COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor

Lecture 20

SUMMARY

Computing the SVD/eigendecomposition

- Efficient algorithms for SVD/eigendecomposition.
- High level: a glimpse into fast methods for linear algebraic computation, which are workhorses behind data science.

EFFICIENT EIGENDECOMPOSITION AND SVD

We have talked about the eigendecomposition and SVD as ways to compress data, to embed entities like words and documents, to compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on massive datasets?

POWER METHOD

Power Method: The most fundamental iterative method for approximate SVD/eigendecomposition. Applies to computing $k=1$ eigenvectors, but can be generalized to larger k.
Goal: Given symmetric $\mathbf{A} \in \mathbb{R}^{d \times d}$, with eigendecomposition $\mathbf{A}=\mathbf{V} \wedge \mathbf{V}^{\top}$, find \vec{z} which is an approximation to the top eigenvector \vec{v}_{1} of \mathbf{A}.

POWER METHOD

Power Method: The most fundamental iterative method for approximate SVD/eigendecomposition. Applies to computing $k=1$ eigenvectors, but can be generalized to larger k.
Goal: Given symmetric $\mathbf{A} \in \mathbb{R}^{d \times d}$, with eigendecomposition $\mathbf{A}=\mathbf{V} \wedge \mathbf{V}^{\top}$, find \vec{z} which is an approximation to the top eigenvector \vec{v}_{1} of \mathbf{A}.

- Initialize: Choose $\vec{z}^{(0)}$ randomly. E.g. $z^{(0)}(i) \sim \mathcal{N}(0,1)$.
- For $i=1, \ldots, t$
- $z^{(i)}:=\mathbf{A} \cdot \bar{z}^{(i-1)}$
- $\vec{z}_{i}:=\frac{\frac{z}{(i)}_{(i)}^{z^{(i)} \|_{2}}}{}$

Return \vec{z}_{t}

POWER METHOD

POWER METHOD

POWER METHOD

POWER METHOD ANALYSIS

Write $\bar{z}^{(0)}$ in A's eigenvector basis:

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \overrightarrow{v_{2}}+\ldots+c_{d} \overrightarrow{v_{d}} .
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

POWER METHOD ANALYSIS

Write $\bar{z}^{(0)}$ in A's eigenvector basis:

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \overrightarrow{v_{2}}+\ldots+c_{d} \vec{v}_{d} .
$$

Update step: $\vec{z}^{(i)}=\mathbf{A} \cdot \vec{z}^{(i-1)}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{T} \cdot \vec{z}^{(i-1)}$ (then normalize)

$$
\begin{gathered}
\mathbf{V}^{T} \vec{z}^{(0)}= \\
\mathbf{\Lambda} \mathbf{V}^{T} \vec{z}^{(0)}= \\
\vec{z}^{(1)}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{T} \cdot \vec{z}^{(0)}=
\end{gathered}
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

POWER METHOD ANALYSIS

Claim 1: Writing $\vec{z}^{(0)}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\ldots+c_{d} \overrightarrow{v_{d}}$,

$$
\vec{z}^{(1)}=c_{1} \cdot \lambda_{1} \vec{v}_{1}+c_{2} \cdot \lambda_{2} \vec{v}_{2}+\ldots+c_{d} \cdot \lambda_{d} \vec{v}_{d} .
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $z^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

POWER METHOD ANALYSIS

Claim 1: Writing $\vec{z}^{(0)}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\ldots+c_{d} \overrightarrow{v_{d}}$,

$$
\begin{aligned}
& \vec{z}^{(1)}=c_{1} \cdot \lambda_{1} \vec{v}_{1}+c_{2} \cdot \lambda_{2} \vec{v}_{2}+\ldots+c_{d} \cdot \lambda_{d} \vec{v}_{d} . \\
& \vec{z}^{(2)}=\mathbf{A} \vec{z}^{(1)}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{T} \vec{z}^{(1)}=
\end{aligned}
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

POWER METHOD ANALYSIS

Claim 1: Writing $\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \overrightarrow{v_{2}}+\ldots+c_{d} \vec{v}_{d}$,

$$
\begin{aligned}
& \vec{z}^{(1)}=c_{1} \cdot \lambda_{1} \vec{v}_{1}+c_{2} \cdot \lambda_{2} \vec{v}_{2}+\ldots+c_{d} \cdot \lambda_{d} \vec{v}_{d} . \\
& \vec{z}^{(2)}=\mathbf{A} \vec{z}^{(1)}=\mathbf{V} \wedge \mathbf{V}^{T} \vec{z}^{(1)}=
\end{aligned}
$$

