COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 21

SUMMARY

Last Class: Fast computation of the SVD/eigendecomposition.

- Power method for computing the top singular vector of a matrix.
- Power method is a simple iterative algorithm for solving the non-convex optimization problem $\max _{\vec{v}:\|\vec{v}\|_{2}^{2}=1}\left|\vec{v}^{\top} \mathbf{A} \vec{v}\right|$

Final Two Weeks of Class:

- More general iterative algorithms for optimization, specifically gradient descent and its variants.
- What are these methods, when are they applied, and how do you analyze their performance?
- Small taste of what you can find in COMPSCI 5900P or 6900P.

DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

- Graph Problems: min-cut, max-cut, max flow, shortest path, matchings, maximum independent set, traveling salesman problem
- Problems with discrete constraints or outputs: bin-packing, scheduling, sequence alignment, submodular maximization
- Generally searching over a finite but exponentially large set of possible solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

- Unconstrained convex and non-convex optimization.
- Linear programming, quadratic programming, semidefinite programming

CONTINUOUS OPTIMIZATION EXAMPLES

MATHEMATICAL SETUP

Given some function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$
f\left(\vec{\theta}_{\star}\right)=\min _{\vec{\theta} \in R^{d}} f(\vec{\theta})
$$

MATHEMATICAL SETUP

Given some function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$
f\left(\vec{\theta}_{\star}\right)=\min _{\vec{\theta} \in R^{d}} f(\vec{\theta})+\epsilon
$$

Typically up to some small additive approximation term ϵ.

MATHEMATICAL SETUP

Given some function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, find $\vec{\theta}_{\star}$ with:

$$
f\left(\vec{\theta}_{\star}\right)=\min _{\vec{\theta} \in R^{d}} f(\vec{\theta})+\epsilon
$$

Typically up to some small additive approximation term ϵ.
Often under some constraints:

- $\|\vec{\theta}\|_{2} \leq 1, \quad\|\vec{\theta}\|_{1} \leq 1$.
- $A \vec{\theta} \leq \vec{b}, \quad \vec{\theta}^{T} A \vec{\theta} \geq 0$.
- $\sum_{i=1}^{d} \vec{\theta}(i) \leq c$.

CONVEX FUNCTIONS

Definition - Convex Function: A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex iff, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathbb{R}^{d}$ and $\lambda \in[0,1]$:

$$
(1-\lambda) \cdot f\left(\vec{\theta}_{1}\right)+\lambda \cdot f\left(\vec{\theta}_{2}\right) \geq f\left((1-\lambda) \cdot \vec{\theta}_{1}+\lambda \cdot \vec{\theta}_{2}\right)
$$

CONVEX SETS

Definition - Convex Set: A set $\mathcal{S} \subseteq \mathbb{R}^{d}$ is convex if and only if, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathcal{S}$ and $\lambda \in[0,1]:(1-\lambda) \vec{\theta}_{1}+\lambda \cdot \vec{\theta}_{2} \in \mathcal{S}$

CONVEX SETS

Definition - Convex Set: A set $\mathcal{S} \subseteq \mathbb{R}^{d}$ is convex if and only if, for any $\vec{\theta}_{1}, \vec{\theta}_{2} \in \mathcal{S}$ and $\lambda \in[0,1]:(1-\lambda) \vec{\theta}_{1}+\lambda \cdot \vec{\theta}_{2} \in \mathcal{S}$

For any convex set let $P_{\mathcal{S}}(\cdot)$ denote the projection function onto \mathcal{S} :

$$
P_{\mathcal{S}}(\vec{y})=\underset{\vec{\theta} \in \mathcal{S}}{\arg \min }\|\vec{\theta}-\vec{y}\|_{2}
$$

GRADIENT DESCENT

Next few classes: Gradient descent (and some important variants)

- An extremely simple greedy iterative method, that can be applied to almost any continuous function we care about optimizing.
- Often not the 'best' choice for any given function, but it is the approach of choice in ML since it is simple, general, and often works very well.
- At each step, tries to move towards the lowest nearby point in the function that is can - in the opposite direction of the gradient.

BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

- Set θ_{1} arbitrarily.
- For $i=1$ to t :

$$
\theta_{i+1}=\theta_{i}-\eta f^{\prime}\left(\theta_{i}\right)
$$

i.e., increase θ if negative derivative and decrease θ if positive derivative. η is small fixed value.

- Return $\theta=\arg \min _{\theta_{1}, \ldots \theta_{t}} f\left(\theta_{i}\right)$.

BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

- Set θ_{1} arbitrarily.
- For $i=1$ to t :

$$
\theta_{i+1}=\theta_{i}-\eta f^{\prime}\left(\theta_{i}\right)
$$

i.e., increase θ if negative derivative and decrease θ if positive derivative. η is small fixed value.

- Return $\theta=\arg \min _{\theta_{1}, \ldots \theta_{t}} f\left(\theta_{i}\right)$.

Example: $f(x)=(x-1)^{2}, \theta_{1}=2$, and $\eta=0.2$

BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

- Set θ_{1} arbitrarily.
- For $i=1$ to t :

$$
\theta_{i+1}=\theta_{i}-\eta f^{\prime}\left(\theta_{i}\right)
$$

i.e., increase θ if negative derivative and decrease θ if positive derivative. η is small fixed value.

- Return $\theta=\arg \min _{\theta_{1}, \ldots \theta_{t}} f\left(\theta_{i}\right)$.

Example: $f(x)=(x-1)^{2}, \theta_{1}=2$, and $\eta=0.2$

- Compute derivative $f^{\prime}(x)=2(x-1)$

BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

- Set θ_{1} arbitrarily.
- For $i=1$ to t :

$$
\theta_{i+1}=\theta_{i}-\eta f^{\prime}\left(\theta_{i}\right)
$$

i.e., increase θ if negative derivative and decrease θ if positive derivative. η is small fixed value.

- Return $\theta=\arg \min _{\theta_{1}, \ldots \theta_{t}} f\left(\theta_{i}\right)$.

Example: $f(x)=(x-1)^{2}, \theta_{1}=2$, and $\eta=0.2$

- Compute derivative $f^{\prime}(x)=2(x-1)$
- $\theta_{2}=\theta_{1}-\eta f^{\prime}\left(\theta_{1}\right)=2-0.2 \times f^{\prime}(2)=2-0.2 \times 2=1.6$.

BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

- Set θ_{1} arbitrarily.
- For $i=1$ to t :

$$
\theta_{i+1}=\theta_{i}-\eta f^{\prime}\left(\theta_{i}\right)
$$

i.e., increase θ if negative derivative and decrease θ if positive derivative. η is small fixed value.

- Return $\theta=\arg \min _{\theta_{1}, \ldots \theta_{t}} f\left(\theta_{i}\right)$.

Example: $f(x)=(x-1)^{2}, \theta_{1}=2$, and $\eta=0.2$

- Compute derivative $f^{\prime}(x)=2(x-1)$
- $\theta_{2}=\theta_{1}-\eta f^{\prime}\left(\theta_{1}\right)=2-0.2 \times f^{\prime}(2)=2-0.2 \times 2=1.6$.
- $\theta_{3}=\theta_{2}-\eta f^{\prime}\left(\theta_{2}\right)=1.6-0.2 \times f^{\prime}(1.6)=1.6-0.2 \times 1.2=1.36$.

GD ANALYSIS PROOF FOR $d=1$

Theorem: For convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ where $\left|f^{\prime}(\theta)\right| \leq G$ for all θ, GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t}}$, and starting point within R of θ_{*}, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f\left(\theta_{*}\right)+\epsilon$.

GD ANALYSIS PROOF FOR $d=1$

Theorem: For convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ where $\left|f^{\prime}(\theta)\right| \leq G$ for all θ, GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t}}$, and starting point within R of θ_{*}, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f\left(\theta_{*}\right)+\epsilon$.

