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summary

Last Class:

• Multivariable calculus review and gradient computation.

• Introduction to gradient descent. Motivation as a greedy algorithm.

This Class:

• Analysis of gradient descent for Lipschitz, convex functions.

• Extension to projected gradient descent for constrained optimization.
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multivariate calculus review

Let ~ei ∈ Rd denote the i th standard basis vector,

~ei = [0, 0, 1, 0, 0, . . . , 0]︸ ︷︷ ︸
1 at position i

.

Partial Derivative:

∂f

∂~θ(i)
= lim
ε→0

f (~θ + ε · ~ei )− f (~θ)

ε
.

Directional Derivative: For unit vector ~v ,

D~v f (~θ) = lim
ε→0

f (~θ + ε~v)− f (~θ)

ε
.
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multivariate calculus review

Gradient: Just a ‘list’ of the partial derivatives.

~∇f (~θ) =


∂f

∂~θ(1)
∂f

∂~θ(2)

...
∂f

∂~θ(d)



Directional Derivative in Terms of the Gradient:

D~v f (~θ) = 〈~v , ~∇f (~θ)〉.
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function access

Often the functions we are trying to optimize are very complex (e.g., a

neural network). We will assume access to:

Function Evaluation: Can compute f (~θ) for any ~θ.

Gradient Evaluation: Can compute ~∇f (~θ) for any ~θ.

In neural networks:

• Function evaluation is called a forward pass (propogate an input

through the network).

• Gradient evaluation is called a backward pass (compute the gradient

via chain rule, using backpropagation).
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gradient descent greedy approach

Gradient descent is a greedy iterative optimization algorithm: Starting at ~θ(0),

in each iteration let ~θ(i) = ~θ(i−1) + η~v , where η is a (small) ‘step size’ and ~v is

a direction chosen to minimize f (~θ(i−1) + η~v).

D~v f (~θ) = lim
ε→0

f (~θ + ε~v)− f (~θ)

ε
.

So for small η:

f (~θ(i))− f (~θ(i−1)) = f (~θ(i−1) + η~v)− f (~θ(i−1))

≈ η · D~v f (~θ(i−1))

= η · 〈~v , ~∇f (~θ(i−1))〉.

We want to choose ~v minimizing 〈~v , ~∇f (~θ(i−1))〉 – i.e., pointing in the

direction of ~∇f (~θ(i−1)) but with the opposite sign.
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function minimization via gradient descent

Goal: Find ~θ ∈ Rd that (nearly) minimizes convex function f .

Gradient Descent Algorithm:

• Choose some initialization ~θ(0).

• For i = 1, . . . , t − 1

• ~θ(i) = ~θ(i−1) − η∇f (~θ(i−1))

• Return θ̂ = argmin~θ1,...~θt f (
~θi ).

Step size η is chosen ahead of time or adapted during the algorithm. For

now assume η stays the same in each iteration.

6



convexity

Definition – Convex Function: A function f : Rd → R is convex iff,

for any ~θ1, ~θ2 ∈ Rd and λ ∈ [0, 1]:

(1− λ) · f (~θ1) + λ · f (~θ2) ≥ f
(

(1− λ) · ~θ1 + λ · ~θ2
)
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convexity

Corollary: A function f : R→ R is convex iff, for any θ1, θ2 ∈ R:

“slope between f (θ1) and f (θ2)” =
f (θ2)− f (θ1)

θ2 − θ1
≥ f ′(θ1)

More generally, a function f : Rd → R is convex if and only if, for any
~θ1, ~θ2 ∈ Rd : f (~θ2)− f (~θ1) ≥ ~∇f (~θ1)T

(
~θ2 − ~θ1

)
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lipschitz functions

Gradient Descent Update:
~θi+1 = ~θi − η∇f (~θi )

For fast convergence, need to assume that the function is Lipschitz, i.e.,

size of gradient ‖~∇f (~θ)‖2 is bounded. We’ll assume

∀~θ1, ~θ2 : |f (~θ1)− f (~θ2)| ≤ G · ‖~θ1 − ~θ2‖2
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Gradient Descent analysis for convex, Lipschitz functions.
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gd analysis – convex functions

Assume that:

• f is convex.

