
compsci 514: algorithms for data science

Andrew McGregor

Lecture 21

0



summary

Last Class: Fast computation of the SVD/eigendecomposition.

• Power method for computing the top singular vector of a matrix.

• Power method is a simple iterative algorithm for solving the non-convex

optimization problem max~v :‖~v‖22=1 |~vTA~v |

Final Two Weeks of Class:

• More general iterative algorithms for optimization, specifically gradient

descent and its variants.

• What are these methods, when are they applied, and how do you analyze

their performance?

• Small taste of what you can find in COMPSCI 590OP or 690OP.

1



discrete vs. continuous optimization

Discrete (Combinatorial) Optimization: (traditional CS algorithms)

• Graph Problems: min-cut, max-cut, max flow, shortest path, matchings,

maximum independent set, traveling salesman problem

• Problems with discrete constraints or outputs: bin-packing, scheduling,

sequence alignment, submodular maximization

• Generally searching over a finite but exponentially large set of possible

solutions. Many of these problems are NP-Hard.

Continuous Optimization: (maybe seen in ML/advanced algorithms)

• Unconstrained convex and non-convex optimization.

• Linear programming, quadratic programming, semidefinite programming

2



continuous optimization examples

3



mathematical setup

Given some function f : Rd → R, find ~θ? with:

f (~θ?) = min
~θ∈Rd

f (~θ)

+ ε

Typically up to some small additive approximation term ε.

Often under some constraints:

• ‖~θ‖2 ≤ 1, ‖~θ‖1 ≤ 1.

• A~θ ≤ ~b, ~θTA~θ ≥ 0.

• ∑d
i=1

~θ(i) ≤ c .

4



mathematical setup

Given some function f : Rd → R, find ~θ? with:

f (~θ?) = min
~θ∈Rd

f (~θ) + ε

Typically up to some small additive approximation term ε.

Often under some constraints:

• ‖~θ‖2 ≤ 1, ‖~θ‖1 ≤ 1.

• A~θ ≤ ~b, ~θTA~θ ≥ 0.

• ∑d
i=1

~θ(i) ≤ c .

4



mathematical setup

Given some function f : Rd → R, find ~θ? with:

f (~θ?) = min
~θ∈Rd

f (~θ) + ε

Typically up to some small additive approximation term ε.

Often under some constraints:

• ‖~θ‖2 ≤ 1, ‖~θ‖1 ≤ 1.

• A~θ ≤ ~b, ~θTA~θ ≥ 0.

• ∑d
i=1

~θ(i) ≤ c .

4



convex functions

Definition – Convex Function: A function f : Rd → R is convex iff,

for any ~θ1, ~θ2 ∈ Rd and λ ∈ [0, 1]:

(1− λ) · f (~θ1) + λ · f (~θ2) ≥ f
(

(1− λ) · ~θ1 + λ · ~θ2
)

5



convex sets

Definition – Convex Set: A set S ⊆ Rd is convex if and only if,

for any ~θ1, ~θ2 ∈ S and λ ∈ [0, 1]: (1− λ)~θ1 + λ · ~θ2 ∈ S

For any convex set let PS(·) denote the projection function onto S:

PS(~y) = arg min
~θ∈S

‖~θ − ~y‖2

6



convex sets

Definition – Convex Set: A set S ⊆ Rd is convex if and only if,

for any ~θ1, ~θ2 ∈ S and λ ∈ [0, 1]: (1− λ)~θ1 + λ · ~θ2 ∈ S

For any convex set let PS(·) denote the projection function onto S:

PS(~y) = arg min
~θ∈S

‖~θ − ~y‖2

6



gradient descent

Next few classes: Gradient descent (and some important variants)

• An extremely simple greedy iterative method, that can be applied to almost

any continuous function we care about optimizing.

• Often not the ‘best’ choice for any given function, but it is the approach of

choice in ML since it is simple, general, and often works very well.

• At each step, tries to move towards the lowest nearby point in the function

that is can – in the opposite direction of the gradient.

7



basic idea of gradient descent

Gradient Descent Update in 1D:

• Set θ1 arbitrarily.

• For i = 1 to t:

θi+1 = θi − ηf ′(θi )

i.e., increase θ if negative derivative and decrease θ if positive

derivative. η is small fixed value.

• Return θ = arg minθ1,...θt f (θi ).

Example: f (x) = (x − 1)2, θ1 = 2, and η = 0.2

• Compute derivative f ′(x) = 2(x − 1)

• θ2 = θ1 − ηf ′(θ1) = 2− 0.2× f ′(2) = 2− 0.2× 2 = 1.6.

