
compsci 514: algorithms for data science

Andrew McGregor

Lecture 24

0

summary

This Class:

• Course wrap up.

1

part iii: optimization

continuous optimization

• Foundational concepts like convexity (line between any two points on

curve is above the curve and definition via derivatives), convex sets

(line between any two points is in the set), directional derivative (slope

of curve if we move in particular direction), and Lipschitzness (slope is

bounded).

• Gradient descent greedily tries to find the min value of function

f : Rd → R by maintaining a vector ~θ ∈ Rd and at each step moving ~θ

“downhill”, i.e., in the direction that minimizes directional derivative

• Bounded the number of steps required if f is convex and Lipschitz.

• Simple extension for optimization over a convex constraint set.

• Lots that we didn’t cover: accelerated methods, adaptive methods,

second order methods (quasi-Newton methods). Gave mathematical

tools to understand these methods. See CS 690OP for more!

3

continuous optimization

• Foundational concepts like convexity (line between any two points on

curve is above the curve and definition via derivatives), convex sets

(line between any two points is in the set), directional derivative (slope

of curve if we move in particular direction), and Lipschitzness (slope is

bounded).

• Gradient descent greedily tries to find the min value of function

f : Rd → R by maintaining a vector ~θ ∈ Rd and at each step moving ~θ

“downhill”, i.e., in the direction that minimizes directional derivative

• Bounded the number of steps required if f is convex and Lipschitz.

• Simple extension for optimization over a convex constraint set.

• Lots that we didn’t cover: accelerated methods, adaptive methods,

second order methods (quasi-Newton methods). Gave mathematical

tools to understand these methods. See CS 690OP for more!

3

continuous optimization

• Foundational concepts like convexity (line between any two points on

curve is above the curve and definition via derivatives), convex sets

(line between any two points is in the set), directional derivative (slope

of curve if we move in particular direction), and Lipschitzness (slope is

bounded).

• Gradient descent greedily tries to find the min value of function

f : Rd → R by maintaining a vector ~θ ∈ Rd and at each step moving ~θ

“downhill”, i.e., in the direction that minimizes directional derivative

• Bounded the number of steps required if f is convex and Lipschitz.

• Simple extension for optimization over a convex constraint set.

• Lots that we didn’t cover: accelerated methods, adaptive methods,

second order methods (quasi-Newton methods). Gave mathematical

tools to understand these methods. See CS 690OP for more!

3

continuous optimization

• Foundational concepts like convexity (line between any two points on

curve is above the curve and definition via derivatives), convex sets

(line between any two points is in the set), directional derivative (slope

of curve if we move in particular direction), and Lipschitzness (slope is

bounded).

• Gradient descent greedily tries to find the min value of function

f : Rd → R by maintaining a vector ~θ ∈ Rd and at each step moving ~θ

“downhill”, i.e., in the direction that minimizes directional derivative

• Bounded the number of steps required if f is convex and Lipschitz.

• Simple extension for optimization over a convex constraint set.

• Lots that we didn’t cover: accelerated methods, adaptive methods,

second order methods (quasi-Newton methods). Gave mathematical

tools to understand these methods. See CS 690OP for more!

3

continuous optimization

• Foundational concepts like convexity (line between any two points on

curve is above the curve and definition via derivatives), convex sets

(line between any two points is in the set), directional derivative (slope

of curve if we move in particular direction), and Lipschitzness (slope is

bounded).

• Gradient descent greedily tries to find the min value of function

f : Rd → R by maintaining a vector ~θ ∈ Rd and at each step moving ~θ

“downhill”, i.e., in the direction that minimizes directional derivative

• Bounded the number of steps required if f is convex and Lipschitz.

• Simple extension for optimization over a convex constraint set.

• Lots that we didn’t cover: accelerated methods, adaptive methods,

second order methods (quasi-Newton methods). Gave mathematical

tools to understand these methods. See CS 690OP for more!

3

example of gradients

• Suppose f : R3 → R where f (~θ) = θ31 + θ2θ3 + θ23 then

∇f (~θ) =

 3θ21
θ3

θ2 + 2θ3


and

‖∇f (~θ)‖2 =
√

(3θ21)2 + (θ3)2 + (θ2 + 2θ3)2

• Suppose f : R3 → R where f (~θ) = 3θ1 + θ2 + 5θ3 then

∇f (~θ) =

 3

1

5


and ‖∇f (~θ)‖2 =

√
32 + 12 + 52.

4

example of gradients

• Suppose f : R3 → R where f (~θ) = θ31 + θ2θ3 + θ23 then

∇f (~θ) =

 3θ21
θ3

θ2 + 2θ3


and

‖∇f (~θ)‖2 =
√

(3θ21)2 + (θ3)2 + (θ2 + 2θ3)2

• Suppose f : R3 → R where f (~θ) = 3θ1 + θ2 + 5θ3 then

∇f (~θ) =

 3

1

5


and ‖∇f (~θ)‖2 =

√
32 + 12 + 52.

4

example of gradients

• Suppose f : R3 → R where f (~θ) = θ31 + θ2θ3 + θ23 then

∇f (~θ) =

 3θ21
θ3

θ2 + 2θ3


and

‖∇f (~θ)‖2 =
√

(3θ21)2 + (θ3)2 + (θ2 + 2θ3)2

• Suppose f : R3 → R where f (~θ) = 3θ1 + θ2 + 5θ3 then

∇f (~θ) =

 3

1

5


and ‖∇f (~θ)‖2 =

√
32 + 12 + 52.

4

example of gradients

• Suppose f : R3 → R where f (~θ) = θ31 + θ2θ3 + θ23 then

∇f (~θ) =

 3θ21
θ3

θ2 + 2θ3


and

‖∇f (~θ)‖2 =
√

(3θ21)2 + (θ3)2 + (θ2 + 2θ3)2

• Suppose f : R3 → R where f (~θ) = 3θ1 + θ2 + 5θ3 then

∇f (~θ) =

 3

1

5


and ‖∇f (~θ)‖2 =

√
32 + 12 + 52.

4

gradient descent

Goal: Find ~θ ∈ Rd that (nearly) minimizes convex function f : Rd → R.

Algorithm/Analysis: We analyzed the update step:

~θ(i+1) = ~θ(i) − η · ~∇f (~θ(i))

and showed that after a certain number of steps depending on ε, the max

gradient of f , and how far the initial point is from the optimal point,

θ̂ = arg min
~θ1,...~θt

f (~θi)

ensures f (θ̂) ≤
(

min~θ f (~θ)
)

+ ε.

Projected Gradient Descent: If we want to find ~θ ∈ S that (nearly)

minimizes convex function f for some convex set S , we just modify the

update rule to ~θ(i+1) = PS (~θ(i) − η · ~∇f (~θ(i))) where PS is the projection

function that maps the input to the closest point in S .