- Substituting $\theta_{i+1}=\theta_{i}-\eta f^{\prime}\left(\theta_{i}\right)$ and letting $a_{i}=\theta_{i}-\theta_{*}$ gives:

$$
a_{i+1}^{2}=\left(\theta_{i+1}-\theta_{*}\right)^{2}=\left(a_{i}-\eta f^{\prime}\left(\theta_{i}\right)\right)^{2}=a_{i}^{2}-2 \eta f^{\prime}\left(\theta_{i}\right) a_{i}+\left(\eta f^{\prime}\left(\theta_{i}\right)\right)^{2}
$$

GD ANALYSIS PROOF FOR $d=1$

Theorem: For convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ where $\left|f^{\prime}(\theta)\right| \leq G$ for all θ, GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t}}$, and starting point within R of θ_{*}, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f\left(\theta_{*}\right)+\epsilon$.

- Substituting $\theta_{i+1}=\theta_{i}-\eta f^{\prime}\left(\theta_{i}\right)$ and letting $a_{i}=\theta_{i}-\theta_{*}$ gives:

$$
a_{i+1}^{2}=\left(\theta_{i+1}-\theta_{*}\right)^{2}=\left(a_{i}-\eta f^{\prime}\left(\theta_{i}\right)\right)^{2}=a_{i}^{2}-2 \eta f^{\prime}\left(\theta_{i}\right) a_{i}+\left(\eta f^{\prime}\left(\theta_{i}\right)\right)^{2}
$$

- Rearrange and use convexity to show:

$$
f\left(\theta_{i}\right)-f\left(\theta_{*}\right) \leq f^{\prime}\left(\theta_{i}\right) a_{i}=\frac{1}{2 \eta}\left(a_{i}^{2}-a_{i+1}^{2}\right)+\eta\left(f^{\prime}\left(\theta_{i}\right)\right)^{2} / 2
$$

GD ANALYSIS PROOF FOR $d=1$

Theorem: For convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ where $\left|f^{\prime}(\theta)\right| \leq G$ for all θ, GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t}}$, and starting point within R of θ_{*}, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f\left(\theta_{*}\right)+\epsilon$.

- Substituting $\theta_{i+1}=\theta_{i}-\eta f^{\prime}\left(\theta_{i}\right)$ and letting $a_{i}=\theta_{i}-\theta_{*}$ gives:

$$
a_{i+1}^{2}=\left(\theta_{i+1}-\theta_{*}\right)^{2}=\left(a_{i}-\eta f^{\prime}\left(\theta_{i}\right)\right)^{2}=a_{i}^{2}-2 \eta f^{\prime}\left(\theta_{i}\right) a_{i}+\left(\eta f^{\prime}\left(\theta_{i}\right)\right)^{2}
$$

- Rearrange and use convexity to show:

$$
f\left(\theta_{i}\right)-f\left(\theta_{*}\right) \leq f^{\prime}\left(\theta_{i}\right) a_{i}=\frac{1}{2 \eta}\left(a_{i}^{2}-a_{i+1}^{2}\right)+\eta\left(f^{\prime}\left(\theta_{i}\right)\right)^{2} / 2
$$

- Summing over i and using the fact $\left|f^{\prime}\left(\theta_{i}\right)\right| \leq G$,

$$
\frac{1}{t} \sum_{i=1}^{t}\left(f\left(\theta_{i}\right)-f\left(\theta_{*}\right)\right) \leq\left(\frac{1}{2 t \eta} \sum_{i=1}^{t}\left(a_{i}^{2}-a_{i+1}^{2}\right)\right)+\frac{\eta G^{2}}{2} \leq \frac{a_{1}^{2}}{2 t \eta}+\frac{\eta G^{2}}{2}
$$

GD ANALYSIS PROOF FOR $d=1$

Theorem: For convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ where $\left|f^{\prime}(\theta)\right| \leq G$ for all θ, GD run with $t \geq \frac{R^{2} G^{2}}{\epsilon^{2}}$ iterations, $\eta=\frac{R}{G \sqrt{t}}$, and starting point within R of θ_{*}, outputs $\hat{\theta}$ satisfying $f(\hat{\theta}) \leq f\left(\theta_{*}\right)+\epsilon$.