Claim 2:

$$
\vec{z}^{(t)}=c_{1} \cdot \lambda_{1}^{t} \vec{v}_{1}+\mathbf{c}_{2} \cdot \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \cdot \lambda_{d}^{t} \vec{v}_{d} .
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE

After t iterations, we have 'powered' up the eigenvalues, making the component in the direction of v_{1} much larger, relative to the other components.

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

When will convergence be slow?

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD SLOW CONVERGENCE

Slow Case: \mathbf{A} has eigenvalues: $\lambda_{1}=1, \lambda_{2}=.99, \lambda_{3}=.9, \lambda_{4}=.8, \ldots$

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}
$$

POWER METHOD CONVERGENCE RATE

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{2}^{t} \vec{v}_{d}
$$

$$
\text { Write }\left|\lambda_{2}\right|=(1-\gamma)\left|\lambda_{1}\right| \text { for 'gap' } \gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}
$$

POWER METHOD CONVERGENCE RATE

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{2}^{t} \vec{v}_{d}
$$

$$
\text { Write }\left|\lambda_{2}\right|=(1-\gamma)\left|\lambda_{1}\right| \text { for 'gap' } \gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}
$$

How many iterations t does it take to have $\left|\lambda_{2}\right|^{t} \leq \delta \cdot\left|\lambda_{1}\right|^{t}$?

POWER METHOD CONVERGENCE RATE

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{2}^{t} \vec{v}_{d}
$$

Write $\left|\lambda_{2}\right|=(1-\gamma)\left|\lambda_{1}\right|$ for 'gap' $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$.
How many iterations t does it take to have $\left|\lambda_{2}\right|^{t} \leq \delta \cdot\left|\lambda_{1}\right|^{t}$? $\frac{\ln (1 / \delta)}{\gamma}$.

POWER METHOD CONVERGENCE RATE

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{2}^{t} \vec{v}_{d}
$$

Write $\left|\lambda_{2}\right|=(1-\gamma)\left|\lambda_{1}\right|$ for 'gap' $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$.
How many iterations t does it take to have $\left|\lambda_{2}\right|^{t} \leq \delta \cdot\left|\lambda_{1}\right|^{t}$? $\frac{\ln (1 / \delta)}{\gamma}$.
Will have for all $i>1,\left|\lambda_{i}\right|^{t} \leq\left|\lambda_{2}\right|^{t} \leq \delta \cdot\left|\lambda_{1}\right|^{t}$.

POWER METHOD CONVERGENCE RATE

$$
\vec{z}^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d} \Longrightarrow \vec{z}^{(t)}=c_{1} \lambda_{1}^{t} \vec{v}_{1}+c_{2} \lambda_{2}^{t} \vec{v}_{2}+\ldots+c_{d} \lambda_{2}^{t} \vec{v}_{d}
$$

Write $\left|\lambda_{2}\right|=(1-\gamma)\left|\lambda_{1}\right|$ for 'gap' $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$.
How many iterations t does it take to have $\left|\lambda_{2}\right|^{t} \leq \delta \cdot\left|\lambda_{1}\right|^{t} ? \frac{\ln (1 / \delta)}{\gamma}$.
Will have for all $i>1,\left|\lambda_{i}\right|^{t} \leq\left|\lambda_{2}\right|^{t} \leq \delta \cdot\left|\lambda_{1}\right|^{t}$.
How small must we set δ to ensure that $c_{1} \lambda_{1}^{t}$ dominates all other components and so $\vec{z}^{(t)}$ is very close to $\overrightarrow{v_{1}}$?
$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}$. $\overrightarrow{\mathrm{v}}_{1}$: top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

RANDOM INITIALIZATION

Claim: When $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{d} \vec{v}_{d}$, with high probability, for all i :

$$
O\left(1 / d^{2}\right) \leq\left|c_{i}\right| \leq O(\log d)
$$

Corollary:

$$
\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{T}$. $\overrightarrow{\mathbf{v}}_{1}$: top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

