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summary

Last Class:

• Analysis of gradient descent for optimizing convex functions.

• Introduction to convex sets and projection functions.

• (The same) analysis of projected gradient descent for optimizing under

convex functions under (convex) constraints.

This Class:

• Online learning, regret, and online gradient descent.

• Application to stochastic gradient descent.
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online gradient descent

In reality many learning problems are online.

• Websites optimize ads or recommendations to show users, given

continuous feedback from these users.

• Spam filters are incrementally updated and adapt as they see more

examples of spam over time.

• Face recognition systems, other classification systems, learn from

mistakes over time.

Want to minimize some global loss L(~θ,X) =
∑n

i=1 `(
~θ, ~xi ), when data

points are presented in an online fashion ~x1, ~x2, . . . , ~xn (similar to

streaming algorithms)
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online optimization formal setup

Online Optimization: In place of a single function f , we see a different

objective function at each step:

f1, f2, . . . , ft : Rd → R

• At each step, first pick (play) a parameter vector ~θ(i).

• Then are told fi and incur cost fi (~θ
(i)).

• Goal: Minimize total cost
∑t

i=1 fi (
~θ(i)).

Our analysis will make no assumptions on how f1, . . . , ft are related to

each other!
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online optimization example

Home pricing tools.

• Parameter vector ~θ(i): coefficients of linear model at step i .

• Functions f1, . . . , ft : fi (~θ
(i)) = (〈~xi , ~θ

(i)〉 − pricei )
2 revealed when

homei is listed or sold.

• Want to minimize total squared error
∑t

i=1 fi (
~θ(i)) (same as classic

least squares regression).
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online optimization example

UI design via online optimization.

• Parameter vector ~θ(i): some encoding of the layout at step i .

• Functions f1, . . . , ft : fi (~θ
(i)) = 1 if user does not click ‘add to cart’ and

fi (~θ
(i)) = 0 if they do click.

• Want to maximize number of purchases, i.e., minimize
∑t

i=1 fi (
~θ(i)).
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regret

In normal optimization, we seek θ̂ satisfying:

f (θ̂) ≤ min
~θ

f (~θ) + ε.

In online optimization we want:

t∑
i=1

fi (~θ
(i)) ≤

t∑
i=1

fi (~θ
off ) + ε

where ~θoff = arg min~θ
∑t

i=1 fi (
~θ) and ε is called the regret and ε/t is the

average regret.

• This error metric is a bit unusual: Comparing online solution to best

fixed “online” solution in hindsight. ε can be negative!

6



regret

In normal optimization, we seek θ̂ satisfying:

f (θ̂) ≤ min
~θ

f (~θ) + ε.

In online optimization we want:

t∑
i=1

fi (~θ
(i)) ≤

t∑
i=1

fi (~θ
off ) + ε

where ~θoff = arg min~θ
∑t

i=1 fi (
~θ) and ε is called the regret and ε/t is the

average regret.

• This error metric is a bit unusual: Comparing online solution to best

fixed “online” solution in hindsight. ε can be negative!

6



regret

In normal optimization, we seek θ̂ satisfying:

f (θ̂) ≤ min
~θ

f (~θ) + ε.

In online optimization we want:

t∑
i=1

fi (~θ
(i)) ≤

t∑
i=1

fi (~θ
off ) + ε

where ~θoff = arg min~θ
∑t

i=1 fi (
~θ) and ε is called the regret and ε/t is the

average regret.

• This error metric is a bit unusual: Comparing online solution to best

fixed “online” solution in hindsight. ε can be negative!

6



intuition check

What if for i = 1, . . . , t, fi (θ) = |θ − 1000| or fi (θ) = |θ + 1000| in an

alternating pattern?

How small can the regret ε be?
∑t

i=1 fi (
~θ(i)) ≤

∑t
i=1 fi (

~θoff ) + ε.

What if for i = 1, . . . , t, fi (θ) = |θ − 1000| or fi (θ) = |θ + 1000| in no

particular pattern? How can any online learning algorithm hope to

achieve small regret?
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online gradient descent

Assume that:

• f1, . . . , ft are all convex.

• Each fi is G -Lipschitz, i.e., ‖~∇fi (~θ)‖2 ≤ G for all ~θ.

• ‖~θ(1) − ~θoff ‖2 ≤ R where θ(1) is the first vector chosen.

Online Gradient Descent

• Pick some initial ~θ(1).

• Set step size η = R
G
√

t
.

• For i = 1, . . . , t

• Play ~θ(i) and incur cost fi (~θ
(i)).