- Substituting $\theta_{i+1}=\theta_{i}-\eta f^{\prime}\left(\theta_{i}\right)$ and letting $a_{i}=\theta_{i}-\theta_{*}$ gives:

$$
a_{i+1}^{2}=\left(\theta_{i+1}-\theta_{*}\right)^{2}=\left(a_{i}-\eta f^{\prime}\left(\theta_{i}\right)\right)^{2}=a_{i}^{2}-2 \eta f^{\prime}\left(\theta_{i}\right) a_{i}+\left(\eta f^{\prime}\left(\theta_{i}\right)\right)^{2}
$$

- Rearrange and use convexity to show:

$$
f\left(\theta_{i}\right)-f\left(\theta_{*}\right) \leq f^{\prime}\left(\theta_{i}\right) a_{i}=\frac{1}{2 \eta}\left(a_{i}^{2}-a_{i+1}^{2}\right)+\eta\left(f^{\prime}\left(\theta_{i}\right)\right)^{2} / 2
$$

- Summing over i and using the fact $\left|f^{\prime}\left(\theta_{i}\right)\right| \leq G$,

$$
\frac{1}{t} \sum_{i=1}^{t}\left(f\left(\theta_{i}\right)-f\left(\theta_{*}\right)\right) \leq\left(\frac{1}{2 t \eta} \sum_{i=1}^{t}\left(a_{i}^{2}-a_{i+1}^{2}\right)\right)+\frac{\eta G^{2}}{2} \leq \frac{a_{1}^{2}}{2 t \eta}+\frac{\eta G^{2}}{2}
$$

- Using $a_{1}^{2} \leq R^{2}$ and $f(\hat{\theta})-f\left(\theta^{*}\right) \leq \frac{1}{t} \sum_{i=1}^{t}\left(f\left(\theta_{i}\right)-f\left(\theta_{*}\right)\right)$

$$
f(\hat{\theta}) \leq f\left(\theta^{*}\right)+\frac{R^{2}}{2 t \eta}+\frac{\eta G^{2}}{2} \leq f\left(\theta^{*}\right)+\epsilon
$$

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.
Typical Set Up: (supervised machine learning)

- Have a model, which is a function mapping inputs to predictions (neural network, linear function, low-degree polynomial etc).
- The model is parameterized by a parameter vector (weights in a neural network, coefficients in a linear function or polynomial)
- Want to train this model on input data, by picking a parameter vector such that the model does a good job mapping inputs to predictions on your training data.

This training step is typically formulated as a continuous optimization problem.

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=} \vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=} \vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=} \vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.
Parameter Vector: $\vec{\theta} \in \mathbb{R}^{d}$ (the regression coefficients)

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=} \vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.
Parameter Vector: $\vec{\theta} \in \mathbb{R}^{d}$ (the regression coefficients)
Optimization Problem: Given data points (training points) $\vec{x}_{1}, \ldots, \vec{x}_{n}$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels $y_{1}, \ldots, y_{n} \in \mathbb{R}$, find $\vec{\theta}_{*}$ minimizing the loss function:

$$
L(\vec{\theta}, \mathbf{X}, \vec{y})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

where ℓ is some measurement of how far $M_{\vec{\theta}}\left(\vec{x}_{i}\right)$ is from y_{i}.