TECHNICAL PRELIMINARIES

TECHNICAL PRELIMINARIES

- Claim: For $0<c<\|x\|_{2}$:

$$
\left\|\frac{x}{\|x\|_{2}}-\frac{y}{\|y\|_{2}}\right\|_{2} \leq\left\|\frac{x}{c}-\frac{y}{\|y\|_{2}}\right\|_{2}
$$

TECHNICAL PRELIMINARIES

- Claim: For $0<c<\|x\|_{2}$:

$$
\left\|\frac{x}{\|x\|_{2}}-\frac{y}{\|y\|_{2}}\right\|_{2} \leq\left\|\frac{x}{c}-\frac{y}{\|y\|_{2}}\right\|_{2}
$$

- Proof by geometry: Try drawing a picture.

TECHNICAL PRELIMINARIES

- Claim: For $0<c<\|x\|_{2}$:

$$
\left\|\frac{x}{\|x\|_{2}}-\frac{y}{\|y\|_{2}}\right\|_{2} \leq\left\|\frac{x}{c}-\frac{y}{\|y\|_{2}}\right\|_{2}
$$

- Proof by geometry: Try drawing a picture.
- Claim: For any vector $z \in \mathbb{R}^{d}$,

$$
\|z\|_{2} \leq\|z\|_{1}:=|z(1)|+|z(2)|+\ldots+|z(d)|
$$

TECHNICAL PRELIMINARIES

- Claim: For $0<c<\|x\|_{2}$:

$$
\left\|\frac{x}{\|x\|_{2}}-\frac{y}{\|y\|_{2}}\right\|_{2} \leq\left\|\frac{x}{c}-\frac{y}{\|y\|_{2}}\right\|_{2}
$$

- Proof by geometry: Try drawing a picture.
- Claim: For any vector $z \in \mathbb{R}^{d}$,

$$
\|z\|_{2} \leq\|z\|_{1}:=|z(1)|+|z(2)|+\ldots+|z(d)|
$$

- Proof follows from $\|z\|_{1}^{2}=(|z(1)|+\ldots+|z(d)|)^{2} \geq\|z\|_{2}^{2}$

RANDOM INITIALIZATION

Claim 1: If $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \vec{v}_{1}+\ldots+c_{d} \vec{v}_{d}$, with high probability, $\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)$.

Claim 2: For gap $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$, and $t=\frac{\ln (1 / \delta)}{\gamma},\left|\frac{\lambda_{i}^{t}}{\lambda_{1}^{t}}\right| \leq \delta$ for all i.
$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

RANDOM INITIALIZATION

Claim 1: If $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \vec{v}_{1}+\ldots+c_{d} \vec{v}_{d}$, with high probability, $\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)$.

Claim 2: For gap $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$, and $t=\frac{\ln (1 / \delta)}{\gamma},\left|\frac{\lambda_{i}^{t}}{\lambda_{1}^{t}}\right| \leq \delta$ for all i.

$$
\vec{z}^{(t)}:=\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}\right\|_{2}}
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{T}$. $\overrightarrow{\mathbf{v}}_{1}$: top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

RANDOM INITIALIZATION

Claim 1: If $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \vec{v}_{1}+\ldots+c_{d} \vec{v}_{d}$, with high probability, $\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)$.

Claim 2: For gap $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$, and $t=\frac{\ln (1 / \delta)}{\gamma},\left|\frac{\lambda_{i}^{t}}{\lambda_{1}^{t}}\right| \leq \delta$ for all i.

$$
\begin{aligned}
& \vec{z}^{(t)}:=\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}\right\|_{2}} \Longrightarrow \\
&\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq\left\|\frac{c_{1} \lambda_{1}^{t} \overrightarrow{v_{1}}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}\right\|_{2}}-\vec{v}_{1}\right\|_{2}
\end{aligned}
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \mathbf{\Lambda} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

RANDOM INITIALIZATION

Claim 1: If $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \vec{v}_{1}+\ldots+c_{d} \vec{v}_{d}$, with high probability, $\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)$.