• ~θ(i+1) = ~θ(i) − η · ~∇fi (~θ(i))
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online gradient descent analysis

Theorem: For convex G -Lipschitz f1, . . . , ft , OGD initialized with start-

ing point θ(1) within radius R of θoff , using step size η = R
G
√

t
, has regret

bounded by: [
t∑

i=1

fi (θ
(i))−

t∑
i=1

fi (θ
off )

]
≤ RG

√
t

Average regret goes to 0 and t →∞. No assumptions on f1, . . . , ft !

Step 1: For all i ,

∇fi (θ(i))T (θ(i) − θoff ) ≤ ‖θ
(i) − θoff ‖22 − ‖θ(i+1) − θoff ‖22

2η
+
ηG 2

2

Step 2: Convexity implies that for all i ,

fi (θ
(i))− fi (θ

off ) ≤ ‖θ
(i) − θoff ‖22 − ‖θ(i+1) − θoff ‖22

2η
+
ηG 2

2
.
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i=1

fi (θ
(i))−

t∑
i=1

fi (θ
off )

]
≤
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2η
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stochastic gradient descent

Stochastic gradient descent is an efficient offline optimization method,

seeking θ̂ with

f (θ̂) ≤ min
~θ

f (~θ) + ε

• The most popular optimization method in modern machine learning.

Easily analyzed as a special case of online gradient descent!

• Basic Idea: In gradient descent, we set ~θi+1 = ~θi − η · ~∇f (~θi ). In

stochastic gradient descent we don’t compute ~∇f (~θi ) exactly but

instead do something random that is correct in expectation. This saves

time per step but might increase the number of steps.
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stochastic gradient descent

Assume that:

• f is convex and decomposable as f (~θ) =
∑n

j=1 fj (
~θ).

• For example, trying to minimize a loss function over a data set X,

L(~θ,X) =
∑n

j=1 `(
~θ, ~xj) that is a sum of losses of element in data set.

• Each fj is G
n -Lipschitz:

‖∇f (~θ)‖2 ≤ ‖
∑n

j=1∇fj (~θ)‖2 ≤
∑n

j=1 ‖∇fj (~θ)‖2 ≤ G .

• Initialize with θ(1) satisfying ‖~θ(1) − ~θ∗‖2 ≤ R.

Stochastic Gradient Descent

• Pick some initial ~θ(1).
• Set step size η = R

G
√

t
.

• For i = 1, . . . , t
• Pick random ji ∈ 1, . . . , n.
• ~θ(i+1) = ~θ(i) − η · ~∇fji (~θ

(i))

• Return θ̂ = 1
t

∑t
i=1

~θ(i).
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example

If f (x , y) = (x2 + 3xy) + (x + y) then gradient descent updates

θi+1 = θi − η

(
2θi

1 + 3θi
2 + 1

3θi
1 + 1

)

With probability 1/2, stochastic gradient descent updates

θi+1 = θi − η

(
2θi

1 + 3θi
2

3θi
1

)

and with probability 1/2 the update is:

θi+1 = θi − η

(
1

1

)
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stochastic gradient descent

~θ(i+1) = ~θ(i) − η · ~∇fji (~θ(i)) vs. ~θ(i+1) = ~θ(i) − η · ~∇f (~θ(i))

Note that: E[~∇fji (~θ(i))] = 1
n
~∇f (~θ(i)).

Analysis extends to any algorithm that takes the gradient step in

expectation (minibatch SGD, randomly quantized, measurement noise,

differentially private, etc.)
14



stochastic gradient descent analysis

Theorem – SGD on Convex Lipschitz Functions: SGD run with t ≥
R2G2

ε2
iterations, η = R

G
√

t
, and starting point within radius R of θ∗,

outputs θ̂ satisfying: E[f (θ̂)] ≤ f (θ∗) + ε.

Step 1: f (θ̂)− f (θ∗) ≤ 1
t

∑t
i=1[f (θ

(i))− f (θ∗)] since

f (θ̂) = f (
t∑

i=1

θ(i)/t) ≤ 1

t

t∑
i=1

f (θ(i)) by convexity

Step 2: E[f (θ̂)− f (θ∗)] ≤ n
t
· E

[∑t
i=1[fji (θ

(i))− fji (θ
∗)]

]
since

E[fji (~θ)] =
1

n
f (~θ) since f (~θ) =

∑n
j=1 fj(

~θ)

Step 3: E[f (θ̂)− f (θ∗)] ≤ n
t
· R · G

n
·
√
t︸ ︷︷ ︸

OGD bound

= RG√
t
.