• θ3 = θ2 − ηf ′(θ2) = 1.6− 0.2× f ′(1.6) = 1.6− 0.2× 1.2 = 1.36.

8



basic idea of gradient descent

Gradient Descent Update in 1D:

• Set θ1 arbitrarily.

• For i = 1 to t:

θi+1 = θi − ηf ′(θi )

i.e., increase θ if negative derivative and decrease θ if positive

derivative. η is small fixed value.

• Return θ = arg minθ1,...θt f (θi ).

Example: f (x) = (x − 1)2, θ1 = 2, and η = 0.2

• Compute derivative f ′(x) = 2(x − 1)

• θ2 = θ1 − ηf ′(θ1) = 2− 0.2× f ′(2) = 2− 0.2× 2 = 1.6.

• θ3 = θ2 − ηf ′(θ2) = 1.6− 0.2× f ′(1.6) = 1.6− 0.2× 1.2 = 1.36.

8



basic idea of gradient descent

Gradient Descent Update in 1D:

• Set θ1 arbitrarily.

• For i = 1 to t:

θi+1 = θi − ηf ′(θi )

i.e., increase θ if negative derivative and decrease θ if positive

derivative. η is small fixed value.

• Return θ = arg minθ1,...θt f (θi ).

Example: f (x) = (x − 1)2, θ1 = 2, and η = 0.2

• Compute derivative f ′(x) = 2(x − 1)

• θ2 = θ1 − ηf ′(θ1) = 2− 0.2× f ′(2) = 2− 0.2× 2 = 1.6.

• θ3 = θ2 − ηf ′(θ2) = 1.6− 0.2× f ′(1.6) = 1.6− 0.2× 1.2 = 1.36.

8



basic idea of gradient descent

Gradient Descent Update in 1D:

• Set θ1 arbitrarily.

• For i = 1 to t:

θi+1 = θi − ηf ′(θi )

i.e., increase θ if negative derivative and decrease θ if positive

derivative. η is small fixed value.

• Return θ = arg minθ1,...θt f (θi ).

Example: f (x) = (x − 1)2, θ1 = 2, and η = 0.2

• Compute derivative f ′(x) = 2(x − 1)

• θ2 = θ1 − ηf ′(θ1) = 2− 0.2× f ′(2) = 2− 0.2× 2 = 1.6.

• θ3 = θ2 − ηf ′(θ2) = 1.6− 0.2× f ′(1.6) = 1.6− 0.2× 1.2 = 1.36.

8



basic idea of gradient descent

Gradient Descent Update in 1D:

• Set θ1 arbitrarily.

• For i = 1 to t:

θi+1 = θi − ηf ′(θi )

i.e., increase θ if negative derivative and decrease θ if positive

derivative. η is small fixed value.

• Return θ = arg minθ1,...θt f (θi ).

Example: f (x) = (x − 1)2, θ1 = 2, and η = 0.2

• Compute derivative f ′(x) = 2(x − 1)

• θ2 = θ1 − ηf ′(θ1) = 2− 0.2× f ′(2) = 2− 0.2× 2 = 1.6.

• θ3 = θ2 − ηf ′(θ2) = 1.6− 0.2× f ′(1.6) = 1.6− 0.2× 1.2 = 1.36.

8



gd analysis proof for d = 1

Theorem: For convex function f : R → R where |f ′(θ)| ≤ G for all θ,

GD run with t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and starting point within R

of θ∗, outputs θ̂ satisfying f (θ̂) ≤ f (θ∗) + ε.

• Substituting θi+1 = θi − ηf ′(θi ) and letting ai = θi − θ∗ gives:

a2i+1 = (θi+1 − θ∗)2 = (ai − ηf ′(θi ))2 = a2i − 2ηf ′(θi )ai + (ηf ′(θi ))2

• Rearrange and use convexity to show:

f (θi )− f (θ∗) ≤ f ′(θi )ai = 1
2η

(
a2i − a2i+1

)
+ η(f ′(θi ))2/2

• Summing over i and using the fact |f ′(θi )| ≤ G ,

1
t

∑t
i=1 (f (θi )− f (θ∗)) ≤

(
1

2tη

∑t
i=1(a2i − a2i+1)

)
+ ηG2

2
≤ a21

2tη
+ ηG2

2

• Using a21 ≤ R2 and f (θ̂)− f (θ∗) ≤ 1
t

∑t
i=1 (f (θi )− f (θ∗))

f (θ̂) ≤ f (θ∗) + R2

2tη
+ ηG2

2
≤ f (θ∗) + ε

9



gd analysis proof for d = 1

Theorem: For convex function f : R → R where |f ′(θ)| ≤ G for all θ,

GD run with t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and starting point within R

of θ∗, outputs θ̂ satisfying f (θ̂) ≤ f (θ∗) + ε.

