COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 21

SUMMARY

Last Class: Fast computation of the SVD/eigendecomposition.

® Power method for computing the top singular vector of a matrix.
® Power method is a simple iterative algorithm for solving the non-convex
optimization problem maxg.y2_ [vTAV|

Final Two Weeks of Class:

® More general iterative algorithms for optimization, specifically gradient
descent and its variants.

® What are these methods, when are they applied, and how do you analyze

their performance?

® Small taste of what you can find in COMPSCI 5900P or 6900P.

DISCRETE VS. CONTINUOUS OPTIMIZATION

Discrete (Combinatorial) Optimization: (traditional CS algorithms)
® Graph Problems: min-cut, max-cut, max flow, shortest path, matchings,
maximum independent set, traveling salesman problem

® Problems with discrete constraints or outputs: bin-packing, scheduling,
sequence alignment, submodular maximization

® Generally searching over a finite but exponentially large set of possible
solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

® Unconstrained convex and non-convex optimization.

® Linear programming, quadratic programming, semidefinite programming

CONTINUOUS OPTIMIZATION EXAMPLES

£0) f(6)

AN OER = 6 €R

0 € R?

MATHEMATICAL SETUP

Given some function f : RY — R, find 6’_; with:

£(6,) = min £(6)

GeRr?

MATHEMATICAL SETUP

Given some function f : RY — R, find 6’_; with:

f(6,) = min £(0) + ¢
0eR?

Typically up to some small additive approximation term e.

MATHEMATICAL SETUP

Given some function f : RY — R, find 6’_; with:

£(6,) = min £(6) + ¢
GeRd
Typically up to some small additive approximation term e.
Often under some constraints:
o Il <1, 116] < 1.
® AG<b, OTAG>0.
o YL <c

CONVEX FUNCTIONS

Definition — Convex Function: A function f : RY — R is convex iff,
for any 61,0, € RY and X € [0,1]:

(1—A)-f(51)+A-f(52)2f((l—A)~§1+A-§z)

f(6)

3
v

CONVEX SETS

Definition — Convex Set: A set S C R? is convex if and only if,
for any 01,0, € Sand A€ [0,1]: (1= N1+ A -6, €S

CONVEX SETS

Definition — Convex Set: A set S C R? is convex if and only if,
for any 01,0, € Sand A€ [0,1]: (1= N1+ A -6, €S

For any convex set let Ps(-) denote the projection function onto S:

Ps(y) = argmin |6 — 7|
0es

GRADIENT DESCENT

Next few classes: Gradient descent (and some important variants)

® An extremely simple greedy iterative method, that can be applied to almost
any continuous function we care about optimizing.

® Often not the ‘best’ choice for any given function, but it is the approach of
choice in ML since it is simple, general, and often works very well.

® At each step, tries to move towards the lowest nearby point in the function
that is can — in the opposite direction of the gradient.

BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

® Set 6y arbitrarily.
® Fori=1tot:
0iv1 = 0; —nf'(6))
i.e., increase 0 if negative derivative and decrease 6 if positive
derivative. 77 is small fixed value.

® Return 0 = argming, 4 f(0;).

BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

® Set 6y arbitrarily.
® Fori=1tot:
0iv1 = 0; —nf'(6))
i.e., increase 0 if negative derivative and decrease 6 if positive
derivative. 77 is small fixed value.

® Return 0 = argming, 4 f(0;).

Example: f(x) = (x —1)2, 6; =2, and = 0.2

BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

® Set 6y arbitrarily.
® Fori=1tot:
0iv1 = 0; —nf'(6))
i.e., increase 0 if negative derivative and decrease 6 if positive
derivative. 77 is small fixed value.

® Return 0 = argming, 4 f(0;).
Example: f(x) = (x —1)2, 6; =2, and = 0.2

e Compute derivative f'(x) = 2(x — 1)

BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

® Set 6y arbitrarily.
® Fori=1tot:
0iv1 = 0; —nf'(6))
i.e., increase 0 if negative derivative and decrease 6 if positive
derivative. 77 is small fixed value.

