
compsci 514: algorithms for data science

Andrew McGregor

Lecture 20

0

summary

Computing the SVD/eigendecomposition

• Efficient algorithms for SVD/eigendecomposition.

• High level: a glimpse into fast methods for linear algebraic computation,

which are workhorses behind data science.

1

efficient eigendecomposition and svd

We have talked about the eigendecomposition and SVD as ways to

compress data, to embed entities like words and documents, to

compress/cluster non-linearly separable data.

How efficient are these techniques? Can they be run on massive datasets?

2

power method

Power Method: The most fundamental iterative method for

approximate SVD/eigendecomposition. Applies to computing k = 1

eigenvectors, but can be generalized to larger k .

Goal: Given symmetric A ∈ Rd×d , with eigendecomposition A = VΛVT ,

find ~z which is an approximation to the top eigenvector ~v1 of A.

• Initialize: Choose ~z (0) randomly. E.g. ~z (0)(i) ∼ N (0, 1).

• For i = 1, . . . , t

• ~z (i) := A · ~z (i−1)

• ~zi := ~z(i)

‖~z(i)‖2

Return ~zt

3

power method

Power Method: The most fundamental iterative method for

approximate SVD/eigendecomposition. Applies to computing k = 1

eigenvectors, but can be generalized to larger k .

Goal: Given symmetric A ∈ Rd×d , with eigendecomposition A = VΛVT ,

find ~z which is an approximation to the top eigenvector ~v1 of A.

• Initialize: Choose ~z (0) randomly. E.g. ~z (0)(i) ∼ N (0, 1).

• For i = 1, . . . , t

• ~z (i) := A · ~z (i−1)

• ~zi := ~z(i)

‖~z(i)‖2

Return ~zt

3

power method

4

power method

4

power method

4

power method analysis

Write ~z (0) in A’s eigenvector basis:

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd .

Update step: ~z (i) = A · ~z (i−1) = VΛVT · ~z (i−1) (then normalize)

VT~z (0) =

ΛVT~z (0) =

~z (1) = VΛVT · ~z (0) =

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

5

power method analysis

Write ~z (0) in A’s eigenvector basis:

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd .

Update step: ~z (i) = A · ~z (i−1) = VΛVT · ~z (i−1) (then normalize)

VT~z (0) =

ΛVT~z (0) =

~z (1) = VΛVT · ~z (0) =

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

5

power method analysis

Claim 1 : Writing ~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd ,

~z (1) = c1 · λ1~v1 + c2 · λ2~v2 + . . .+ cd · λd~vd .

~z (2) = A~z (1) = VΛVT~z (1) =

Claim 2:

~z (t) = c1 · λt1~v1 + c2 · λt2~v2 + . . .+ cd · λtd~vd .

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

6

power method analysis

Claim 1 : Writing ~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd ,

~z (1) = c1 · λ1~v1 + c2 · λ2~v2 + . . .+ cd · λd~vd .

~z (2) = A~z (1) = VΛVT~z (1) =

Claim 2:

~z (t) = c1 · λt1~v1 + c2 · λt2~v2 + . . .+ cd · λtd~vd .

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

6

power method analysis

Claim 1 : Writing ~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd ,

~z (1) = c1 · λ1~v1 + c2 · λ2~v2 + . . .+ cd · λd~vd .

~z (2) = A~z (1) = VΛVT~z (1) =

Claim 2:

~z (t) = c1 · λt1~v1 + c2 · λt2~v2 + . . .+ cd · λtd~vd .

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

6

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 6

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

0

0.2

0.4

0.6

0.8

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 8

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 9

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 11

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 12

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

7

power method convergence

After t iterations, we have ‘powered’ up the eigenvalues, making the

component in the direction of v1 much larger, relative to the other components.

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 13

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

When will convergence be slow?

7

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 1

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 4

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 6

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 7

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 8

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 9

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 10

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 11

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 12

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method slow convergence

Slow Case: A has eigenvalues: λ1 = 1, λ2 = .99, λ3 = .9, λ4 = .8, . . .

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
d~vd

Iteration 13

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8

power method convergence rate

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
2~vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1|

.

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t? ln(1/δ)
γ

.

Will have for all i > 1, |λi |t ≤ |λ2|t ≤ δ · |λ1|t .

How small must we set δ to ensure that c1λ
t
1 dominates all other components

and so ~z (t) is very close to ~v1?

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

9

power method convergence rate

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
2~vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1|

.