• Substituting θi+1 = θi − ηf ′(θi ) and letting ai = θi − θ∗ gives:

a2i+1 = (θi+1 − θ∗)2 = (ai − ηf ′(θi ))2 = a2i − 2ηf ′(θi )ai + (ηf ′(θi ))2

• Rearrange and use convexity to show:

f (θi )− f (θ∗) ≤ f ′(θi )ai = 1
2η

(
a2i − a2i+1

)
+ η(f ′(θi ))2/2

• Summing over i and using the fact |f ′(θi )| ≤ G ,

1
t

∑t
i=1 (f (θi )− f (θ∗)) ≤

(
1

2tη

∑t
i=1(a2i − a2i+1)

)
+ ηG2

2
≤ a21

2tη
+ ηG2

2

• Using a21 ≤ R2 and f (θ̂)− f (θ∗) ≤ 1
t

∑t
i=1 (f (θi )− f (θ∗))

f (θ̂) ≤ f (θ∗) + R2

2tη
+ ηG2

2
≤ f (θ∗) + ε

9



gd analysis proof for d = 1

Theorem: For convex function f : R → R where |f ′(θ)| ≤ G for all θ,

GD run with t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and starting point within R

of θ∗, outputs θ̂ satisfying f (θ̂) ≤ f (θ∗) + ε.

• Substituting θi+1 = θi − ηf ′(θi ) and letting ai = θi − θ∗ gives:

a2i+1 = (θi+1 − θ∗)2 = (ai − ηf ′(θi ))2 = a2i − 2ηf ′(θi )ai + (ηf ′(θi ))2

• Rearrange and use convexity to show:

f (θi )− f (θ∗) ≤ f ′(θi )ai = 1
2η

(
a2i − a2i+1

)
+ η(f ′(θi ))2/2

• Summing over i and using the fact |f ′(θi )| ≤ G ,

1
t

∑t
i=1 (f (θi )− f (θ∗)) ≤

(
1

2tη

∑t
i=1(a2i − a2i+1)

)
+ ηG2

2
≤ a21

2tη
+ ηG2

2

• Using a21 ≤ R2 and f (θ̂)− f (θ∗) ≤ 1
t

∑t
i=1 (f (θi )− f (θ∗))

f (θ̂) ≤ f (θ∗) + R2

2tη
+ ηG2

2
≤ f (θ∗) + ε

9



gd analysis proof for d = 1

Theorem: For convex function f : R → R where |f ′(θ)| ≤ G for all θ,

GD run with t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and starting point within R

of θ∗, outputs θ̂ satisfying f (θ̂) ≤ f (θ∗) + ε.

• Substituting θi+1 = θi − ηf ′(θi ) and letting ai = θi − θ∗ gives:

a2i+1 = (θi+1 − θ∗)2 = (ai − ηf ′(θi ))2 = a2i − 2ηf ′(θi )ai + (ηf ′(θi ))2

• Rearrange and use convexity to show:

f (θi )− f (θ∗) ≤ f ′(θi )ai = 1
2η

(
a2i − a2i+1

)
+ η(f ′(θi ))2/2

• Summing over i and using the fact |f ′(θi )| ≤ G ,

1
t

∑t
i=1 (f (θi )− f (θ∗)) ≤

(
1

2tη

∑t
i=1(a2i − a2i+1)

)
+ ηG2

2
≤ a21

2tη
+ ηG2

2

• Using a21 ≤ R2 and f (θ̂)− f (θ∗) ≤ 1
t

∑t
i=1 (f (θi )− f (θ∗))

f (θ̂) ≤ f (θ∗) + R2

2tη
+ ηG2

2
≤ f (θ∗) + ε

9



gd analysis proof for d = 1

Theorem: For convex function f : R → R where |f ′(θ)| ≤ G for all θ,

GD run with t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and starting point within R

of θ∗, outputs θ̂ satisfying f (θ̂) ≤ f (θ∗) + ε.