Claim 2: For gap $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$, and $t=\frac{\ln (1 / \delta)}{\gamma},\left|\frac{\lambda_{i}^{t}}{\lambda_{1}^{t}}\right| \leq \delta$ for all i.

$$
\begin{gathered}
\vec{z}^{(t)}:=\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}\right\|_{2}} \Longrightarrow \\
\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq\left\|\frac{c_{1} \lambda_{1}^{t} \overrightarrow{v_{1}}+\ldots+c_{d} \lambda_{d}^{t} \overrightarrow{v_{d}}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}\right\|_{2}}-\vec{v}_{1}\right\|_{2} \\
=\left\|\frac{c_{2} \lambda_{2}^{t}}{c_{1} \lambda_{1}^{t}} \overrightarrow{v_{2}}+\ldots+\frac{c_{d} \lambda_{d}^{t}}{c_{1} \lambda_{1}^{t}} \vec{v}_{d}\right\|_{2}
\end{gathered}
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

RANDOM INITIALIZATION

Claim 1: If $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \vec{v}_{1}+\ldots+c_{d} \vec{v}_{d}$, with high probability, $\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)$.

Claim 2: For gap $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$, and $t=\frac{\ln (1 / \delta)}{\gamma},\left|\frac{\lambda_{i}^{t}}{\lambda_{1}^{t}}\right| \leq \delta$ for all i.

$$
\begin{gathered}
\vec{z}^{(t)}:=\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}\right\|_{2}} \Longrightarrow \\
\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq\left\|\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}\right\|_{2}}-\vec{v}_{1}\right\|_{2} \\
=\left\|\frac{c_{2} \lambda_{2}^{t}}{c_{1} \lambda_{1}^{t}} \overrightarrow{v_{2}}+\ldots+\frac{c_{d} \lambda_{d}^{t}}{c_{1} \lambda_{1}^{t}} \vec{v}_{d}\right\|_{2} \leq\left|\frac{c_{2} \lambda_{2}^{t}}{c_{1} \lambda_{1}^{t}}\right|+\ldots+\left|\frac{c_{d} \lambda_{d}^{t}}{c_{1} \lambda_{1}^{t}}\right|
\end{gathered}
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

RANDOM INITIALIZATION

Claim 1: If $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \vec{v}_{1}+\ldots+c_{d} \vec{v}_{d}$, with high probability, $\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)$.

Claim 2: For gap $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$, and $t=\frac{\ln (1 / \delta)}{\gamma},\left|\frac{\lambda_{i}^{t}}{\lambda_{1}^{t}}\right| \leq \delta$ for all i.

$$
\begin{gathered}
\vec{z}^{(t)}:=\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}\right\|_{2}} \Longrightarrow \\
\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq\left\|\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}\right\|_{2}}-\vec{v}_{1}\right\|_{2} \\
=\left\|\frac{c_{2} \lambda_{2}^{t}}{c_{1} \lambda_{1}^{t}} \vec{v}_{2}+\ldots+\frac{c_{d} \lambda_{d}^{t}}{c_{1} \lambda_{1}^{t}} \vec{v}_{d}\right\|_{2} \leq\left|\frac{c_{2} \lambda_{2}^{t}}{c_{1} \lambda_{1}^{t}}\right|+\ldots+\left|\frac{c_{d} \lambda_{d}^{t}}{c_{1} \lambda_{1}^{t}}\right| \leq \delta \cdot O\left(d^{2} \log d\right) \cdot d
\end{gathered}
$$

$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

RANDOM INITIALIZATION

Claim 1: If $z^{(0)}$ is chosen with random Gaussian entries, writing $z^{(0)}=c_{1} \vec{v}_{1}+\ldots+c_{d} \vec{v}_{d}$, with high probability, $\max _{j}\left|\frac{c_{j}}{c_{1}}\right| \leq O\left(d^{2} \log d\right)$.

Claim 2: For gap $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$, and $t=\frac{\ln (1 / \delta)}{\gamma},\left|\frac{\lambda_{i}^{t}}{\lambda_{1}^{t}}\right| \leq \delta$ for all i.