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t?

ln(1/δ)
γ

.

Will have for all i > 1, |λi |t ≤ |λ2|t ≤ δ · |λ1|t .

How small must we set δ to ensure that c1λ
t
1 dominates all other components

and so ~z (t) is very close to ~v1?

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

9

power method convergence rate

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
2~vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1|

.

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t? ln(1/δ)
γ

.

Will have for all i > 1, |λi |t ≤ |λ2|t ≤ δ · |λ1|t .

How small must we set δ to ensure that c1λ
t
1 dominates all other components

and so ~z (t) is very close to ~v1?

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

9

power method convergence rate

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
2~vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1|

.

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t? ln(1/δ)
γ

.

Will have for all i > 1, |λi |t ≤ |λ2|t ≤ δ · |λ1|t .

How small must we set δ to ensure that c1λ
t
1 dominates all other components

and so ~z (t) is very close to ~v1?

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

9

power method convergence rate

~z (0) = c1~v1 + c2~v2 + . . .+ cd~vd =⇒ ~z (t) = c1λ
t
1~v1 + c2λ

t
2~v2 + . . .+ cdλ

t
2~vd

Write |λ2| = (1− γ)|λ1| for ‘gap’ γ = |λ1|−|λ2|
|λ1|

.

How many iterations t does it take to have |λ2|t ≤ δ · |λ1|t? ln(1/δ)
γ

.

Will have for all i > 1, |λi |t ≤ |λ2|t ≤ δ · |λ1|t .

How small must we set δ to ensure that c1λ
t
1 dominates all other components

and so ~z (t) is very close to ~v1?

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

9

random initialization

Claim: When z (0) is chosen with random Gaussian entries, writing

z (0) = c1~v1 + c2~v2 + . . .+ cd~vd , with high probability, for all i :

O(1/d2) ≤ |ci | ≤ O(log d)

Corollary:

max
j

∣∣∣∣ cjc1
∣∣∣∣ ≤ O(d2 log d).

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

10

technical preliminaries

• Claim: For 0 < c < ‖x‖2:∥∥∥∥ x

‖x‖2
− y

‖y‖2

∥∥∥∥
2

≤
∥∥∥∥xc − y

‖y‖2

∥∥∥∥
2

• Proof by geometry: Try drawing a picture.

• Claim: For any vector z ∈ Rd ,

‖z‖2 ≤ ‖z‖1 := |z(1)|+ |z(2)|+ . . .+ |z(d)|

• Proof follows from ‖z‖21 = (|z(1)|+ . . .+ |z(d)|)2 ≥ ‖z‖22

11

technical preliminaries

• Claim: For 0 < c < ‖x‖2:∥∥∥∥ x

‖x‖2
− y

‖y‖2

∥∥∥∥
2

≤
∥∥∥∥xc − y

‖y‖2

∥∥∥∥
2

• Proof by geometry: Try drawing a picture.

• Claim: For any vector z ∈ Rd ,

‖z‖2 ≤ ‖z‖1 := |z(1)|+ |z(2)|+ . . .+ |z(d)|

• Proof follows from ‖z‖21 = (|z(1)|+ . . .+ |z(d)|)2 ≥ ‖z‖22

11

technical preliminaries

• Claim: For 0 < c < ‖x‖2:∥∥∥∥ x

‖x‖2
− y

‖y‖2

∥∥∥∥
2

≤
∥∥∥∥xc − y

‖y‖2

∥∥∥∥
2

• Proof by geometry: Try drawing a picture.

• Claim: For any vector z ∈ Rd ,

‖z‖2 ≤ ‖z‖1 := |z(1)|+ |z(2)|+ . . .+ |z(d)|

• Proof follows from ‖z‖21 = (|z(1)|+ . . .+ |z(d)|)2 ≥ ‖z‖22

11

technical preliminaries

• Claim: For 0 < c < ‖x‖2:∥∥∥∥ x

‖x‖2
− y

‖y‖2

∥∥∥∥
2

≤
∥∥∥∥xc − y

‖y‖2

∥∥∥∥
2

• Proof by geometry: Try drawing a picture.

• Claim: For any vector z ∈ Rd ,

‖z‖2 ≤ ‖z‖1 := |z(1)|+ |z(2)|+ . . .+ |z(d)|

• Proof follows from ‖z‖21 = (|z(1)|+ . . .+ |z(d)|)2 ≥ ‖z‖22

11

technical preliminaries

• Claim: For 0 < c < ‖x‖2:∥∥∥∥ x

‖x‖2
− y

‖y‖2

∥∥∥∥
2

≤
∥∥∥∥xc − y

‖y‖2

∥∥∥∥
2

• Proof by geometry: Try drawing a picture.