5

gradient descent

Goal: Find ~θ ∈ Rd that (nearly) minimizes convex function f : Rd → R.

Algorithm/Analysis: We analyzed the update step:

~θ(i+1) = ~θ(i) − η · ~∇f (~θ(i))

and showed that after a certain number of steps depending on ε, the max

gradient of f , and how far the initial point is from the optimal point,

θ̂ = arg min
~θ1,...~θt

f (~θi)

ensures f (θ̂) ≤
(

min~θ f (~θ)
)

+ ε.

Projected Gradient Descent: If we want to find ~θ ∈ S that (nearly)

minimizes convex function f for some convex set S , we just modify the

update rule to ~θ(i+1) = PS (~θ(i) − η · ~∇f (~θ(i))) where PS is the projection

function that maps the input to the closest point in S .

5

gradient descent

Goal: Find ~θ ∈ Rd that (nearly) minimizes convex function f : Rd → R.

Algorithm/Analysis: We analyzed the update step:

~θ(i+1) = ~θ(i) − η · ~∇f (~θ(i))

and showed that after a certain number of steps depending on ε, the max

gradient of f , and how far the initial point is from the optimal point,

θ̂ = arg min
~θ1,...~θt

f (~θi)

ensures f (θ̂) ≤
(

min~θ f (~θ)
)

+ ε.

Projected Gradient Descent: If we want to find ~θ ∈ S that (nearly)

minimizes convex function f for some convex set S , we just modify the

update rule to ~θ(i+1) = PS (~θ(i) − η · ~∇f (~θ(i))) where PS is the projection

function that maps the input to the closest point in S .
5

stochastic gradient descent

Goal: Back to finding ~θ ∈ Rd that (nearly) minimizes convex function

f : Rd → R.

Idea for Stochastic Gradient Descent: Rather than computing
~∇f (~θ(i)) in the update step:

~θ(i+1) = ~θ(i) − η · ~∇f (~θ(i))

instead we do something randomized:

~θ(i+1) = ~θ(i) − η · D(~θ(i))

where D(~θ(i)) is faster to compute and approximates ~∇f (~θ(i)) in

expectation. This may increase the number of iterations but each

iteration may be much cheaper depending on f and how we generate D.

6

stochastic gradient descent

Goal: Back to finding ~θ ∈ Rd that (nearly) minimizes convex function

f : Rd → R.

Idea for Stochastic Gradient Descent: Rather than computing
~∇f (~θ(i)) in the update step:

~θ(i+1) = ~θ(i) − η · ~∇f (~θ(i))

instead we do something randomized:

~θ(i+1) = ~θ(i) − η · D(~θ(i))

where D(~θ(i)) is faster to compute and approximates ~∇f (~θ(i)) in

expectation.

This may increase the number of iterations but each

iteration may be much cheaper depending on f and how we generate D.

6

stochastic gradient descent

Goal: Back to finding ~θ ∈ Rd that (nearly) minimizes convex function

f : Rd → R.

Idea for Stochastic Gradient Descent: Rather than computing
~∇f (~θ(i)) in the update step:

~θ(i+1) = ~θ(i) − η · ~∇f (~θ(i))

instead we do something randomized:

~θ(i+1) = ~θ(i) − η · D(~θ(i))

where D(~θ(i)) is faster to compute and approximates ~∇f (~θ(i)) in

expectation. This may increase the number of iterations but each

iteration may be much cheaper depending on f and how we generate D.

6

stochastic gradient descent

Assume that:

• f is convex and decomposable as f (~θ) =
∑n

j=1 fj (
~θ).

• Each fj is G
n -Lipschitz.

• Initialize with θ(1) satisfying ‖~θ(1) − ~θ∗‖2 ≤ R.

Stochastic Gradient Descent

• Pick some initial ~θ(1).

• Set step size η = R
G
√

t
.

• For i = 1, . . . , t

• ~θ(i+1) = ~θ(i) − η · ~∇fj(~θ(i)) where j is chosen randomly from 1, . . . , n

• Return θ̂ = 1
t

∑t
i=1

~θ(i).

We showed that t = R2G 2/ε2 iterations sufficed. We also showed that

number of iterations for gradient descent but note assuming each fj is
G
n -Lipschitz is a stronger assumption that f is G -Lipschitz.

7

stochastic gradient descent

Assume that:

• f is convex and decomposable as f (~θ) =
∑n

j=1 fj (
~θ).

• Each fj is G
n -Lipschitz.

• Initialize with θ(1) satisfying ‖~θ(1) − ~θ∗‖2 ≤ R.

Stochastic Gradient Descent

• Pick some initial ~θ(1).

• Set step size η = R
G
√

t
.

• For i = 1, . . . , t

• ~θ(i+1) = ~θ(i) − η · ~∇fj(~θ(i)) where j is chosen randomly from 1, . . . , n

• Return θ̂ = 1
t

∑t
i=1

~θ(i).

We showed that t = R2G 2/ε2 iterations sufficed. We also showed that

number of iterations for gradient descent but note assuming each fj is
G
n -Lipschitz is a stronger assumption that f is G -Lipschitz.

7

online optimization

Online Optimization: In place of a single function f , we see a different

objective function at each step: f1, f2, . . . , ft : Rd → R where we make no

assumptions on how the functions are related to each other.

• At each step, first pick (play) a parameter vector ~θ(i).

• Then are told fi and incur cost fi (~θ
(i)).

• Minimize “Regret” =
∑t

i=1 fi (
~θ(i))−

∑t
i=1 fi (

~θoff) where

~θoff = arg min
~θ

t∑
i=1

fi (~θ)

• Algorithm/Analysis: We analyzed the update step:

~θ(i+1) = ~θ(i) − η · ~∇fi (~θ(i))

and showed that Regret/t → 0 as t →∞

8

online optimization

Online Optimization: In place of a single function f , we see a different

objective function at each step: f1, f2, . . . , ft : Rd → R where we make no

assumptions on how the functions are related to each other.

• At each step, first pick (play) a parameter vector ~θ(i).

• Then are told fi and incur cost fi (~θ
(i)).

• Minimize “Regret” =
∑t

i=1 fi (
~θ(i))−

∑t
i=1 fi (

~θoff) where

~θoff = arg min
~θ

t∑
i=1

fi (~θ)

• Algorithm/Analysis: We analyzed the update step:

~θ(i+1) = ~θ(i) − η · ~∇fi (~θ(i))

and showed that Regret/t → 0 as t →∞

8

online optimization

Online Optimization: In place of a single function f , we see a different

objective function at each step: f1, f2, . . . , ft : Rd → R where we make no

assumptions on how the functions are related to each other.

• At each step, first pick (play) a parameter vector ~θ(i).

• Then are told fi and incur cost fi (~θ
(i)).