• f is G Lipschitz, i.e., ‖~∇f (~θ)‖2 ≤ G for all ~θ.

• ‖~θ1 − ~θ∗‖2 ≤ R where ~θ1 is the initialization point.

Gradient Descent

• Choose some initialization ~θ1 and set η = R
G
√
t
.

• For i = 1, . . . , t − 1

• ~θi+1 = ~θi − η∇f (~θi )

• Return θ̂ = argmin~θ1,...~θt f (
~θi ).
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gd analysis proof

Theorem: For convex G -Lipschitz function f : Rd → R, GD run with

t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and starting point within radius R of ~θ∗,

outputs θ̂ satisfying f (θ̂) ≤ f (~θ∗) + ε.

• Step 1: ~∇f (~θi )
T~ai ≤ ‖~ai‖

2
2−‖~ai+1‖22
2η

+ ηG2

2
where ~ai = ~θi − ~θ∗.

Proof:

‖~ai+1‖22 = ‖~ai − η~∇f (~θi )‖22
= ‖~ai‖22 − 2η~∇f (~θi )

T~ai + ‖η~∇f (θi )‖22
≤ ‖~ai‖22 − 2η~∇f (~θi )

T~ai + η2G 2

using‖a− b‖22 = ‖a‖22 − 2aTb + ‖b‖22. Then rearrange.

• Step 2: By convexity, for all i ,

f (~θi )− f (~θ∗) ≤ ~∇f (~θi )
T~ai ≤

‖~ai‖22 − ‖~ai+1‖22
2η

+
ηG 2

2
.
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Proof of Step 3:
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2
+

1

2η

t−1∑
i=0

(
‖~ai‖22 − ‖~ai+1‖22

)
≤ tηG 2

2
+

1

2η
‖~θ0 − ~θ∗‖22 ≤

tηG 2

2
+

R2

2η

13



gd analysis proof

Theorem: For convex G -Lipschitz function f : Rd → R, GD run with

t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and starting point within radius R of ~θ∗,

outputs θ̂ satisfying: f (θ̂) ≤ f (~θ∗) + ε.

• Step 2: For all i , f (~θi )− f (~θ∗) ≤ ‖~ai‖
2
2−‖~ai+1‖22
2η

+ ηG2

2

• Step 3: 1
t

∑t
i=1 f (~θi )− f (~θ∗) ≤ R2

2η·t + ηG2

2
.

Proof of Step 3:

t∑
i=1

f (~θi )− f (~θ∗) ≤ tηG 2

2
+

1

2η

t−1∑
i=0

(
‖~ai‖22 − ‖~ai+1‖22

)
≤ tηG 2

2
+

1

2η
‖~θ0 − ~θ∗‖22 ≤

tηG 2

2
+

R2

2η

13



gd analysis proof

Theorem: For convex G -Lipschitz function f : Rd → R, GD run with

t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and starting point within radius R of ~θ∗,

outputs θ̂ satisfying: f (θ̂) ≤ f (~θ∗) + ε.

• Step 2: For all i , f (~θi )− f (~θ∗) ≤ ‖~ai‖
2
2−‖~ai+1‖22
2η

+ ηG2

2

• Step 3: 1
t

∑t
i=1 f (~θi )− f (~θ∗) ≤ R2

2η·t + ηG2

2
.

Proof of Step 3:

t∑
i=1

f (~θi )− f (~θ∗) ≤ tηG 2

2
+

1

2η

t−1∑
i=0

(
‖~ai‖22 − ‖~ai+1‖22

)
≤ tηG 2

2
+

1

2η
‖~θ0 − ~θ∗‖22 ≤

tηG 2

2
+

R2

2η

13



gd analysis proof

Theorem: For convex G -Lipschitz function f : Rd → R, GD run with

t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and starting point within radius R of ~θ∗,

outputs θ̂ satisfying: f (θ̂) ≤ f (~θ∗) + ε.