$$
\begin{gathered}
\vec{z}^{(t)}:=\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}\right\|_{2}} \Longrightarrow \\
\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq\left\|\frac{c_{1} \lambda_{1}^{t} \vec{v}_{1}+\ldots+c_{d} \lambda_{d}^{t} \vec{v}_{d}}{\left\|c_{1} \lambda_{1}^{t} \vec{v}_{1}\right\|_{2}}-\vec{v}_{1}\right\|_{2} \\
=\left\|\frac{c_{2} \lambda_{2}^{t}}{c_{1} \lambda_{1}^{t}} \overrightarrow{v_{2}}+\ldots+\frac{c_{d} \lambda_{d}^{t}}{c_{1} \lambda_{1}^{t}} \vec{v}_{d}\right\|_{2} \leq\left|\frac{c_{2} \lambda_{2}^{t}}{c_{1} \lambda_{1}^{t}}\right|+\ldots+\left|\frac{c_{d} \lambda_{d}^{t}}{c_{1} \lambda_{1}^{t}}\right| \leq \delta \cdot O\left(d^{2} \log d\right) \cdot d
\end{gathered}
$$

Setting $\delta=O\left(\frac{\epsilon}{d^{3} \log d}\right)$ gives $\left\|\vec{z}^{(t)}-\overrightarrow{v_{1}}\right\|_{2} \leq \epsilon$.
$\mathbf{A} \in \mathbb{R}^{d \times d}$: input matrix with eigendecomposition $\mathbf{A}=\mathbf{V} \boldsymbol{\wedge} \mathbf{V}^{T}$. \vec{v}_{1} : top eigenvector, being computed, $\vec{z}^{(i)}$: iterate at step i, converging to \vec{v}_{1}.

POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)
Let $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$ be the relative gap between the first and second eigenvalues. If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t=O\left(\frac{\ln (d / \epsilon)}{\gamma}\right)$ steps:

$$
\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq \epsilon
$$

POWER METHOD THEOREM

Theorem (Basic Power Method Convergence)
Let $\gamma=\frac{\left|\lambda_{1}\right|-\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$ be the relative gap between the first and second eigenvalues.
If Power Method is initialized with a random Gaussian vector $\vec{v}^{(0)}$ then, with high probability, after $t=O\left(\frac{\ln (d / \epsilon)}{\gamma}\right)$ steps:

$$
\left\|\vec{z}^{(t)}-\vec{v}_{1}\right\|_{2} \leq \epsilon
$$

Total runtime: $O(t)$ matrix-vector multiplications. If $\mathbf{A}=\mathbf{X}^{T} \mathbf{X}$:

$$
O\left(n n z(\mathbf{X}) \cdot \frac{\ln (d / \epsilon)}{\gamma} .\right)=O\left(n d \cdot \frac{\ln (d / \epsilon)}{\gamma}\right)
$$

- If A has eigenvectors v_{1}, \ldots, v_{n} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ $\left(\left|\lambda_{1}\right| \geq \ldots \geq\left|\lambda_{n}\right|\right)$ then

$$
B=A-\lambda_{1} v_{1} v_{1}^{T}
$$

has eigenvectors $v_{2}, \ldots, v_{n}, v_{1}$ with eigenvectors $\lambda_{2}, \ldots, \lambda_{n}, 0$

- Hence, to find the second eigenvector of A, just apply the previous method to B.

CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix \mathbf{A}.

CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix \mathbf{A}.

At each step, move to a random vertex, chosen uniformly at random from the neighbors of the current vertex.

CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix \mathbf{A}.

CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix \mathbf{A}.

CONNECTION TO RANDOM WALKS

Consider a random walk on a graph G with adjacency matrix \mathbf{A}.

CONNECTION TO RANDOM WALKS

Let $\vec{p}^{(t)} \in \mathbb{R}^{n}$ have $i^{\text {th }}$ entry $\vec{p}_{i}^{(t)}=\operatorname{Pr}($ walk at node i at step t$)$.

CONNECTION TO RANDOM WALKS

Let $\vec{p}^{(t)} \in \mathbb{R}^{n}$ have $i^{\text {th }}$ entry $\vec{p}_{i}^{(t)}=\operatorname{Pr}($ walk at node i at step t$)$.

- Initialize: $\vec{p}^{(0)}=[1,0,0, \ldots, 0]$.

CONNECTION TO RANDOM WALKS

Let $\vec{p}^{(t)} \in \mathbb{R}^{n}$ have $i^{\text {th }}$ entry $\vec{p}_{i}^{(t)}=\operatorname{Pr}($ walk at node i at step t$)$.