• Minimize “Regret” =
∑t

i=1 fi (
~θ(i))−

∑t
i=1 fi (

~θoff) where

~θoff = arg min
~θ

t∑
i=1

fi (~θ)

• Algorithm/Analysis: We analyzed the update step:

~θ(i+1) = ~θ(i) − η · ~∇fi (~θ(i))

and showed that Regret/t → 0 as t →∞

8

online optimization

Online Optimization: In place of a single function f , we see a different

objective function at each step: f1, f2, . . . , ft : Rd → R where we make no

assumptions on how the functions are related to each other.

• At each step, first pick (play) a parameter vector ~θ(i).

• Then are told fi and incur cost fi (~θ
(i)).

• Minimize “Regret” =
∑t

i=1 fi (
~θ(i))−

∑t
i=1 fi (

~θoff) where

~θoff = arg min
~θ

t∑
i=1

fi (~θ)

• Algorithm/Analysis: We analyzed the update step:

~θ(i+1) = ~θ(i) − η · ~∇fi (~θ(i))

and showed that Regret/t → 0 as t →∞

8

online optimization

Online Optimization: In place of a single function f , we see a different

objective function at each step: f1, f2, . . . , ft : Rd → R where we make no

assumptions on how the functions are related to each other.

• At each step, first pick (play) a parameter vector ~θ(i).

• Then are told fi and incur cost fi (~θ
(i)).

• Minimize “Regret” =
∑t

i=1 fi (
~θ(i))−

∑t
i=1 fi (

~θoff) where

~θoff = arg min
~θ

t∑
i=1

fi (~θ)

• Algorithm/Analysis: We analyzed the update step:

~θ(i+1) = ~θ(i) − η · ~∇fi (~θ(i))

and showed that Regret/t → 0 as t →∞

8

part ii: linear algebra

dimensionality reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL lemma:

compression from any d-dimensions to O(log n/ε2) dimensions while

preserving pairwise distances.

• Dimensionality reduction via low-rank approximation and optimal solution

with PCA/eigendecomposition/SVD.

• Spectral graph theory – nonlinear dimension reduction and spectral

clustering for community detection.

• In the process covered linear algebraic tools that are very broadly useful in

ML and data science: eigendecomposition, singular value decomposition.

10

dimensionality reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL lemma:

compression from any d-dimensions to O(log n/ε2) dimensions while

preserving pairwise distances.

• Dimensionality reduction via low-rank approximation and optimal solution

with PCA/eigendecomposition/SVD.

• Spectral graph theory – nonlinear dimension reduction and spectral

clustering for community detection.

• In the process covered linear algebraic tools that are very broadly useful in

ML and data science: eigendecomposition, singular value decomposition.

10

dimensionality reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL lemma:

compression from any d-dimensions to O(log n/ε2) dimensions while

preserving pairwise distances.

• Dimensionality reduction via low-rank approximation and optimal solution

with PCA/eigendecomposition/SVD.

• Spectral graph theory – nonlinear dimension reduction and spectral

clustering for community detection.

• In the process covered linear algebraic tools that are very broadly useful in

ML and data science: eigendecomposition, singular value decomposition.

10

dimensionality reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL lemma:

compression from any d-dimensions to O(log n/ε2) dimensions while

preserving pairwise distances.

• Dimensionality reduction via low-rank approximation and optimal solution

with PCA/eigendecomposition/SVD.

• Spectral graph theory – nonlinear dimension reduction and spectral

clustering for community detection.

• In the process covered linear algebraic tools that are very broadly useful in

ML and data science: eigendecomposition, singular value decomposition.

10

dimensionality reduction

Methods for working with (compressing) high-dimensional data

• Started with randomized dimensionality reduction and the JL lemma:

compression from any d-dimensions to O(log n/ε2) dimensions while

preserving pairwise distances.

• Dimensionality reduction via low-rank approximation and optimal solution

with PCA/eigendecomposition/SVD.

• Spectral graph theory – nonlinear dimension reduction and spectral

clustering for community detection.

• In the process covered linear algebraic tools that are very broadly useful in

ML and data science: eigendecomposition, singular value decomposition.

10

reducing dimension: johnson lindenstrauss

• Let ~π ∈ Rd have random N (0, 1) entries. Then for any ~x ∈ Rd ,

E[〈~π, ~x〉2] = ‖~x‖22

Proof just uses linearity of expectation and variance.

• Let Π ∈ Rk×d where k = O
(
ε−2 log n

)
with N (0, 1/k) entries, then

for any ~x ∈ Rd ,

(1− ε)‖~x‖22 ≤ ‖Π~x‖22 ≤ (1 + ε)‖~x‖22

• Furthermore, for any ~x1, ~x2, . . . , ~xn ∈ Rd ,

(1− ε)‖~xi − ~xj‖22 ≤ ‖Π~xi −Π~xj‖22 ≤ (1 + ε)‖~xi − ~xj‖22

i.e., random projections preserve distances between vectors.

11

reducing dimension: johnson lindenstrauss

• Let ~π ∈ Rd have random N (0, 1) entries. Then for any ~x ∈ Rd ,

E[〈~π, ~x〉2] = ‖~x‖22

Proof just uses linearity of expectation and variance.

• Let Π ∈ Rk×d where k = O
(
ε−2 log n

)
with N (0, 1/k) entries, then

for any ~x ∈ Rd ,

(1− ε)‖~x‖22 ≤ ‖Π~x‖22 ≤ (1 + ε)‖~x‖22

• Furthermore, for any ~x1, ~x2, . . . , ~xn ∈ Rd ,

(1− ε)‖~xi − ~xj‖22 ≤ ‖Π~xi −Π~xj‖22 ≤ (1 + ε)‖~xi − ~xj‖22

i.e., random projections preserve distances between vectors.

11

reducing dimension: johnson lindenstrauss

• Let ~π ∈ Rd have random N (0, 1) entries. Then for any ~x ∈ Rd ,

E[〈~π, ~x〉2] = ‖~x‖22

Proof just uses linearity of expectation and variance.

• Let Π ∈ Rk×d where k = O
(
ε−2 log n

)
with N (0, 1/k) entries, then

for any ~x ∈ Rd ,

(1− ε)‖~x‖22 ≤ ‖Π~x‖22 ≤ (1 + ε)‖~x‖22

• Furthermore, for any ~x1, ~x2, . . . , ~xn ∈ Rd ,

(1− ε)‖~xi − ~xj‖22 ≤ ‖Π~xi −Π~xj‖22 ≤ (1 + ε)‖~xi − ~xj‖22

i.e., random projections preserve distances between vectors.

11

reducing dimension: pca

• The V be the k-dimension subspace of Rd and let V ∈ Rd×k be the

matrix whose columns are an orthonormal basis for V. Then,

VVT~x = arg min
~z∈V

‖~z − ~x‖2

• If we have n points (rows of X ∈ Rn×d), and want to project them all

into a k-dimensional space V, how to we chose V to minimizes the

total error?

