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SUMMARY

Last Class: Fast computation of the SVD/eigendecomposition.

® Power method for computing the top singular vector of a matrix.
® Power method is a simple iterative algorithm for solving the non-convex
optimization problem maxg.y2_ [vTAV|

Final Two Weeks of Class:

® More general iterative algorithms for optimization, specifically gradient
descent and its variants.

® What are these methods, when are they applied, and how do you analyze

their performance?

® Small taste of what you can find in COMPSCI 5900P or 6900P.



DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
® Graph Problems: min-cut, max-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

® Problems with discrete constraints or outputs: bin-packing, scheduling,
sequence alignment, submodular maximization

® Generally searching over a finite but exponentially large set of possible
solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

® Unconstrained convex and non-convex optimization.

® Linear programming, quadratic programming, semidefinite programming



CONTINUOUS OPTIMIZATION EXAMPLES

£0) f(6)

AN OER = 6 €R

0 € R?




MATHEMATICAL SETUP

Given some function f : RY — R, find 6’_; with:

£(6,) = min £(6)

GeRr?
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MATHEMATICAL SETUP

Given some function f : RY — R, find 6’_; with:

£(6,) = min £(6) + ¢
GeRd
Typically up to some small additive approximation term e.
Often under some constraints:
o Il <1, 116] < 1.
® AG<b, OTAG>0.
o YL <c



CONVEX FUNCTIONS

Definition — Convex Function: A function f : RY — R is convex iff,
for any 61,0, € RY and X € [0,1]:

(1—A)-f(51)+A-f(52)2f((l—A)~§1+A-§z)

f(6)
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CONVEX SETS

Definition — Convex Set: A set S C R? is convex if and only if,
for any 01,0, € Sand A€ [0,1]: (1= N1+ A -6, €S




CONVEX SETS

Definition — Convex Set: A set S C R? is convex if and only if,
for any 01,0, € Sand A€ [0,1]: (1= N1+ A -6, €S

For any convex set let Ps(-) denote the projection function onto S:

Ps(y) = argmin |6 — 7|
0es



GRADIENT DESCENT

Next few classes: Gradient descent (and some important variants)

® An extremely simple greedy iterative method, that can be applied to almost
any continuous function we care about optimizing.

® Often not the ‘best’ choice for any given function, but it is the approach of
choice in ML since it is simple, general, and often works very well.

® At each step, tries to move towards the lowest nearby point in the function
that is can — in the opposite direction of the gradient.




BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

® Set 6y arbitrarily.
® Fori=1tot:
0iv1 = 0; —nf'(6))
i.e., increase 0 if negative derivative and decrease 6 if positive
derivative. 77 is small fixed value.

® Return 0 = argming, 4 f(0;).
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BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

® Set 6y arbitrarily.
® Fori=1tot:
0iv1 = 0; —nf'(6))
i.e., increase 0 if negative derivative and decrease 6 if positive
derivative. 77 is small fixed value.

® Return 0 = argming, 4 f(0;).

Example: f(x) = (x —1)?, 6; =2, and n = 0.2

e Compute derivative f'(x) = 2(x — 1)

© 0y =0, —nf'(f1)=2—-02xf(2)=2—02x2=16.

® O3 =10, —nf'(0) =16—-02xf(1.6) =16 —-0.2x 1.2 =1.36.



GD ANALYSIS PROOF FOR d =1

Theorem: For convex function f : R — R where |f'(0)] < G for all 6,

: R2G2 - : _ R
GD run with t > —— iterations, n = e

of 0., outputs 0 satisfying f(f) < f(6.) + €.

and starting point within R
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ati = (Bi41 — 02)? = (ar — nf'(6:))" = af — 2nf"(6:)a; + (nf'(6:))?
® Rearrange and use convexity to show:

F(0;) — £(6.) < £'(0))ai = 5= (a7 — 1) +1(F'(61))°/2



GD ANALYSIS PROOF FOR d =1

Theorem: For convex function f : R —> R where |f'(0)| < G for all 6,
GD run with t > Rifz iterations, n = G\[,
of ., outputs 8 satisfying (8) < £(6.) +

and starting point within R

® Substituting 041 = 0; — nf’(0;) and letting a; = 0; — 0., gives:
R = (B — 0. = (a1 — nF (6.)) = & — 20f'(0)as + (nF(6,))?
® Rearrange and use convexity to show:
F(0r) — F(0:) < F'(0)ai = 5 (a7 — afa) +n(F'(67))°/2
® Summing over i and using the fact |f'(0;)| < G,