15



stochastic gradient descent analysis

Theorem – SGD on Convex Lipschitz Functions: SGD run with t ≥
R2G2

ε2
iterations, η = R

G
√

t
, and starting point within radius R of θ∗,

outputs θ̂ satisfying: E[f (θ̂)] ≤ f (θ∗) + ε.

Step 1: f (θ̂)− f (θ∗) ≤ 1
t

∑t
i=1[f (θ

(i))− f (θ∗)]

since

f (θ̂) = f (
t∑

i=1

θ(i)/t) ≤ 1

t

t∑
i=1

f (θ(i)) by convexity

Step 2: E[f (θ̂)− f (θ∗)] ≤ n
t
· E

[∑t
i=1[fji (θ

(i))− fji (θ
∗)]

]
since

E[fji (~θ)] =
1

n
f (~θ) since f (~θ) =

∑n
j=1 fj(

~θ)

Step 3: E[f (θ̂)− f (θ∗)] ≤ n
t
· R · G

n
·
√
t︸ ︷︷ ︸

OGD bound

= RG√
t
.

15



stochastic gradient descent analysis

Theorem – SGD on Convex Lipschitz Functions: SGD run with t ≥
R2G2

ε2
iterations, η = R

G
√

t
, and starting point within radius R of θ∗,

outputs θ̂ satisfying: E[f (θ̂)] ≤ f (θ∗) + ε.

Step 1: f (θ̂)− f (θ∗) ≤ 1
t

∑t
i=1[f (θ

(i))− f (θ∗)] since

f (θ̂) = f (
t∑

i=1

θ(i)/t) ≤ 1

t

t∑
i=1

f (θ(i)) by convexity

Step 2: E[f (θ̂)− f (θ∗)] ≤ n
t
· E

[∑t
i=1[fji (θ

(i))− fji (θ
∗)]

]
since

E[fji (~θ)] =
1

n
f (~θ) since f (~θ) =

∑n
j=1 fj(

~θ)

Step 3: E[f (θ̂)− f (θ∗)] ≤ n
t
· R · G

n
·
√
t︸ ︷︷ ︸

OGD bound

= RG√
t
.

15



stochastic gradient descent analysis

Theorem – SGD on Convex Lipschitz Functions: SGD run with t ≥
R2G2

ε2
iterations, η = R

G
√

t
, and starting point within radius R of θ∗,

outputs θ̂ satisfying: E[f (θ̂)] ≤ f (θ∗) + ε.

Step 1: f (θ̂)− f (θ∗) ≤ 1
t

∑t
i=1[f (θ

(i))− f (θ∗)] since

f (θ̂) = f (
t∑

i=1

θ(i)/t) ≤ 1

t

t∑
i=1

f (θ(i)) by convexity

Step 2: E[f (θ̂)− f (θ∗)] ≤ n
t
· E

[∑t
i=1[fji (θ

(i))− fji (θ
∗)]

]

since

E[fji (~θ)] =
1

n
f (~θ) since f (~θ) =
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sgd vs. gd: time per iteration

Stochastic gradient descent generally makes more iterations than

gradient descent.

Each iteration is much cheaper (by a factor of n).

~∇
n∑

j=1

fj (~θ) vs. ~∇fj (~θ)

16



continuous optimization

• Foundational concepts like convexity (line between any two points on

curve is above the curve), convex sets (line between any two points in

set in the set), directional derivative (slope of curve if we move in

particular direction), and Lipschitzness (slope is bounded).

• Gradient descent greedily tries to find the min value of function

f : Rd → R by maintaining a vector ~θ ∈ Rd and at each step moving ~θ

“downhill”, i.e., in the direction that minimizes directional derivative
• Bounded the number of steps required if f is convex and Lipschitz.
• Simple extensions for optimization over a convex constraint set or

online optimization.
• Can typically speed up offline optimization via stochastic gradient

descent: requires more iterations but each iteration is faster.
• Lots that we didn’t cover: accelerated methods, adaptive methods,

second order methods (quasi-Newton methods). Gave mathematical

tools to understand these methods. See CS 690OP for more!
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equivalent definitions for convexity

We defined convexity of f : Rd → R in two ways:

(1) For all x , y ∈ Rd , λ ∈ [0, 1], λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y).

(2) For all x , y ∈ Rd , f (x) ≤ f (y) + 〈∇f (x), x − y〉

To see (1) implies (2)

〈∇f (x), y − x〉 = lim
ε→0

f (x + ε(y − x))− f (x)

ε
= lim
ε→0

f ((1− ε)x + εy)− f (x)

ε

≤ lim
ε→0

(1− ε)f (x) + εf (y)− f (x)

ε

= f (y)− f (x)
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λ times the first equation plus (1− λ) times the second equation gives

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)
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