• Substituting θi+1 = θi − ηf ′(θi ) and letting ai = θi − θ∗ gives:

a2i+1 = (θi+1 − θ∗)2 = (ai − ηf ′(θi ))2 = a2i − 2ηf ′(θi )ai + (ηf ′(θi ))2

• Rearrange and use convexity to show:

f (θi )− f (θ∗) ≤ f ′(θi )ai = 1
2η

(
a2i − a2i+1

)
+ η(f ′(θi ))2/2

• Summing over i and using the fact |f ′(θi )| ≤ G ,

1
t

∑t
i=1 (f (θi )− f (θ∗)) ≤

(
1

2tη

∑t
i=1(a2i − a2i+1)

)
+ ηG2

2
≤ a21

2tη
+ ηG2

2

• Using a21 ≤ R2 and f (θ̂)− f (θ∗) ≤ 1
t

∑t
i=1 (f (θi )− f (θ∗))

f (θ̂) ≤ f (θ∗) + R2

2tη
+ ηG2

2
≤ f (θ∗) + ε

9



why continuous optimization?

Modern machine learning centers around continuous optimization.

Typical Set Up: (supervised machine learning)

• Have a model, which is a function mapping inputs to predictions (neural

network, linear function, low-degree polynomial etc).

• The model is parameterized by a parameter vector (weights in a neural

network, coefficients in a linear function or polynomial)

• Want to train this model on input data, by picking a parameter vector such

that the model does a good job mapping inputs to predictions on your

training data.

This training step is typically formulated as a continuous optimization problem.

10



optimization in ml

Example 1: Linear Regression, e.g., predicting house prices based on d

features (sq. footage, average price of houses in neighborhood. . . )

Model: M~θ : Rd → R with M~θ(~x)
def
= ~θ(1) · ~x(1) + . . .+ ~θ(d) · ~x(d).

Parameter Vector: ~θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) ~x1, . . . , ~xn (the

rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find ~θ∗ minimizing

the loss function:

LX,y (~θ) =

L(~θ,X, ~y) =
n∑

i=1

`(M~θ(~xi ), yi )

where ` is some measurement of how far M~θ(~xi ) is from yi .

• `(M~θ(~xi ), yi ) =
(
M~θ(~xi )− yi

)2
(least squares regression)

• yi ∈ {−1, 1} and `(M~θ(~xi ), yi ) = ln
(
1 + exp(−yiM~θ(~xi ))

)
(logistic

regression)

11



optimization in ml

Example 1: Linear Regression, e.g., predicting house prices based on d

features (sq. footage, average price of houses in neighborhood. . . )

Model: M~θ : Rd → R with M~θ(~x)
def
= ~θ(1) · ~x(1) + . . .+ ~θ(d) · ~x(d).

Parameter Vector: ~θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) ~x1, . . . , ~xn (the

rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find ~θ∗ minimizing

the loss function:

LX,y (~θ) =

L(~θ,X, ~y) =
n∑

i=1

`(M~θ(~xi ), yi )

where ` is some measurement of how far M~θ(~xi ) is from yi .

• `(M~θ(~xi ), yi ) =
(
M~θ(~xi )− yi

)2
(least squares regression)

• yi ∈ {−1, 1} and `(M~θ(~xi ), yi ) = ln
(
1 + exp(−yiM~θ(~xi ))

)
(logistic

regression)

11



optimization in ml

Example 1: Linear Regression, e.g., predicting house prices based on d

features (sq. footage, average price of houses in neighborhood. . . )

Model: M~θ : Rd → R with M~θ(~x)
def
= ~θ(1) · ~x(1) + . . .+ ~θ(d) · ~x(d).

Parameter Vector: ~θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) ~x1, . . . , ~xn (the

rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find ~θ∗ minimizing

the loss function:

LX,y (~θ) =

L(~θ,X, ~y) =
n∑

i=1

`(M~θ(~xi ), yi )

where ` is some measurement of how far M~θ(~xi ) is from yi .

• `(M~θ(~xi ), yi ) =
(
M~θ(~xi )− yi

)2
(least squares regression)

• yi ∈ {−1, 1} and `(M~θ(~xi ), yi ) = ln
(
1 + exp(−yiM~θ(~xi ))

)
(logistic

regression)

11



optimization in ml

Example 1: Linear Regression, e.g., predicting house prices based on d

features (sq. footage, average price of houses in neighborhood. . . )

Model: M~θ : Rd → R with M~θ(~x)
def
= ~θ(1) · ~x(1) + . . .+ ~θ(d) · ~x(d).

Parameter Vector: ~θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) ~x1, . . . , ~xn (the

rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find ~θ∗ minimizing

the loss function:

LX,y (~θ) =

L(~θ,X, ~y) =
n∑

i=1

`(M~θ(~xi ), yi )

where ` is some measurement of how far M~θ(~xi ) is from yi .