® Return 0 = argming, 4 f(0;).
Example: f(x) = (x —1)2, 6; =2, and = 0.2

e Compute derivative f'(x) = 2(x — 1)
© 0y =0 —nf(1)=2-02x f(2)=2—-02x2=16.

BASIC IDEA OF GRADIENT DESCENT

Gradient Descent Update in 1D:

® Set 6y arbitrarily.
® Fori=1tot:
0iv1 = 0; —nf'(6))
i.e., increase 0 if negative derivative and decrease 6 if positive
derivative. 77 is small fixed value.

® Return 0 = argming, 4 f(0;).

Example: f(x) = (x —1)?, 6; =2, and n = 0.2

e Compute derivative f'(x) = 2(x — 1)

© 0y =0, —nf'(f1)=2—-02xf(2)=2—02x2=16.

® O3 =10, —nf'(0) =16—-02xf(1.6) =16 —-0.2x 1.2 =1.36.

GD ANALYSIS PROOF FOR d =1

Theorem: For convex function f : R — R where |f'(0)] < G for all 6,

: R2G2 - : _ R
GD run with t > —— iterations, n = e

of 0., outputs 0 satisfying f(f) < f(6.) + €.

and starting point within R

GD ANALYSIS PROOF FOR d =1

Theorem: For convex function f : R —> R where |f'(0)| < G for all 6,
GD run with t > Rifz iterations, n = Gf'
of ., outputs 8 satisfying (8) < £(6.) +

and starting point within R

® Substituting 041 = 0; — nf’(0;) and letting a; = 0; — 0., gives:
ati = (Bi41 — 02)? = (ar — nf'(6:))" = af — 2nf"(6:)a; + (nf'(6:))?

GD ANALYSIS PROOF FOR d =1

Theorem: For convex function f : R —> R where |f'(0)| < G for all 6,
GD run with t > Rifz iterations, n = Gf'
of ., outputs 8 satisfying (8) < £(6.) +

and starting point within R

® Substituting 041 = 0; — nf’(0;) and letting a; = 0; — 0., gives:
ati = (Bi41 — 02)? = (ar — nf'(6:))" = af — 2nf"(6:)a; + (nf'(6:))?
® Rearrange and use convexity to show:

F(0;) — £(6.) < £'(0))ai = 5= (a7 — 1) +1(F'(61))°/2

GD ANALYSIS PROOF FOR d =1

Theorem: For convex function f : R —> R where |f'(0)| < G for all 6,
GD run with t > Rifz iterations, n = G\[,
of ., outputs 8 satisfying (8) < £(6.) +

and starting point within R

® Substituting 041 = 0; — nf’(0;) and letting a; = 0; — 0., gives:
R = (B — 0. = (a1 — nF (6.)) = & — 20f'(0)as + (nF(6,))?
® Rearrange and use convexity to show:
F(0r) — F(0:) < F'(0)ai = 5 (a7 — afa) +n(F'(67))°/2
® Summing over i and using the fact |f'(0;)| < G,

2 3 2
LS (F0) — F(0.)) < (35 Tin(af - at)) + 25 < A 4 28

GD ANALYSIS PROOF FOR d =1

Theorem: For convex function f : R —> R where |f'(0)| < G for all 6,
GD run with t > Rifz iterations, n = G\[,
of ., outputs 8 satisfying (8) < £(6.) +

and starting point within R

Substituting 0;+1 = 0; — nf’(0;) and letting a; = 6; — 0. gives:
Rer = (Brs1 — 0. = (a1 — nF' (8 = & — 20F (02 + (nf'(6,))
® Rearrange and use convexity to show:
F(0:) — £(0.) < f'(0:)ai = 5, (aF — afya) +0(F'(6:))*/2
® Summing over i and using the fact |f'(6;)| < G,
LS (F(0) = £(0.)) < (2 L] —at)) + %6 < 5+ 2
® Using a} < R? and f(0) — £(0") < 1 3¢, (F(0;) — £(6))

F(O) < F(O7) + £2 + 18 < £(0") + ¢

2tn

WHY CONTINUOUS OPTIMIZATION?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

® Have a model, which is a function mapping inputs to predictions (neural
network, linear function, low-degree polynomial etc).