• Claim: For any vector z ∈ Rd ,

‖z‖2 ≤ ‖z‖1 := |z(1)|+ |z(2)|+ . . .+ |z(d)|

• Proof follows from ‖z‖21 = (|z(1)|+ . . .+ |z(d)|)2 ≥ ‖z‖22

11

random initialization

Claim 1: If z (0) is chosen with random Gaussian entries, writing

z (0) = c1~v1 + . . .+ cd~vd , with high probability, maxj
∣∣∣ cjc1 ∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1|

, and t = ln(1/δ)
γ

,
∣∣∣ λt

i
λt
1

∣∣∣ ≤ δ for all i .

~z (t) :=
c1λ

t
1~v1 + . . .+ cdλ

t
d~vd

‖c1λt
1~v1 + . . .+ cdλt

d~vd‖2

=⇒

‖~z (t) − ~v1‖2 ≤
∥∥∥∥c1λt

1~v1 + . . .+ cdλ
t
d~vd

‖c1λt
1~v1‖2

− ~v1
∥∥∥∥
2

=

∥∥∥∥c2λt
2

c1λt
1

~v2 + . . .+
cdλ

t
d

c1λt
1

~vd

∥∥∥∥
2

≤
∣∣∣∣c2λt

2

c1λt
1

∣∣∣∣+ . . .+

∣∣∣∣cdλt
d

c1λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d

Setting δ = O
(

ε
d3 log d

)
gives ‖~z (t) − ~v1‖2 ≤ ε.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

12

random initialization

Claim 1: If z (0) is chosen with random Gaussian entries, writing

z (0) = c1~v1 + . . .+ cd~vd , with high probability, maxj
∣∣∣ cjc1 ∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1|

, and t = ln(1/δ)
γ

,
∣∣∣ λt

i
λt
1

∣∣∣ ≤ δ for all i .

~z (t) :=
c1λ

t
1~v1 + . . .+ cdλ

t
d~vd

‖c1λt
1~v1 + . . .+ cdλt

d~vd‖2

=⇒

‖~z (t) − ~v1‖2 ≤
∥∥∥∥c1λt

1~v1 + . . .+ cdλ
t
d~vd

‖c1λt
1~v1‖2

− ~v1
∥∥∥∥
2

=

∥∥∥∥c2λt
2

c1λt
1

~v2 + . . .+
cdλ

t
d

c1λt
1

~vd

∥∥∥∥
2

≤
∣∣∣∣c2λt

2

c1λt
1

∣∣∣∣+ . . .+

∣∣∣∣cdλt
d

c1λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d

Setting δ = O
(

ε
d3 log d

)
gives ‖~z (t) − ~v1‖2 ≤ ε.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

12

random initialization

Claim 1: If z (0) is chosen with random Gaussian entries, writing

z (0) = c1~v1 + . . .+ cd~vd , with high probability, maxj
∣∣∣ cjc1 ∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1|

, and t = ln(1/δ)
γ

,
∣∣∣ λt

i
λt
1

∣∣∣ ≤ δ for all i .

~z (t) :=
c1λ

t
1~v1 + . . .+ cdλ

t
d~vd

‖c1λt
1~v1 + . . .+ cdλt

d~vd‖2
=⇒

‖~z (t) − ~v1‖2 ≤
∥∥∥∥c1λt

1~v1 + . . .+ cdλ
t
d~vd

‖c1λt
1~v1‖2

− ~v1
∥∥∥∥
2

=

∥∥∥∥c2λt
2

c1λt
1

~v2 + . . .+
cdλ

t
d

c1λt
1

~vd

∥∥∥∥
2

≤
∣∣∣∣c2λt

2

c1λt
1

∣∣∣∣+ . . .+

∣∣∣∣cdλt
d

c1λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d

Setting δ = O
(

ε
d3 log d

)
gives ‖~z (t) − ~v1‖2 ≤ ε.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

12

random initialization

Claim 1: If z (0) is chosen with random Gaussian entries, writing

z (0) = c1~v1 + . . .+ cd~vd , with high probability, maxj
∣∣∣ cjc1 ∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1|

, and t = ln(1/δ)
γ

,
∣∣∣ λt

i
λt
1

∣∣∣ ≤ δ for all i .