Best V is the one spanned by top k eigenvectors of XT X

• I.e., if Vk is the matrix with the first k eigenvectors as columns,

Vk = arg min
orthonormal V

‖X− XVVT‖F

and ‖X− XVkVk
T‖F = λk+1 + λk+2 + . . . where λ1 ≥ λ2 ≥ . . . are

the eigenvalues of XT X.

12

reducing dimension: pca

• The V be the k-dimension subspace of Rd and let V ∈ Rd×k be the

matrix whose columns are an orthonormal basis for V. Then,

VVT~x = arg min
~z∈V

‖~z − ~x‖2

• If we have n points (rows of X ∈ Rn×d), and want to project them all

into a k-dimensional space V, how to we chose V to minimizes the

total error?

Best V is the one spanned by top k eigenvectors of XT X

• I.e., if Vk is the matrix with the first k eigenvectors as columns,

Vk = arg min
orthonormal V

‖X− XVVT‖F

and ‖X− XVkVk
T‖F = λk+1 + λk+2 + . . . where λ1 ≥ λ2 ≥ . . . are

the eigenvalues of XT X.

12

reducing dimension: pca

• The V be the k-dimension subspace of Rd and let V ∈ Rd×k be the

matrix whose columns are an orthonormal basis for V. Then,

VVT~x = arg min
~z∈V

‖~z − ~x‖2

• If we have n points (rows of X ∈ Rn×d), and want to project them all

into a k-dimensional space V, how to we chose V to minimizes the

total error?

Best V is the one spanned by top k eigenvectors of XT X

• I.e., if Vk is the matrix with the first k eigenvectors as columns,

Vk = arg min
orthonormal V

‖X− XVVT‖F

and ‖X− XVkVk
T‖F = λk+1 + λk+2 + . . . where λ1 ≥ λ2 ≥ . . . are

the eigenvalues of XT X.

12

finding top eigenvectors: power method

• Power Method: The most fundamental iterative method for

approximate SVD/eigendecomposition.

• Goal: Given a matrix A ∈ Rd×d , find an approximation to the top

eigenvector ~v1 of A.

• Algorithm:

• Choose ~z (0) randomly: each ~z (0)(i) ∼ N (0, 1).
• For i = 1, . . . , t

• ~z(i) := A · ~z(i−1)

• ~zi := ~z(i)/‖~z(i)‖2
Return ~zt

• With high probability, after t = O
(
γ−1ln(d/ε)

)
steps ‖~z (t) − ~v1‖2 ≤ ε

where γ = 1− |λ2|/|λ1|.

13

finding top eigenvectors: power method

• Power Method: The most fundamental iterative method for

approximate SVD/eigendecomposition.

• Goal: Given a matrix A ∈ Rd×d , find an approximation to the top

eigenvector ~v1 of A.

• Algorithm:

• Choose ~z (0) randomly: each ~z (0)(i) ∼ N (0, 1).
• For i = 1, . . . , t

• ~z(i) := A · ~z(i−1)

• ~zi := ~z(i)/‖~z(i)‖2
Return ~zt

• With high probability, after t = O
(
γ−1ln(d/ε)

)
steps ‖~z (t) − ~v1‖2 ≤ ε

where γ = 1− |λ2|/|λ1|.

13

finding top eigenvectors: power method

• Power Method: The most fundamental iterative method for

approximate SVD/eigendecomposition.

• Goal: Given a matrix A ∈ Rd×d , find an approximation to the top

eigenvector ~v1 of A.

• Algorithm:

• Choose ~z (0) randomly: each ~z (0)(i) ∼ N (0, 1).
• For i = 1, . . . , t

• ~z(i) := A · ~z(i−1)

• ~zi := ~z(i)/‖~z(i)‖2
Return ~zt

• With high probability, after t = O
(
γ−1ln(d/ε)

)
steps ‖~z (t) − ~v1‖2 ≤ ε

where γ = 1− |λ2|/|λ1|.

13

eigenvalues example

Consider matrix

A =

 4 0 2

0 1 0

0 0 7



• A is a rank 3 (“full rank”) matrix because it is impossible to write any

row as a linear combination of the other rows. (Or equivalently

• λ is an eigenvalue if

A− λI =

 4− λ 0 2

0 1− λ 0

0 0 7− λ


is not full rank. E.g., 4, 1, and 7 are eigenvalues in this case. In fact

the eigenvalues of an upper triangular matrix are always the diagonal

entries. This isn’t true in general.

14

eigenvalues example

Consider matrix

A =

 4 0 2

0 1 0

0 0 7


• A is a rank 3 (“full rank”) matrix because it is impossible to write any

row as a linear combination of the other rows. (Or equivalently

• λ is an eigenvalue if

A− λI =

 4− λ 0 2

0 1− λ 0

0 0 7− λ


is not full rank. E.g., 4, 1, and 7 are eigenvalues in this case. In fact

the eigenvalues of an upper triangular matrix are always the diagonal

entries. This isn’t true in general.

14

eigenvalues example

Consider matrix

A =

 4 0 2

0 1 0

0 0 7


• A is a rank 3 (“full rank”) matrix because it is impossible to write any

row as a linear combination of the other rows. (Or equivalently

• λ is an eigenvalue if

A− λI =

 4− λ 0 2

0 1− λ 0

0 0 7− λ


is not full rank. E.g., 4, 1, and 7 are eigenvalues in this case. In fact

the eigenvalues of an upper triangular matrix are always the diagonal

entries. This isn’t true in general.

14

singular value decomposition

• Any symmetric matrix A can be written as VΛVT corresponding to

eigenvectors and eigenvectors.
• The Singular Value Decomposition (SVD) extends eigendecomposition.
• Any X ∈ Rn×d with rank(X) = r can be written as X = UΣVT .
• U has orthonormal columns ~u1, . . . , ~ur ∈ Rn (left singular vectors).
• V has orthonormal columns ~v1, . . . , ~vr ∈ Rd (right singular vectors).
• Σ is diagonal with elements σ1 ≥ σ2 ≥ . . . ≥ σr > 0 (singular values).

• Note XT X = VΣ2VT and XXT = UΣ2UT , i.e., the left/right singular

vectors are the eigenvectors of XXT and XXT respectively.
15

applications

• Let Uk , Σk , Vk be truncations of U, Σ, V to first k columns. The

best rank k approximation of X is XVkVT
k = UkUk

T X = UkΣkVk
T .

• Applications include: Approximating an “incomplete” matrix X by a

low rank in the hope that the approximation “fills in” the missing

values. LSA uses the rows of U to approximate the documents in the

document/term matrix.