- Initialize: $\vec{p}^{(0)}=[1,0,0, \ldots, 0]$.
- Update:

$$
\operatorname{Pr}(\text { walk at } i \text { at step } \mathrm{t})=\sum_{j \in \text { neigh }(i)} \operatorname{Pr}(\text { walk at } \mathrm{j} \text { at step } \mathrm{t}-1) \cdot \frac{1}{\operatorname{degree}(j)}
$$

CONNECTION TO RANDOM WALKS

Let $\vec{p}^{(t)} \in \mathbb{R}^{n}$ have $i^{\text {th }}$ entry $\vec{p}_{i}^{(t)}=\operatorname{Pr}($ walk at node i at step t$)$.

- Initialize: $\vec{p}^{(0)}=[1,0,0, \ldots, 0]$.
- Update:

$$
\begin{aligned}
\operatorname{Pr}(\text { walk at } \mathrm{i} \text { at step } \mathrm{t}) & =\sum_{j \in \operatorname{neigh}(i)} \operatorname{Pr}(\text { walk at } \mathrm{j} \text { at step } \mathrm{t}-1) \cdot \frac{1}{\operatorname{degree}(j)} \\
& =\vec{z}^{T} \vec{p}^{(t-1)}
\end{aligned}
$$

where $\vec{z}(j)=\frac{1}{\operatorname{degree}(j)}$ for all $j \in \operatorname{neigh}(i), \vec{z}(j)=0$ for all $j \notin \operatorname{neigh}(i)$.

CONNECTION TO RANDOM WALKS

Let $\vec{p}^{(t)} \in \mathbb{R}^{n}$ have $i^{\text {th }}$ entry $\vec{p}_{i}^{(t)}=\operatorname{Pr}($ walk at node i at step t$)$.

- Initialize: $\vec{p}^{(0)}=[1,0,0, \ldots, 0]$.
- Update:

$$
\begin{aligned}
\operatorname{Pr}(\text { walk at } i \text { at step } \mathrm{t}) & =\sum_{j \in \operatorname{neigh}(i)} \operatorname{Pr}(\text { walk at } \mathrm{j} \text { at step } \mathrm{t}-1) \cdot \frac{1}{\operatorname{degree}(j)} \\
& =\vec{z}^{T} \vec{p}^{(t-1)}
\end{aligned}
$$

where $\vec{z}(j)=\frac{1}{\operatorname{degree}(j)}$ for all $j \in \operatorname{neigh}(i), \vec{z}(j)=0$ for all $j \notin \operatorname{neigh}(i)$.

- \vec{z} is the $i^{\text {th }}$ row of the right normalized adjacency matrix $\mathbf{A D}^{-1}$.

CONNECTION TO RANDOM WALKS

Let $\vec{p}^{(t)} \in \mathbb{R}^{n}$ have $i^{\text {th }}$ entry $\vec{p}_{i}^{(t)}=\operatorname{Pr}($ walk at node i at step t$)$.

- Initialize: $\vec{p}^{(0)}=[1,0,0, \ldots, 0]$.
- Update:

$$
\begin{aligned}
\operatorname{Pr}(\text { walk at } i \text { at step } \mathrm{t}) & =\sum_{j \in \text { neigh }(i)} \operatorname{Pr}(\text { walk at } j \text { at step } \mathrm{t}-1) \cdot \frac{1}{\operatorname{degree}(j)} \\
& =\vec{z}^{T} \vec{p}^{(t-1)}
\end{aligned}
$$

where $\vec{z}(j)=\frac{1}{\operatorname{degree}(j)}$ for all $j \in \operatorname{neigh}(i), \vec{z}(j)=0$ for all $j \notin \operatorname{neigh}(i)$.

- \vec{z} is the $i^{\text {th }}$ row of the right normalized adjacency matrix $\mathbf{A D}^{-1}$.
- $\vec{p}^{(t)}=\mathbf{A} \mathbf{D}^{-1} \vec{p}^{(t-1)}$

CONNECTION TO RANDOM WALKS

Let $\vec{p}^{(t)} \in \mathbb{R}^{n}$ have $i^{\text {th }}$ entry $\vec{p}_{i}^{(t)}=\operatorname{Pr}($ walk at node i at step t$)$.