~z (t) :=
c1λ

t
1~v1 + . . .+ cdλ

t
d~vd

‖c1λt
1~v1 + . . .+ cdλt

d~vd‖2
=⇒

‖~z (t) − ~v1‖2 ≤
∥∥∥∥c1λt

1~v1 + . . .+ cdλ
t
d~vd

‖c1λt
1~v1‖2

− ~v1
∥∥∥∥
2

=

∥∥∥∥c2λt
2

c1λt
1

~v2 + . . .+
cdλ

t
d

c1λt
1

~vd

∥∥∥∥
2

≤
∣∣∣∣c2λt

2

c1λt
1

∣∣∣∣+ . . .+

∣∣∣∣cdλt
d

c1λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d

Setting δ = O
(

ε
d3 log d

)
gives ‖~z (t) − ~v1‖2 ≤ ε.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

12

random initialization

Claim 1: If z (0) is chosen with random Gaussian entries, writing

z (0) = c1~v1 + . . .+ cd~vd , with high probability, maxj
∣∣∣ cjc1 ∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1|

, and t = ln(1/δ)
γ

,
∣∣∣ λt

i
λt
1

∣∣∣ ≤ δ for all i .

~z (t) :=
c1λ

t
1~v1 + . . .+ cdλ

t
d~vd

‖c1λt
1~v1 + . . .+ cdλt

d~vd‖2
=⇒

‖~z (t) − ~v1‖2 ≤
∥∥∥∥c1λt

1~v1 + . . .+ cdλ
t
d~vd

‖c1λt
1~v1‖2

− ~v1
∥∥∥∥
2

=

∥∥∥∥c2λt
2

c1λt
1

~v2 + . . .+
cdλ

t
d

c1λt
1

~vd

∥∥∥∥
2

≤
∣∣∣∣c2λt

2

c1λt
1

∣∣∣∣+ . . .+

∣∣∣∣cdλt
d

c1λt
1

∣∣∣∣

≤ δ · O(d2 log d) · d

Setting δ = O
(

ε
d3 log d

)
gives ‖~z (t) − ~v1‖2 ≤ ε.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

12

random initialization

Claim 1: If z (0) is chosen with random Gaussian entries, writing

z (0) = c1~v1 + . . .+ cd~vd , with high probability, maxj
∣∣∣ cjc1 ∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1|

, and t = ln(1/δ)
γ

,
∣∣∣ λt

i
λt
1

∣∣∣ ≤ δ for all i .

~z (t) :=
c1λ

t
1~v1 + . . .+ cdλ

t
d~vd

‖c1λt
1~v1 + . . .+ cdλt

d~vd‖2
=⇒

‖~z (t) − ~v1‖2 ≤
∥∥∥∥c1λt

1~v1 + . . .+ cdλ
t
d~vd

‖c1λt
1~v1‖2

− ~v1
∥∥∥∥
2

=

∥∥∥∥c2λt
2

c1λt
1

~v2 + . . .+
cdλ

t
d

c1λt
1

~vd

∥∥∥∥
2

≤
∣∣∣∣c2λt

2

c1λt
1

∣∣∣∣+ . . .+

∣∣∣∣cdλt
d

c1λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d

Setting δ = O
(

ε
d3 log d

)
gives ‖~z (t) − ~v1‖2 ≤ ε.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

12

random initialization

Claim 1: If z (0) is chosen with random Gaussian entries, writing

z (0) = c1~v1 + . . .+ cd~vd , with high probability, maxj
∣∣∣ cjc1 ∣∣∣ ≤ O(d2 log d).

Claim 2: For gap γ = |λ1|−|λ2|
|λ1|

, and t = ln(1/δ)
γ

,
∣∣∣ λt

i
λt
1

∣∣∣ ≤ δ for all i .

~z (t) :=
c1λ

t
1~v1 + . . .+ cdλ

t
d~vd

‖c1λt
1~v1 + . . .+ cdλt

d~vd‖2
=⇒

‖~z (t) − ~v1‖2 ≤
∥∥∥∥c1λt

1~v1 + . . .+ cdλ
t
d~vd

‖c1λt
1~v1‖2

− ~v1
∥∥∥∥
2

=

∥∥∥∥c2λt
2

c1λt
1

~v2 + . . .+
cdλ

t
d

c1λt
1

~vd

∥∥∥∥
2

≤
∣∣∣∣c2λt

2

c1λt
1

∣∣∣∣+ . . .+

∣∣∣∣cdλt
d

c1λt
1

∣∣∣∣ ≤ δ · O(d2 log d) · d

Setting δ = O
(

ε
d3 log d

)
gives ‖~z (t) − ~v1‖2 ≤ ε.