• Applications to graphs: Given adjacency matrix A projecting nodes on

the top k eigenvalues of AT A allows us to map nodes to k-dimensional

space such that close nodes are still close.

• Spectral Clustering Laplacian L = D− A satisfies

~vT L~v =
∑

ij∈E (vi − vj)
2. The 2nd smallest eigenvector of L gives way

to decompose the graph into roughly balanced groups such that the

number of cross edges in minimized: put all nodes with negative

entries in one group and all nodes with positive entires in the other.

16

applications

• Let Uk , Σk , Vk be truncations of U, Σ, V to first k columns. The

best rank k approximation of X is XVkVT
k = UkUk

T X = UkΣkVk
T .

• Applications include: Approximating an “incomplete” matrix X by a

low rank in the hope that the approximation “fills in” the missing

values. LSA uses the rows of U to approximate the documents in the

document/term matrix.

• Applications to graphs: Given adjacency matrix A projecting nodes on

the top k eigenvalues of AT A allows us to map nodes to k-dimensional

space such that close nodes are still close.

• Spectral Clustering Laplacian L = D− A satisfies

~vT L~v =
∑

ij∈E (vi − vj)
2. The 2nd smallest eigenvector of L gives way

to decompose the graph into roughly balanced groups such that the

number of cross edges in minimized: put all nodes with negative

entries in one group and all nodes with positive entires in the other.

16

applications

• Let Uk , Σk , Vk be truncations of U, Σ, V to first k columns. The

best rank k approximation of X is XVkVT
k = UkUk

T X = UkΣkVk
T .

• Applications include: Approximating an “incomplete” matrix X by a

low rank in the hope that the approximation “fills in” the missing

values. LSA uses the rows of U to approximate the documents in the

document/term matrix.

• Applications to graphs: Given adjacency matrix A projecting nodes on

the top k eigenvalues of AT A allows us to map nodes to k-dimensional

space such that close nodes are still close.

• Spectral Clustering Laplacian L = D− A satisfies

~vT L~v =
∑

ij∈E (vi − vj)
2. The 2nd smallest eigenvector of L gives way

to decompose the graph into roughly balanced groups such that the

number of cross edges in minimized: put all nodes with negative

entries in one group and all nodes with positive entires in the other.

16

applications

• Let Uk , Σk , Vk be truncations of U, Σ, V to first k columns. The

best rank k approximation of X is XVkVT
k = UkUk

T X = UkΣkVk
T .

• Applications include: Approximating an “incomplete” matrix X by a

low rank in the hope that the approximation “fills in” the missing

values. LSA uses the rows of U to approximate the documents in the

document/term matrix.

• Applications to graphs: Given adjacency matrix A projecting nodes on

the top k eigenvalues of AT A allows us to map nodes to k-dimensional

space such that close nodes are still close.

• Spectral Clustering Laplacian L = D− A satisfies

~vT L~v =
∑

ij∈E (vi − vj)
2. The 2nd smallest eigenvector of L gives way

to decompose the graph into roughly balanced groups such that the

number of cross edges in minimized: put all nodes with negative

entries in one group and all nodes with positive entires in the other.

16

stochastic block model

• Stochastic Block Model is a generative model for generating graphs we

could cluster: n nodes are partitioned into two groups A and B, edges

between nodes in same group are present with probability p and edges

between nodes in different groups are present with probability q < p.

• We showed the second smallest eigenvector of E[L] allows us to find A

and B exactly. But the input to Spectral Clustering is L, not E[L]!

• Fortunately, we could show the 2nd smallest eigenvectors of L and E[L]

are sufficiently similar that we learn A and B we only a few mistakes.

17

stochastic block model

• Stochastic Block Model is a generative model for generating graphs we

could cluster: n nodes are partitioned into two groups A and B, edges

between nodes in same group are present with probability p and edges

between nodes in different groups are present with probability q < p.

• We showed the second smallest eigenvector of E[L] allows us to find A

and B exactly. But the input to Spectral Clustering is L, not E[L]!

• Fortunately, we could show the 2nd smallest eigenvectors of L and E[L]

are sufficiently similar that we learn A and B we only a few mistakes.

17

stochastic block model

• Stochastic Block Model is a generative model for generating graphs we

could cluster: n nodes are partitioned into two groups A and B, edges

between nodes in same group are present with probability p and edges

between nodes in different groups are present with probability q < p.

• We showed the second smallest eigenvector of E[L] allows us to find A

and B exactly.

But the input to Spectral Clustering is L, not E[L]!

• Fortunately, we could show the 2nd smallest eigenvectors of L and E[L]

are sufficiently similar that we learn A and B we only a few mistakes.

17

stochastic block model

• Stochastic Block Model is a generative model for generating graphs we

could cluster: n nodes are partitioned into two groups A and B, edges

between nodes in same group are present with probability p and edges

between nodes in different groups are present with probability q < p.

• We showed the second smallest eigenvector of E[L] allows us to find A

and B exactly. But the input to Spectral Clustering is L, not E[L]!

• Fortunately, we could show the 2nd smallest eigenvectors of L and E[L]

are sufficiently similar that we learn A and B we only a few mistakes.

17

stochastic block model

• Stochastic Block Model is a generative model for generating graphs we

could cluster: n nodes are partitioned into two groups A and B, edges

between nodes in same group are present with probability p and edges

between nodes in different groups are present with probability q < p.

• We showed the second smallest eigenvector of E[L] allows us to find A

and B exactly. But the input to Spectral Clustering is L, not E[L]!

• Fortunately, we could show the 2nd smallest eigenvectors of L and E[L]

are sufficiently similar that we learn A and B we only a few mistakes.

17

part i: randomized techniques

randomized methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at massive scale

– set size estimation, load balancing, distinct elements counting (MinHash),

checking set membership (Bloom Filters), frequent items counting

(Count-min sketch), near neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized streaming/sketching/hashing

algorithms.

• In the process covered probability/statistics tools that are very useful beyond

algorithm design: concentration inequalities, higher moment bounds, law of

large numbers, central limit theorem, linearity of expectation and variance,

union bound, median as a robust estimator.

19

randomized methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at massive scale

– set size estimation, load balancing, distinct elements counting (MinHash),

checking set membership (Bloom Filters), frequent items counting

(Count-min sketch), near neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized streaming/sketching/hashing

algorithms.

• In the process covered probability/statistics tools that are very useful beyond

algorithm design: concentration inequalities, higher moment bounds, law of

large numbers, central limit theorem, linearity of expectation and variance,

union bound, median as a robust estimator.

19

randomized methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at massive scale

– set size estimation, load balancing, distinct elements counting (MinHash),

checking set membership (Bloom Filters), frequent items counting

(Count-min sketch), near neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized streaming/sketching/hashing

algorithms.