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=} \vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.
Parameter Vector: $\vec{\theta} \in \mathbb{R}^{d}$ (the regression coefficients)
Optimization Problem: Given data points (training points) $\vec{x}_{1}, \ldots, \vec{x}_{n}$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels $y_{1}, \ldots, y_{n} \in \mathbb{R}$, find $\vec{\theta}_{*}$ minimizing the loss function:

$$
L(\vec{\theta}, \mathbf{X}, \vec{y})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

where ℓ is some measurement of how far $M_{\vec{\theta}}\left(\vec{x}_{i}\right)$ is from y_{i}.

- $\ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)=\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right)-y_{i}\right)^{2}$ (least squares regression)
- $y_{i} \in\{-1,1\}$ and $\ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)=\ln \left(1+\exp \left(-y_{i} M_{\vec{\theta}}\left(\vec{x}_{i}\right)\right)\right)$ (logistic regression)

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d features (sq. footage, average price of houses in neighborhood...)
Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $M_{\vec{\theta}}(\vec{x}) \stackrel{\text { def }}{=} \vec{\theta}(1) \cdot \vec{x}(1)+\ldots+\vec{\theta}(d) \cdot \vec{x}(d)$.
Parameter Vector: $\vec{\theta} \in \mathbb{R}^{d}$ (the regression coefficients)
Optimization Problem: Given data points (training points) $\vec{x}_{1}, \ldots, \vec{x}_{n}$ (the rows of data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$) and labels $y_{1}, \ldots, y_{n} \in \mathbb{R}$, find $\vec{\theta}_{*}$ minimizing the loss function:

$$
L_{x, y}(\vec{\theta})=L(\vec{\theta}, \mathbf{X}, \vec{y})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

where ℓ is some measurement of how far $M_{\vec{\theta}}\left(\vec{x}_{i}\right)$ is from y_{i}.

- $\ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)=\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right)-y_{i}\right)^{2}$ (least squares regression)
- $y_{i} \in\{-1,1\}$ and $\ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)=\ln \left(1+\exp \left(-y_{i} M_{\vec{\theta}}\left(\vec{x}_{i}\right)\right)\right)$ (logistic regression)

OPTIMIZATION IN ML

Example 2: Neural Networks

Model: $M_{\vec{\theta}}: \mathbb{R}^{d} \rightarrow \mathbb{R} . M_{\vec{\theta}}(\vec{x})=\left\langle\vec{W}_{\text {out }}, \sigma\left(\mathbf{W}_{2} \sigma\left(\mathbf{W}_{1} \vec{x}\right)\right)\right\rangle$.
Parameter Vector: $\vec{\theta} \in \mathbb{R}^{(\# \text { edges) }}$ (the weights on every edge)
Optimization Problem: Given data points $\vec{x}_{1}, \ldots, \vec{x}_{n}$ and labels $z_{1}, \ldots, z_{n} \in \mathbb{R}$, find $\vec{\theta}_{*}$ minimizing the loss function:

$$
L_{x_{, \vec{y}}}(\vec{\theta})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), z_{i}\right)
$$

OPTIMIZATION IN ML

$$
L_{x, \vec{y}}(\vec{\theta})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

- Supervised means we have labels y_{1}, \ldots, y_{n} for the training points.
- Solving the final optimization problem has many different names: likelihood maximization, empirical risk minimization, minimizing training loss, etc.
- Continuous optimization is also very common in unsupervised learning. (PCA, spectral clustering, etc.)
- Generalization tries to explain why minimizing the loss $L_{\mathbf{x}, \vec{y}}(\vec{\theta})$ on the training points minimizes the loss on future test points. l.e., makes us have good predictions on future inputs.

OPTIMIZATION ALGORITHMS

Choice of optimization algorithm for minimizing $f(\vec{\theta})$ will depend on many things:

- The form of f (in ML, depends on the model \& loss function).
- Any constraints on $\vec{\theta}$ (e.g., $\|\vec{\theta}\|<c$).
- Computational constraints, such as memory constraints.

$$
L_{\mathbf{x}, \vec{y}}(\vec{\theta})=\sum_{i=1}^{n} \ell\left(M_{\vec{\theta}}\left(\vec{x}_{i}\right), y_{i}\right)
$$