• `(M~θ(~xi ), yi ) =
(
M~θ(~xi )− yi

)2
(least squares regression)

• yi ∈ {−1, 1} and `(M~θ(~xi ), yi ) = ln
(
1 + exp(−yiM~θ(~xi ))

)
(logistic

regression)

11



optimization in ml

Example 1: Linear Regression, e.g., predicting house prices based on d

features (sq. footage, average price of houses in neighborhood. . . )

Model: M~θ : Rd → R with M~θ(~x)
def
= ~θ(1) · ~x(1) + . . .+ ~θ(d) · ~x(d).

Parameter Vector: ~θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) ~x1, . . . , ~xn (the

rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find ~θ∗ minimizing

the loss function:

LX,y (~θ) =

L(~θ,X, ~y) =
n∑

i=1

`(M~θ(~xi ), yi )

where ` is some measurement of how far M~θ(~xi ) is from yi .

• `(M~θ(~xi ), yi ) =
(
M~θ(~xi )− yi

)2
(least squares regression)

• yi ∈ {−1, 1} and `(M~θ(~xi ), yi ) = ln
(
1 + exp(−yiM~θ(~xi ))

)
(logistic

regression)

11



optimization in ml

Example 1: Linear Regression, e.g., predicting house prices based on d

features (sq. footage, average price of houses in neighborhood. . . )

Model: M~θ : Rd → R with M~θ(~x)
def
= ~θ(1) · ~x(1) + . . .+ ~θ(d) · ~x(d).

Parameter Vector: ~θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) ~x1, . . . , ~xn (the

rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find ~θ∗ minimizing

the loss function:

LX,y (~θ) =

L(~θ,X, ~y) =
n∑

i=1

`(M~θ(~xi ), yi )

where ` is some measurement of how far M~θ(~xi ) is from yi .

• `(M~θ(~xi ), yi ) =
(
M~θ(~xi )− yi

)2
(least squares regression)

• yi ∈ {−1, 1} and `(M~θ(~xi ), yi ) = ln
(
1 + exp(−yiM~θ(~xi ))

)
(logistic

regression)

11



optimization in ml

Example 1: Linear Regression, e.g., predicting house prices based on d

features (sq. footage, average price of houses in neighborhood. . . )

Model: M~θ : Rd → R with M~θ(~x)
def
= ~θ(1) · ~x(1) + . . .+ ~θ(d) · ~x(d).

Parameter Vector: ~θ ∈ Rd (the regression coefficients)

Optimization Problem: Given data points (training points) ~x1, . . . , ~xn (the

rows of data matrix X ∈ Rn×d) and labels y1, . . . , yn ∈ R, find ~θ∗ minimizing

the loss function:

LX,y (~θ) = L(~θ,X, ~y) =
n∑

i=1

`(M~θ(~xi ), yi )

where ` is some measurement of how far M~θ(~xi ) is from yi .

• `(M~θ(~xi ), yi ) =
(
M~θ(~xi )− yi

)2
(least squares regression)

• yi ∈ {−1, 1} and `(M~θ(~xi ), yi ) = ln
(
1 + exp(−yiM~θ(~xi ))

)
(logistic

regression)

11



optimization in ml

Example 2: Neural Networks

Model: M~θ : Rd → R. M~θ(~x) = 〈~wout , σ(W2σ(W1~x))〉.

Parameter Vector: ~θ ∈ R(# edges) (the weights on every edge)

Optimization Problem: Given data points ~x1, . . . , ~xn and labels z1, . . . , zn ∈ R,

find ~θ∗ minimizing the loss function:

LX,~y (~θ) =
n∑

i=1

`(M~θ(~xi ), zi )

12



optimization in ml

LX,~y (~θ) =
n∑

i=1

`(M~θ(~xi ), yi )

• Supervised means we have labels y1, . . . , yn for the training points.

• Solving the final optimization problem has many different names: likelihood

maximization, empirical risk minimization, minimizing training loss, etc.

• Continuous optimization is also very common in unsupervised learning.

(PCA, spectral clustering, etc.)

• Generalization tries to explain why minimizing the loss LX,~y (~θ) on the

training points minimizes the loss on future test points. I.e., makes us have

good predictions on future inputs.

13



optimization algorithms

Choice of optimization algorithm for minimizing f (~θ) will depend on many

things:

• The form of f (in ML, depends on the model & loss function).

• Any constraints on ~θ (e.g., ‖~θ‖ < c).

• Computational constraints, such as memory constraints.

LX,~y (~θ) =
n∑

i=1

`(M~θ(~xi ), yi )

14