• In the process covered probability/statistics tools that are very useful beyond

algorithm design: concentration inequalities, higher moment bounds, law of

large numbers, central limit theorem, linearity of expectation and variance,

union bound, median as a robust estimator.

19

randomized methods

Randomization as a computational resource for massive datasets.

• Focus on problems that are easy on small datasets but hard at massive scale

– set size estimation, load balancing, distinct elements counting (MinHash),

checking set membership (Bloom Filters), frequent items counting

(Count-min sketch), near neighbor search (locality sensitive hashing).

• Just the tip of the iceberg on randomized streaming/sketching/hashing

algorithms.

• In the process covered probability/statistics tools that are very useful beyond

algorithm design: concentration inequalities, higher moment bounds, law of

large numbers, central limit theorem, linearity of expectation and variance,

union bound, median as a robust estimator.

19

useful probability facts (1/2)

• Linearity of Expectation: For any random variables X1, . . . ,Xn and

constants c1, . . . , cn,

E[c1X1 + . . .+ cnXn] = c1E[X1] + . . .+ cnE[Xn]

• Independent Random Variables: X1,X2, . . .Xn are independent random

variables if for any set S ⊂ [n] and values a1, a2, . . . , an

Pr(Xi = ai for all i ∈ S) =
∏
i∈S

Pr(Xi = ai) .

They are k-wise independent if this holds for S with |S | ≤ k.

• Linearity of Variance: IfX1, . . . ,Xn are independent (in fact 2-wise

independent suffices) then for any constants c1, . . . , cn

Var[c1X1 + . . .+ cnXn] = c21 Var[X1] + . . .+ c2n Var[Xn]

20

useful probability facts (1/2)

• Linearity of Expectation: For any random variables X1, . . . ,Xn and

constants c1, . . . , cn,

E[c1X1 + . . .+ cnXn] = c1E[X1] + . . .+ cnE[Xn]

• Independent Random Variables: X1,X2, . . .Xn are independent random

variables if for any set S ⊂ [n] and values a1, a2, . . . , an

Pr(Xi = ai for all i ∈ S) =
∏
i∈S

Pr(Xi = ai) .

They are k-wise independent if this holds for S with |S | ≤ k.

• Linearity of Variance: IfX1, . . . ,Xn are independent (in fact 2-wise

independent suffices) then for any constants c1, . . . , cn

Var[c1X1 + . . .+ cnXn] = c21 Var[X1] + . . .+ c2n Var[Xn]

20

useful probability facts (1/2)

• Linearity of Expectation: For any random variables X1, . . . ,Xn and

constants c1, . . . , cn,

E[c1X1 + . . .+ cnXn] = c1E[X1] + . . .+ cnE[Xn]

• Independent Random Variables: X1,X2, . . .Xn are independent random

variables if for any set S ⊂ [n] and values a1, a2, . . . , an

Pr(Xi = ai for all i ∈ S) =
∏
i∈S

Pr(Xi = ai) .

They are k-wise independent if this holds for S with |S | ≤ k.

• Linearity of Variance: IfX1, . . . ,Xn are independent (in fact 2-wise

independent suffices) then for any constants c1, . . . , cn

Var[c1X1 + . . .+ cnXn] = c21 Var[X1] + . . .+ c2n Var[Xn]

20

useful probability facts (2/2)

• Union Bound: For any events A1,A2,A3, . . .

Pr
[⋃

Ai

]
≤
∑

i

Pr[Ai] .

• An indicator random variable X just takes the values 0 or 1:

E[X] = p Var[X] = p(1− p) where p = Pr[X = 1]

• If Y = X1 + . . .+ Xn where each Xi are independent and

p = Pr[X1 = 1] = . . . = Pr[Xn = 1] then Y is a binomial random

variable. Using linearity of expectation and variance,

E[X] = np Var[X] = np(1− p)

21

balls and bins

• Most of the analysis of hash functions that we’ve considered can be

abstracted as “balls and bins” problems: we throw n balls and each

ball is equally likely to land in one of m bins.

• Let Ri be number of balls bin i . Then Ri ∼ Bin(n, 1
m) and E[Ri] = n

m ,

Var[Ri] = n
m · (1− 1

m). Ri and Rj not independent!

• Union Bound implies Pr[max(R1, . . . ,Rm) > t] ≤
∑

i Pr[Ri > t]

• Pr [no collisions] = m−1
m

m−2
m . . . m−(n−1)

m

Pr[collisions] = Pr[max(R1, . . . ,Rm) > 1] ≤ 1/8 if m > 4n2

and more generally

Pr[max(R1, . . . ,Rm) ≥ 2n/m] ≤ m2/n

• In the exam, you’ll be expected to do calculations like these.

22

hash functions

• Hash function h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1

n
.

• Hash function h : U → [n] is k-wise independent if {h(e)}e∈U are

k-wise independent and each h(e) is uniform in [n].

• Hash function h : U → [n] is fully independent if {h(e)}e∈U are

independent and each h(e) is uniform in [n].

23

hash functions

• Hash function h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1

n
.

• Hash function h : U → [n] is k-wise independent if {h(e)}e∈U are

k-wise independent and each h(e) is uniform in [n].

• Hash function h : U → [n] is fully independent if {h(e)}e∈U are

independent and each h(e) is uniform in [n].

23

hash functions

• Hash function h : U → [n] is two universal if:

Pr[h(x) = h(y)] ≤ 1

n
.

• Hash function h : U → [n] is k-wise independent if {h(e)}e∈U are

k-wise independent and each h(e) is uniform in [n].

• Hash function h : U → [n] is fully independent if {h(e)}e∈U are

independent and each h(e) is uniform in [n].

23

three main concentration bounds

• Markov. For any non-negative random variable X and t > 0,

Pr[X ≥ t] ≤ E[X]/t .

• Chebyshev. For any random variable X and t > 0,

Pr[|X − E[X]| ≥ t] ≤ Var[X]/t2 .

• Chernoff. Let X1, . . . ,Xn be independent {0, 1} random variables with

µ = E[
∑

i Xi]. Then for any δ > 0,

Pr[|(
∑

i

Xi)− µ| ≥ δµ] ≤ 2 exp

(
− δ2µ

δ + 2

)
.

• Generally, Chernoff gives better results then Chebyshev and Chebyshev

gives better results than Markov. So choose bound based on how

much you know about X .

• Bernstein generalizes Chernoff to arbitrary bounded Xi variables.

24

three main concentration bounds

• Markov. For any non-negative random variable X and t > 0,

Pr[X ≥ t] ≤ E[X]/t .

• Chebyshev. For any random variable X and t > 0,

Pr[|X − E[X]| ≥ t] ≤ Var[X]/t2 .

• Chernoff. Let X1, . . . ,Xn be independent {0, 1} random variables with

µ = E[
∑

i Xi]. Then for any δ > 0,

Pr[|(
∑

i

Xi)− µ| ≥ δµ] ≤ 2 exp

(
− δ2µ

δ + 2

)
.