2 3 2
LS (F0) — F(0.)) < (35 Tin(af - at)) + 25 < A 4 28



GD ANALYSIS PROOF FOR d =1

Theorem: For convex function f : R —> R where |f'(0)| < G for all 6,
GD run with t > Rifz iterations, n = G\[,
of ., outputs 8 satisfying (8) < £(6.) +

and starting point within R

Substituting 0;+1 = 0; — nf’(0;) and letting a; = 6; — 0. gives:
Rer = (Brs1 — 0. = (a1 — nF' (8 = & — 20F (02 + (nf'(6,))
® Rearrange and use convexity to show:
F(0:) — £(0.) < f'(0:)ai = 5, (aF — afya) +0(F'(6:))*/2
® Summing over i and using the fact |f'(6;)| < G,
LS (F(0) = £(0.)) < (2 L] —at)) + %6 < 5+ 2
® Using a} < R? and f(0) — £(0") < 1 3¢, (F(0;) — £(6))

F(O) < F(O7) + £2 + 18 < £(0") + ¢

2tn



WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

® Have a model, which is a function mapping inputs to predictions (neural
network, linear function, low-degree polynomial etc).

® The model is parameterized by a parameter vector (weights in a neural
network, coefficients in a linear function or polynomial)

® Want to train this model on input data, by picking a parameter vector such
that the model does a good job mapping inputs to predictions on your

training data.

This training step is typically formulated as a continuous optimization problem.
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OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)
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OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)

— def = -

Model: M;: RY — R with Mz(x) = (1) - X(1) + ... + 0(d) - X(d).

Parameter Vector: § € R? (the regression coefficients)
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OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)
Model: M;: R? — R with My(x) < 6(1) - %(1) + ... + 6(d) - £(d).
Parameter Vector: 0 € R? (the regression coefficients)

Optimization Problem: Given data points (training points) Xi, ..., %, (the
rows of data matrix X € R") and labels yi,...,y, € R, find g, minimizing
the loss function:

L(@:X,y) = ZZ(MQ-(;(;).V')

i=1

where £ is some measurement of how far My (i) is from y;.
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OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)

—

Model: M;: R? — R with My(x) < 6(1) - %(1) + ... + 6(d) - £(d).
Parameter Vector: 0 € R? (the regression coefficients)
Optimization Problem: Given data points (training points) Xi, ..., %, (the

rows of data matrix X € R") and labels yi,...,y, € R, find g, minimizing
the loss function:

L(,X, ) = > UMg(%), i)
=1
where £ is some measurement of how far My (i) is from y;.

o U(My(%),yi) = (Mg(%) — i)? (least squares regression)

® yi € {—1,1} and {(Mz(%), yi) = In (1 + exp(—yiMz(X:))) (logistic
regression)
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OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)

—

Model: M;: R? — R with My(x) < 6(1) - %(1) + ... + 6(d) - £(d).
Parameter Vector: 0 € R? (the regression coefficients)
Optimization Problem: Given data points (training points) Xi, ..., %, (the

rows of data matrix X € R") and labels yi,...,y, € R, find g, minimizing
the loss function:

LX»,\«'((H) - L(@:X,y) = ZZ(MQ-(;(;).V')

=1
where £ is some measurement of how far My (i) is from y;.

o U(My(%),yi) = (Mg(%) — i)? (least squares regression)

® yi € {—1,1} and {(Mz(%), yi) = In (1 + exp(—yiMz(X:))) (logistic
regression)
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OPTIMIZATION IN ML

Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer

Model: M;: RY — R. Mz(X) = (Wour, o(W20(W1X))).
Parameter Vector: 0 € R °%%) (the weights on every edge)

Optimization Problem: Given data points xi,...,X, and labels z;,...,z, € R,
find 6. minimizing the loss function:

Lx.7(0) = Zf(l\/lg()?;)m)
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OPTIMIZATION IN ML

n

Lx,7(0) = > €(Mg(%), yi)

i=1

® Supervised means we have labels y1, ..., y, for the training points.

® Solving the final optimization problem has many different names: likelihood
maximization, empirical risk minimization, minimizing training loss, etc.

® Continuous optimization is also very common in unsupervised learning.
(PCA, spectral clustering, etc.)

—

® Generalization tries to explain why minimizing the loss Lx () on the
training points minimizes the loss on future test points. l.e., makes us have
good predictions on future inputs.
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OPTIMIZATION ALGORITHMS

=,

Choice of optimization algorithm for minimizing f(6) will depend on many
things:
® The form of f (in ML, depends on the model & loss function).

* Any constraints on 0 (e.g., ||| < c).

® Computational constraints, such as memory constraints.

Lx 7(0) = Z (Mg(%:), vi)
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