A ∈ Rd×d : input matrix with eigendecomposition A = VΛVT . ~v1: top eigenvector, being

computed, ~z(i): iterate at step i , converging to ~v1.

12

power method theorem

Theorem (Basic Power Method Convergence)

Let γ = |λ1|−|λ2|
|λ1|

be the relative gap between the first and second eigenvalues.

If Power Method is initialized with a random Gaussian vector ~v (0) then, with

high probability, after t = O
(

ln(d/ε)
γ

)
steps:

‖~z (t) − ~v1‖2 ≤ ε.

Total runtime: O(t) matrix-vector multiplications. If A = XTX:

O

(
nnz(X) · ln(d/ε)

γ
·
)

= O

(
nd · ln(d/ε)

γ

)
.

13

power method theorem

Theorem (Basic Power Method Convergence)

Let γ = |λ1|−|λ2|
|λ1|

be the relative gap between the first and second eigenvalues.

If Power Method is initialized with a random Gaussian vector ~v (0) then, with

high probability, after t = O
(

ln(d/ε)
γ

)
steps:

‖~z (t) − ~v1‖2 ≤ ε.

Total runtime: O(t) matrix-vector multiplications. If A = XTX:

O

(
nnz(X) · ln(d/ε)

γ
·
)

= O

(
nd · ln(d/ε)

γ

)
.

13

finding second (etc.) eigenvector

• If A has eigenvectors v1, . . . , vn with eigenvalues λ1, . . . , λn
(|λ1| ≥ . . . ≥ |λn|) then

B = A− λ1v1vT
1

has eigenvectors v2, . . . , vn, v1 with eigenvectors λ2, . . . , λn, 0

• Hence, to find the second eigenvector of A, just apply the previous

method to B.

14

connection to random walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random

from the neighbors of the current vertex.

15

connection to random walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random

from the neighbors of the current vertex.
15

connection to random walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random

from the neighbors of the current vertex.

15

connection to random walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random

from the neighbors of the current vertex.

15

connection to random walks

Consider a random walk on a graph G with adjacency matrix A.

At each step, move to a random vertex, chosen uniformly at random

from the neighbors of the current vertex.

15

connection to random walks

Let ~p(t) ∈ Rn have i th entry ~p
(t)
i = Pr(walk at node i at step t).

• Initialize: ~p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1

degree(j)

= ~zT ~p(t−1)

where ~z(j) = 1
degree(j)

for all j ∈ neigh(i), ~z(j) = 0 for all j /∈ neigh(i).

• ~z is the i th row of the right normalized adjacency matrix AD−1.

• ~p(t) = AD−1~p(t−1)

= AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0)

16

connection to random walks

Let ~p(t) ∈ Rn have i th entry ~p
(t)
i = Pr(walk at node i at step t).

• Initialize: ~p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1

degree(j)

= ~zT ~p(t−1)

where ~z(j) = 1
degree(j)

for all j ∈ neigh(i), ~z(j) = 0 for all j /∈ neigh(i).

• ~z is the i th row of the right normalized adjacency matrix AD−1.

• ~p(t) = AD−1~p(t−1)

= AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0)

16

connection to random walks

Let ~p(t) ∈ Rn have i th entry ~p
(t)
i = Pr(walk at node i at step t).

• Initialize: ~p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1

degree(j)

= ~zT ~p(t−1)

where ~z(j) = 1
degree(j)

for all j ∈ neigh(i), ~z(j) = 0 for all j /∈ neigh(i).

• ~z is the i th row of the right normalized adjacency matrix AD−1.

• ~p(t) = AD−1~p(t−1)

= AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0)

16

connection to random walks

Let ~p(t) ∈ Rn have i th entry ~p
(t)
i = Pr(walk at node i at step t).

• Initialize: ~p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1

degree(j)

= ~zT ~p(t−1)

where ~z(j) = 1
degree(j)

for all j ∈ neigh(i), ~z(j) = 0 for all j /∈ neigh(i).

• ~z is the i th row of the right normalized adjacency matrix AD−1.