• Generally, Chernoff gives better results then Chebyshev and Chebyshev

gives better results than Markov. So choose bound based on how

much you know about X .

• Bernstein generalizes Chernoff to arbitrary bounded Xi variables.

24

three main concentration bounds

• Markov. For any non-negative random variable X and t > 0,

Pr[X ≥ t] ≤ E[X]/t .

• Chebyshev. For any random variable X and t > 0,

Pr[|X − E[X]| ≥ t] ≤ Var[X]/t2 .

• Chernoff. Let X1, . . . ,Xn be independent {0, 1} random variables with

µ = E[
∑

i Xi]. Then for any δ > 0,

Pr[|(
∑

i

Xi)− µ| ≥ δµ] ≤ 2 exp

(
− δ2µ

δ + 2

)
.

• Generally, Chernoff gives better results then Chebyshev and Chebyshev

gives better results than Markov. So choose bound based on how

much you know about X .

• Bernstein generalizes Chernoff to arbitrary bounded Xi variables.

24

three main concentration bounds

• Markov. For any non-negative random variable X and t > 0,

Pr[X ≥ t] ≤ E[X]/t .

• Chebyshev. For any random variable X and t > 0,

Pr[|X − E[X]| ≥ t] ≤ Var[X]/t2 .

• Chernoff. Let X1, . . . ,Xn be independent {0, 1} random variables with

µ = E[
∑

i Xi]. Then for any δ > 0,

Pr[|(
∑

i

Xi)− µ| ≥ δµ] ≤ 2 exp

(
− δ2µ

δ + 2

)
.

• Generally, Chernoff gives better results then Chebyshev and Chebyshev

gives better results than Markov. So choose bound based on how

much you know about X .

• Bernstein generalizes Chernoff to arbitrary bounded Xi variables.

24

three main concentration bounds

• Markov. For any non-negative random variable X and t > 0,

Pr[X ≥ t] ≤ E[X]/t .

• Chebyshev. For any random variable X and t > 0,

Pr[|X − E[X]| ≥ t] ≤ Var[X]/t2 .

• Chernoff. Let X1, . . . ,Xn be independent {0, 1} random variables with

µ = E[
∑

i Xi]. Then for any δ > 0,

Pr[|(
∑

i

Xi)− µ| ≥ δµ] ≤ 2 exp

(
− δ2µ

δ + 2

)
.

• Generally, Chernoff gives better results then Chebyshev and Chebyshev

gives better results than Markov. So choose bound based on how

much you know about X .

• Bernstein generalizes Chernoff to arbitrary bounded Xi variables.

24

averaging and the median trick

• Want to learn a quantity q. Suppose you have a randomized algorithm

that returns X that has expectation q and variance σ2.

• To get a good estimate of q, repeat algorithm t times to get

X1, . . . ,Xt and let A = (X1 + . . .+ Xt)/t. Then, if t = σ2

δε2q2

Pr[|A− q| ≥ εq] ≤ Var[A]

ε2q2
=
σ2/t

ε2q2
= δ

• Median Trick: Let t = t1t2 where t1 = 4σ2

ε2q2 and t2 = O(log 1
δ). Let A1

be average of first t1 results, let A2 be average of next t1 results etc.

Then,

Pr[|Ai − q| ≥ εq] ≤ 1/4

and Pr[|median(A1, . . . ,At2)− q| ≥ εq] ≤ δ.

25

averaging and the median trick

• Want to learn a quantity q. Suppose you have a randomized algorithm

that returns X that has expectation q and variance σ2.

• To get a good estimate of q, repeat algorithm t times to get

X1, . . . ,Xt and let A = (X1 + . . .+ Xt)/t. Then, if t = σ2

δε2q2

Pr[|A− q| ≥ εq] ≤ Var[A]

ε2q2

=
σ2/t

ε2q2
= δ

• Median Trick: Let t = t1t2 where t1 = 4σ2

ε2q2 and t2 = O(log 1
δ). Let A1

be average of first t1 results, let A2 be average of next t1 results etc.

Then,

Pr[|Ai − q| ≥ εq] ≤ 1/4

and Pr[|median(A1, . . . ,At2)− q| ≥ εq] ≤ δ.

25

averaging and the median trick

• Want to learn a quantity q. Suppose you have a randomized algorithm

that returns X that has expectation q and variance σ2.

• To get a good estimate of q, repeat algorithm t times to get

X1, . . . ,Xt and let A = (X1 + . . .+ Xt)/t. Then, if t = σ2

δε2q2

Pr[|A− q| ≥ εq] ≤ Var[A]

ε2q2
=
σ2/t

ε2q2

= δ

• Median Trick: Let t = t1t2 where t1 = 4σ2

ε2q2 and t2 = O(log 1
δ). Let A1

be average of first t1 results, let A2 be average of next t1 results etc.

Then,

Pr[|Ai − q| ≥ εq] ≤ 1/4

and Pr[|median(A1, . . . ,At2)− q| ≥ εq] ≤ δ.

25

averaging and the median trick

• Want to learn a quantity q. Suppose you have a randomized algorithm

that returns X that has expectation q and variance σ2.

• To get a good estimate of q, repeat algorithm t times to get

X1, . . . ,Xt and let A = (X1 + . . .+ Xt)/t. Then, if t = σ2

δε2q2

Pr[|A− q| ≥ εq] ≤ Var[A]

ε2q2
=
σ2/t

ε2q2
= δ

• Median Trick: Let t = t1t2 where t1 = 4σ2

ε2q2 and t2 = O(log 1
δ). Let A1

be average of first t1 results, let A2 be average of next t1 results etc.

Then,

Pr[|Ai − q| ≥ εq] ≤ 1/4

and Pr[|median(A1, . . . ,At2)− q| ≥ εq] ≤ δ.

25

averaging and the median trick

• Want to learn a quantity q. Suppose you have a randomized algorithm

that returns X that has expectation q and variance σ2.

• To get a good estimate of q, repeat algorithm t times to get

X1, . . . ,Xt and let A = (X1 + . . .+ Xt)/t. Then, if t = σ2

δε2q2

Pr[|A− q| ≥ εq] ≤ Var[A]

ε2q2
=
σ2/t

ε2q2
= δ

• Median Trick: Let t = t1t2 where t1 = 4σ2

ε2q2 and t2 = O(log 1
δ). Let A1

be average of first t1 results, let A2 be average of next t1 results etc.

Then,

Pr[|Ai − q| ≥ εq] ≤ 1/4

and Pr[|median(A1, . . . ,At2)− q| ≥ εq] ≤ δ.

25

2-level hash tables vs. bloom filter

• Input to both is a set of items S and and both support queries of the

form “Is x ∈ S?” in constant time.