- Initialize: $\vec{p}^{(0)}=[1,0,0, \ldots, 0]$.
- Update:

$$
\begin{aligned}
\operatorname{Pr}(\text { walk at } i \text { at step } \mathrm{t}) & =\sum_{j \in \text { neigh }(i)} \operatorname{Pr}(\text { walk at } j \text { at step } \mathrm{t}-1) \cdot \frac{1}{\operatorname{degree}(j)} \\
& =\vec{z}^{T} \vec{p}^{(t-1)}
\end{aligned}
$$

where $\vec{z}(j)=\frac{1}{\operatorname{degree}(j)}$ for all $j \in \operatorname{neigh}(i), \vec{z}(j)=0$ for all $j \notin \operatorname{neigh}(i)$.

- \vec{z} is the $i^{\text {th }}$ row of the right normalized adjacency matrix $\mathbf{A D}^{-1}$.
- $\vec{p}^{(t)}=\mathbf{A} \mathbf{D}^{-1} \vec{p}^{(t-1)}=\underbrace{\mathbf{A D}^{-1} \mathbf{A} \mathbf{D}^{-1} \ldots \mathbf{A D}^{-1}}_{t \text { times }} \vec{p}^{(0)}$

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is given by the $i^{\text {th }}$ entry of

$$
\vec{p}^{(t)}=\underbrace{\mathbf{A D}^{-1} \mathbf{A} \mathbf{D}^{-1} \ldots \mathbf{\mathbf { A D } ^ { - 1 }}}_{t \text { times }} \vec{p}^{(0)} .
$$

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is given by the $i^{\text {th }}$ entry of

$$
\vec{p}^{(t)}=\underbrace{\mathbf{A} \mathbf{D}^{-1} \mathbf{A} \mathbf{D}^{-1} \ldots \mathbf{A} \mathbf{D}^{-1}}_{t \text { times }} \vec{p}^{(0)} .
$$

$$
\mathbf{D}^{-1 / 2} \vec{p}^{(t)}=\underbrace{\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right)\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right) \ldots\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right)}_{t \text { times }}\left(\mathbf{D}^{-1 / 2} \vec{p}^{(0)}\right) .
$$

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is given by the $i^{\text {th }}$ entry of

$$
\mathbf{D}^{-1 / 2} \vec{p}^{(t)}=\underbrace{\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right)\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right) \ldots\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right)}_{t \text { times }}\left(\mathbf{D}^{-1 / 2} \vec{p}^{(0)}\right) .
$$

- $\mathbf{D}^{-1 / 2} \vec{p}^{(t)}$ is exactly what would obtained by applying $t / 2$ iterations of power method to $\mathbf{D}^{-1 / 2} \vec{p}^{(0)}$!

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is given by the $i^{\text {th }}$ entry of

$$
\mathbf{D}^{-1 / 2} \vec{p}^{(t)}=\underbrace{\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right)\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right) \ldots\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right)}_{t \text { times }}\left(\mathbf{D}^{-1 / 2} \vec{p}^{(0)}\right) .
$$

- $\mathbf{D}^{-1 / 2} \vec{p}^{(t)}$ is exactly what would obtained by applying $t / 2$ iterations of power method to $\mathbf{D}^{-1 / 2} \vec{p}^{(0)}$!
- Will converge to the top eigenvector of the normalized adjacency matrix $\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}$. Stationary distribution.

RANDOM WALKING AS POWER METHOD

Claim: After t steps, the probability that a random walk is at node i is given by the $i^{\text {th }}$ entry of

$$
\vec{p}^{(t)}=\underbrace{\mathbf{A D}^{-1} \mathbf{A} \mathbf{D}^{-1} \ldots \mathbf{\mathbf { A D } ^ { - 1 }}}_{t \text { times }} \vec{p}^{(0)} .
$$

$$
\mathbf{D}^{-1 / 2} \vec{p}^{(t)}=\underbrace{\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right)\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right) \ldots\left(\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right)}_{t \text { times }}\left(\mathbf{D}^{-1 / 2} \vec{p}^{(0)}\right)
$$

- $\mathbf{D}^{-1 / 2} \vec{p}^{(t)}$ is exactly what would obtained by applying $t / 2$ iterations of power method to $\mathbf{D}^{-1 / 2} \vec{p}^{(0)}$!
- Will converge to the top eigenvector of the normalized adjacency matrix $\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}$. Stationary distribution.
- Like the power method, the time a random walk takes to converge to its stationary distribution (mixing time) is dependent on the gap between the top two eigenvalues of $\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}$. The spectral gap.