• ~p(t) = AD−1~p(t−1)

= AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0)

16

connection to random walks

Let ~p(t) ∈ Rn have i th entry ~p
(t)
i = Pr(walk at node i at step t).

• Initialize: ~p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1

degree(j)

= ~zT ~p(t−1)

where ~z(j) = 1
degree(j)

for all j ∈ neigh(i), ~z(j) = 0 for all j /∈ neigh(i).

• ~z is the i th row of the right normalized adjacency matrix AD−1.

• ~p(t) = AD−1~p(t−1)

= AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0)

16

connection to random walks

Let ~p(t) ∈ Rn have i th entry ~p
(t)
i = Pr(walk at node i at step t).

• Initialize: ~p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1

degree(j)

= ~zT ~p(t−1)

where ~z(j) = 1
degree(j)

for all j ∈ neigh(i), ~z(j) = 0 for all j /∈ neigh(i).

• ~z is the i th row of the right normalized adjacency matrix AD−1.

• ~p(t) = AD−1~p(t−1)

= AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0)

16

connection to random walks

Let ~p(t) ∈ Rn have i th entry ~p
(t)
i = Pr(walk at node i at step t).

• Initialize: ~p(0) = [1, 0, 0, . . . , 0].

• Update:

Pr(walk at i at step t) =
∑

j∈neigh(i)

Pr(walk at j at step t-1) · 1

degree(j)

= ~zT ~p(t−1)

where ~z(j) = 1
degree(j)

for all j ∈ neigh(i), ~z(j) = 0 for all j /∈ neigh(i).

• ~z is the i th row of the right normalized adjacency matrix AD−1.

• ~p(t) = AD−1~p(t−1) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0)

16

random walking as power method

Claim: After t steps, the probability that a random walk is at node i is given

by the i th entry of

~p(t) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0).

D−1/2~p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2~p(0)).

• D−1/2~p(t) is exactly what would obtained by applying t/2 iterations of power

method to D−1/2~p(0)!

• Will converge to the top eigenvector of the normalized adjacency matrix

D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to converge to its

stationary distribution (mixing time) is dependent on the gap between the

top two eigenvalues of D−1/2AD−1/2. The spectral gap.

17

random walking as power method

Claim: After t steps, the probability that a random walk is at node i is given

by the i th entry of

~p(t) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0).

D−1/2~p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2~p(0)).

• D−1/2~p(t) is exactly what would obtained by applying t/2 iterations of power

method to D−1/2~p(0)!

• Will converge to the top eigenvector of the normalized adjacency matrix

D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to converge to its

stationary distribution (mixing time) is dependent on the gap between the

top two eigenvalues of D−1/2AD−1/2. The spectral gap.

17

random walking as power method

Claim: After t steps, the probability that a random walk is at node i is given

by the i th entry of

~p(t) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0).

D−1/2~p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2~p(0)).

• D−1/2~p(t) is exactly what would obtained by applying t/2 iterations of power

method to D−1/2~p(0)!

• Will converge to the top eigenvector of the normalized adjacency matrix

D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to converge to its

stationary distribution (mixing time) is dependent on the gap between the

top two eigenvalues of D−1/2AD−1/2. The spectral gap.

17

random walking as power method

Claim: After t steps, the probability that a random walk is at node i is given

by the i th entry of

~p(t) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0).

D−1/2~p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2~p(0)).

• D−1/2~p(t) is exactly what would obtained by applying t/2 iterations of power

method to D−1/2~p(0)!

• Will converge to the top eigenvector of the normalized adjacency matrix

D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to converge to its

stationary distribution (mixing time) is dependent on the gap between the

top two eigenvalues of D−1/2AD−1/2. The spectral gap.

17

random walking as power method

Claim: After t steps, the probability that a random walk is at node i is given

by the i th entry of

~p(t) = AD−1AD−1 . . .AD−1︸ ︷︷ ︸
t times

~p(0).

D−1/2~p(t) = (D−1/2AD−1/2)(D−1/2AD−1/2) . . . (D−1/2AD−1/2)︸ ︷︷ ︸
t times

(D−1/2~p(0)).

• D−1/2~p(t) is exactly what would obtained by applying t/2 iterations of power

method to D−1/2~p(0)!

• Will converge to the top eigenvector of the normalized adjacency matrix

D−1/2AD−1/2. Stationary distribution.

• Like the power method, the time a random walk takes to converge to its

stationary distribution (mixing time) is dependent on the gap between the

top two eigenvalues of D−1/2AD−1/2. The spectral gap.

17