® The model is parameterized by a parameter vector (weights in a neural
network, coefficients in a linear function or polynomial)

® Want to train this model on input data, by picking a parameter vector such
that the model does a good job mapping inputs to predictions on your

training data.

This training step is typically formulated as a continuous optimization problem.

10

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)

11

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)

— def = -

Model: M;: RY — R with Mz(x) = (1) - X(1) + ... + 0(d) - X(d).

11

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)

— def = -

Model: M;: RY — R with Mz(x) = (1) - X(1) + ... + 0(d) - X(d).

11

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)

— def = -

Model: M;: RY — R with Mz(x) = (1) - X(1) + ... + 0(d) - X(d).

Parameter Vector: § € R? (the regression coefficients)

11

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)
Model: M;: R? — R with My(x) < 6(1) - %(1) + ... + 6(d) - £(d).
Parameter Vector: 0 € R? (the regression coefficients)

Optimization Problem: Given data points (training points) Xi, ..., %, (the
rows of data matrix X € R") and labels yi,...,y, € R, find g, minimizing
the loss function:

L(@:X,y) = ZZ(MQ-(;(;).V')

i=1

where £ is some measurement of how far My (i) is from y;.

11

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)

—

Model: M;: R? — R with My(x) < 6(1) - %(1) + ... + 6(d) - £(d).
Parameter Vector: 0 € R? (the regression coefficients)
Optimization Problem: Given data points (training points) Xi, ..., %, (the

rows of data matrix X € R") and labels yi,...,y, € R, find g, minimizing
the loss function:

L(,X,) = > UMg(%), i)
=1
where £ is some measurement of how far My (i) is from y;.

o U(My(%),yi) = (Mg(%) — i)? (least squares regression)

® yi € {—1,1} and {(Mz(%), yi) = In (1 + exp(—yiMz(X:))) (logistic
regression)

11

OPTIMIZATION IN ML

Example 1: Linear Regression, e.g., predicting house prices based on d
features (sq. footage, average price of houses in neighborhood. . .)

—

Model: M;: R? — R with My(x) < 6(1) - %(1) + ... + 6(d) - £(d).
Parameter Vector: 0 € R? (the regression coefficients)
Optimization Problem: Given data points (training points) Xi, ..., %, (the

rows of data matrix X € R") and labels yi,...,y, € R, find g, minimizing
the loss function:

LX»,\«'((H) - L(@:X,y) = ZZ(MQ-(;(;).V')

=1
where £ is some measurement of how far My (i) is from y;.

o U(My(%),yi) = (Mg(%) — i)? (least squares regression)

® yi € {—1,1} and {(Mz(%), yi) = In (1 + exp(—yiMz(X:))) (logistic
regression)

11

OPTIMIZATION IN ML

Example 2: Neural Networks

Output
Input Layer Layer 1 Layer 2 Layer

Model: M;: RY — R. Mz(X) = (Wour, o(W20(W1X))).
Parameter Vector: 0 € R °%%) (the weights on every edge)

Optimization Problem: Given data points xi,...,X, and labels z;,...,z, € R,
find 6. minimizing the loss function:

Lx.7(0) = Zf(l\/lg()?;)m)

12

OPTIMIZATION IN ML

n

Lx,7(0) = > €(Mg(%), yi)

i=1

® Supervised means we have labels y1, ..., y, for the training points.

® Solving the final optimization problem has many different names: likelihood
maximization, empirical risk minimization, minimizing training loss, etc.

® Continuous optimization is also very common in unsupervised learning.
(PCA, spectral clustering, etc.)

—

® Generalization tries to explain why minimizing the loss Lx () on the
training points minimizes the loss on future test points. l.e., makes us have
good predictions on future inputs.

13

OPTIMIZATION ALGORITHMS

=,

Choice of optimization algorithm for minimizing f(6) will depend on many
things:
® The form of f (in ML, depends on the model & loss function).

* Any constraints on 0 (e.g., ||| < c).

® Computational constraints, such as memory constraints.

Lx 7(0) = Z (Mg(%:), vi)

14