• Step 2: For all i , f (~θi )− f (~θ∗) ≤ ‖~ai‖
2
2−‖~ai+1‖22
2η

+ ηG2

2

• Step 3: 1
t

∑t
i=1 f (~θi )− f (~θ∗) ≤ R2

2η·t + ηG2

2
.

Proof of Step 3:

t∑
i=1

f (~θi )− f (~θ∗) ≤ tηG 2

2
+

1

2η

t−1∑
i=0

(
‖~ai‖22 − ‖~ai+1‖22

)
≤ tηG 2

2
+

1

2η
‖~θ0 − ~θ∗‖22 ≤

tηG 2

2
+

R2

2η

13



gd analysis proof

Theorem: For convex G -Lipschitz function f : Rd → R, GD run with

t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and starting point within radius R of ~θ∗,

outputs θ̂ satisfying f (θ̂) ≤ f (~θ∗) + ε.

• Step 2: 1
t

∑t
i=1 f (~θi )− f (~θ∗) ≤ R2

2η·t + ηG2

2
≤ ε.

• Result follows since 1
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i=1 f (~θi ) ≥ f (θ̂).
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constrained convex optimization

Often want to perform convex optimization with convex constraints.

~θ∗ = arg min
~θ∈S

f (~θ),

where S is a convex set.

Definition (Convex Set): A set S ⊆ Rd is convex if and only if, for any
~θ1, ~θ2 ∈ S and λ ∈ [0, 1]: (1− λ)~θ1 + λ · ~θ2 ∈ S

For any convex set let PS(·) denote the projection function onto S:

PS(~y) = arg min
~θ∈S

‖~θ − ~y‖2

• For S = {~θ ∈ Rd : ‖~θ‖2 ≤ 1} what is PS(~y)?

• For S being a k dimensional subspace of Rd , what is PS(~y)?
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projected gradient descent

Projected Gradient Descent

• Choose some initialization ~θ1 and set η = R
G
√
t
.

• For i = 1, . . . , t − 1

• ~θ(out)i+1 = ~θi − η · ~∇f (~θi )
• ~θi+1 = PS(~θ

(out)
i+1 ).

• Return θ̂ = argmin~θi f (
~θi ).
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convex projections

Analysis of projected gradient descent is almost identifcal to gradient descent

analysis!

Just need to appeal to following geometric result:

Theorem (Projection to a convex set): For any convex set S ⊆ Rd ,

~y ∈ Rd , and ~θ ∈ S,

‖PS(~y)− ~θ‖2 ≤ ‖~y − ~θ‖2.
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projected gradient descent analysis

Theorem (Projected GD): For convex G -Lipschitz function f , and con-

vex set S, Projected GD run with t ≥ R2G2

ε2
iterations, η = R

G
√
t
, and

starting point within radius R of ~θ∗ = min~θ∈S f (~θ), outputs θ̂ satisfying

f (θ̂) ≤ f (~θ∗) + ε

Recall: ~θ(out)i+1 = ~θi − η · ~∇f (~θi ) and ~θi+1 = PS(~θ
(out)
i+1 ).

Proof from earlier establishes that for all i ,

f (~θi )− f (~θ∗) ≤
‖~θi − θ∗‖22 − ‖~θ

(out)
i+1 − ~θ∗‖

2
2

2η
+
ηG 2

2
.

But Projection Lemma then ensures that for all i ,

f (~θi )− f (~θ∗) ≤
‖~θi − ~θ∗‖22 − ‖~θi+1 − ~θ∗‖22

2η
+
ηG 2

2

Rest of proof unchanged: f (θ̂)− f (~θ∗) ≤ 1
t

∑t
i=1 f (~θi )− f (~θ∗) ≤ R2

2η·t + ηG2

2
.
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