¢ = '"(17/5), %‘ < § for all i.
1

Claim 2: For gap v = Ml“

- t —
C1A1V1 + ...+ chdvd

At) .
HC1>\tV1 + ...+ Cd)\thdHQ
Y p\AYA
‘|Z(t) e < aAivi+ tjr CdAgVd 7
i Afvall2 2
o C2A£ - Cd)\f, iR
C]_)\iVQ “.+C1)\§Vd

. Vi: top eigenvector, being

A € R9%9: input matrix with eigendecomposition A = VAVT
computed, 70 iterate at step i, converging to V.




RANDOM INITIALIZATION

Claim 1: If 2 is chosen with random Gaussian entries, writing

2% = ¥ + ... + cqVy, with high probability, max; )% < O(d?log d).

Claim 2: For gap v = Ml“ “AQ‘, and t = '”(17/5), i—;t‘ < 4 for all i.
1
(1) . C1A1\71 + ...+ Cd>\;\7d
HC1)\tV1+ .+Cd)\td\7d‘|2

t =
c1)\1v1+...+cd>\dvd o

At) -
FARE,Y; _ _ 7
1 =il = e 1,
e - . i\ - oY) Cay
C1>\§ 2 o Cl)\i d - C1>\§ C1>\§

A € RYX?: input matrix with eigendecomposition A = VAV, #: top eigenvector, being

computed, 70 iterate at step i, converging to V.
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RANDOM INITIALIZATION

Claim 1: If 2 is chosen with random Gaussian entries, writing

2% = ¥ + ... + cqVy, with high probability, max; )% (d®log d).

Claim 2: For gap v = Ml“ “m, and t = '"(17/5), ’i—;t

t— t >
«t) . C1A1V1+...+Cd>\dvd
HC1>\11.\71 + ...+ Cd)\thdHQ

t= t >
aAvi+...+ chdvd o

At) -
zZ7/ —vi|]2 < — — Vv
1 =il = e 1,
ol Ny oY) Cay 5
= <4§-0(d"logd)-d
C1>\§ v2+ + Cl)\i vd C1>\§ C1>\§ - ( o8 )

A € RYX?: input matrix with eigendecomposition A = VAV, #: top eigenvector, being
computed, #0: iterate at step i, converging to V.
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RANDOM INITIALIZATION

Claim 1: If z©
Z(O) =V +...

Claim 2: For gap v = /-2l and ¢ = "(/%)

A1) _ C1A§\71+...+Cd>\;\7d

HC1>\11.\71 + ...+ Cd)\thdHQ
o M+ .. p\AYA o
\|Z(t)fv1\|2§ CiA1V1I + tjer dVd 7

i Afvall2 2
ol Ny oY)
= % V,
C1>\§ 2+ + Cl)\i d C1>\§

Setting&zO(d3| )glves \?[:)7\71\2 < ¢

+ c4Vy, with high probability, max; )%

Af
2by

is chosen with random Gaussian entries, writing

(d®log d).

Cd)\fi
C1>\§

<§-0(d’logd) - d

computed, #0: iterate at step i, converging to V.

A € R9%9: input matrix with eigendecomposition A =

VAV, #: top eigenvector, being
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POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Let v = W be the relative gap between the first and second eigenvalues.
If Power Method is initialized with a random Gaussian vector V%) then, with
high probability, after t = O ('"(i/€)> steps:

12 = Gl < e.
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POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)

Let v = W be the relative gap between the first and second eigenvalues.
If Power Method is initialized with a random Gaussian vector V%) then, with
high probability, after t = O ('"(i/€)> steps:

A®)

12— G2 < e.

Total runtime: O(t) matrix-vector multiplications. If A = X" X:

0 (nnz(X) . @) —0 <,,d. @) _

13



FINDING SECOND (ETC.) EIGENVECTOR

® |f A has eigenvectors v, ..., v, with eigenvalues Ay,..., A,
(JA\1] = ... > |A4]) then

B=A- vy

has eigenvectors v, ..., v,, vi with eigenvectors Ao, ..., A\, 0

® Hence, to find the second eigenvector of A, just apply the previous
method to B.

14



CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix A.
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Consider a random walk on a graph G with adjacency matrix A.

®

At each step, move to a random vertex, chosen uniformly at random
from the neighbors of the current vertex.
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® Zis the /™ row of the right normalized adjacency matrix AD ™.
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~(t)

Let 5') € R" have i entry p;”) = Pr(walk at node i at step t).

e Initialize: 5% =[1,0,0,...,0].

Update:

1

Pr(walk at i at step t) Z Pr(walk at j at step t-1) - degree(j)

Jj€Eneigh(i)
>T Ht—1
_ D

where Z(j) = for all j € neigh(i), Z(j) = 0 for all j ¢ neigh(i).

degree(]

7 is the i*" row of the right normalized adjacency matrix AD !,

t) — ADflp(tfl)

16



CONNECTION TO RANDOM WALKS

~(t)

Let 5') € R" have i entry p;”) = Pr(walk at node i at step t).

e Initialize: 5% =[1,0,0,...,0].

® Update:
1
Pr(walk at i at step t) Z Pr(walk at j at step t-1) - degree())
Jj€Eneigh(i)
_ ZT ~(t—1)
where Z(j) = W for all j € neigh(i), Z(j) = 0 for all j ¢ neigh(i).
® Zis the /™ row of the right normalized adjacency matrix AD ™.
° t) — ADflp(tfl) — AD*IAD l AD™ 1 —(0

t times
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RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is given
by the i*" entry of
7 =AD!AD ... AD ! 5?0,

t times
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RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is given
by the i*" entry of
7 =AD!AD ... AD ! 5?0,

t times

D—l/2ﬁ(t) _ (D—1/2AD—1/2)(D—1/2AD—1/2) L (D—1/2AD—1/2)(D—1/2ﬁ(0)).

t times

e D251 is exactly what would obtained by applying t/2 iterations of power
method to D~1/2501

® Will converge to the top eigenvector of the normalized adjacency matrix
D~Y/2AD~Y/2. Stationary distribution.

® |ike the power method, the time a random walk takes to converge to its

stationary distribution (mixing time) is dependent on the gap between the

1/2

top two eigenvalues of D™*2AD /2. The spectral gap.
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