• 2-Level Hash Table:

• Space is O(|S |)×“space required to store an element of S”

• Bloom Filter:

• Does not actually store the items in S , just a binary array from which we

make various deductions.
• Uses only O(|S |) space but at the cost of sometimes answering “yes”

when answer should be “no” (a false positive)
• If the Bloom Filter array is length m, false positive probability is roughly

(1− e−k|S|/m)k where k is the number of hash functions used. Picking

k = ln 2 ·m/|S | gives probability 1/2(ln 2)m/|S|

26

2-level hash tables vs. bloom filter

• Input to both is a set of items S and and both support queries of the

form “Is x ∈ S?” in constant time.

• 2-Level Hash Table:

• Space is O(|S |)×“space required to store an element of S”

• Bloom Filter:

• Does not actually store the items in S , just a binary array from which we

make various deductions.
• Uses only O(|S |) space but at the cost of sometimes answering “yes”

when answer should be “no” (a false positive)
• If the Bloom Filter array is length m, false positive probability is roughly

(1− e−k|S|/m)k where k is the number of hash functions used. Picking

k = ln 2 ·m/|S | gives probability 1/2(ln 2)m/|S|

26

2-level hash tables vs. bloom filter

• Input to both is a set of items S and and both support queries of the

form “Is x ∈ S?” in constant time.

• 2-Level Hash Table:

• Space is O(|S |)×“space required to store an element of S”

• Bloom Filter:

• Does not actually store the items in S , just a binary array from which we

make various deductions.
• Uses only O(|S |) space but at the cost of sometimes answering “yes”

when answer should be “no” (a false positive)
• If the Bloom Filter array is length m, false positive probability is roughly

(1− e−k|S|/m)k where k is the number of hash functions used. Picking

k = ln 2 ·m/|S | gives probability 1/2(ln 2)m/|S|

26

2-level hash tables vs. bloom filter

• Input to both is a set of items S and and both support queries of the

form “Is x ∈ S?” in constant time.

• 2-Level Hash Table:

• Space is O(|S |)×“space required to store an element of S”

• Bloom Filter:

• Does not actually store the items in S , just a binary array from which we

make various deductions.

• Uses only O(|S |) space but at the cost of sometimes answering “yes”

when answer should be “no” (a false positive)
• If the Bloom Filter array is length m, false positive probability is roughly

(1− e−k|S|/m)k where k is the number of hash functions used. Picking

k = ln 2 ·m/|S | gives probability 1/2(ln 2)m/|S|

26

2-level hash tables vs. bloom filter

• Input to both is a set of items S and and both support queries of the

form “Is x ∈ S?” in constant time.

• 2-Level Hash Table:

• Space is O(|S |)×“space required to store an element of S”

• Bloom Filter:

• Does not actually store the items in S , just a binary array from which we

make various deductions.
• Uses only O(|S |) space but at the cost of sometimes answering “yes”

when answer should be “no” (a false positive)

• If the Bloom Filter array is length m, false positive probability is roughly

(1− e−k|S|/m)k where k is the number of hash functions used. Picking

k = ln 2 ·m/|S | gives probability 1/2(ln 2)m/|S|

26

2-level hash tables vs. bloom filter

• Input to both is a set of items S and and both support queries of the

form “Is x ∈ S?” in constant time.

• 2-Level Hash Table:

• Space is O(|S |)×“space required to store an element of S”

• Bloom Filter:

• Does not actually store the items in S , just a binary array from which we

make various deductions.
• Uses only O(|S |) space but at the cost of sometimes answering “yes”

when answer should be “no” (a false positive)
• If the Bloom Filter array is length m, false positive probability is roughly

(1− e−k|S|/m)k where k is the number of hash functions used. Picking

k = ln 2 ·m/|S | gives probability 1/2(ln 2)m/|S|

26

locality sensitive hashing

• Designed a hash function for hashing sets such that for sets A and B,

Pr[MH(A) = MH(B)] = J(A,B) = |A∩B|
|A∪B| .

MH(A) = min
x∈A

h(x) where h : U → [0, 1] is fully independent

• Can form signature of set A using r independent hash functions:

signature(A) = (MH1(A), . . . ,MHr (A))

Note Pr[signature(A) = signature(B)] = J(A,B)r .

• Given rt independent hash functions, we can form t signatures

signature1(A), . . . signaturet(A). Then if s = J(A,B),

Pr[signaturei (A) = signaturei (B) for some i] = 1− (1− s r)t .

• To find all pairs of similar sets amongst A1,A2,A3, . . . only compare a

pair if there exists i , their ith signatures match.

27

locality sensitive hashing

• Designed a hash function for hashing sets such that for sets A and B,

Pr[MH(A) = MH(B)] = J(A,B) = |A∩B|
|A∪B| .

MH(A) = min
x∈A

h(x) where h : U → [0, 1] is fully independent

• Can form signature of set A using r independent hash functions:

signature(A) = (MH1(A), . . . ,MHr (A))

Note Pr[signature(A) = signature(B)] = J(A,B)r .

• Given rt independent hash functions, we can form t signatures

signature1(A), . . . signaturet(A). Then if s = J(A,B),

Pr[signaturei (A) = signaturei (B) for some i] = 1− (1− s r)t .

• To find all pairs of similar sets amongst A1,A2,A3, . . . only compare a

pair if there exists i , their ith signatures match.

27

locality sensitive hashing

• Designed a hash function for hashing sets such that for sets A and B,

Pr[MH(A) = MH(B)] = J(A,B) = |A∩B|
|A∪B| .

MH(A) = min
x∈A

h(x) where h : U → [0, 1] is fully independent

• Can form signature of set A using r independent hash functions:

signature(A) = (MH1(A), . . . ,MHr (A))

Note Pr[signature(A) = signature(B)] = J(A,B)r .

• Given rt independent hash functions, we can form t signatures

signature1(A), . . . signaturet(A). Then if s = J(A,B),

Pr[signaturei (A) = signaturei (B) for some i] = 1− (1− s r)t .

• To find all pairs of similar sets amongst A1,A2,A3, . . . only compare a

pair if there exists i , their ith signatures match.

27

locality sensitive hashing

• Designed a hash function for hashing sets such that for sets A and B,

Pr[MH(A) = MH(B)] = J(A,B) = |A∩B|
|A∪B| .

MH(A) = min
x∈A

h(x) where h : U → [0, 1] is fully independent

• Can form signature of set A using r independent hash functions:

signature(A) = (MH1(A), . . . ,MHr (A))

Note Pr[signature(A) = signature(B)] = J(A,B)r .

• Given rt independent hash functions, we can form t signatures

signature1(A), . . . signaturet(A). Then if s = J(A,B),

Pr[signaturei (A) = signaturei (B) for some i] = 1− (1− s r)t .

• To find all pairs of similar sets amongst A1,A2,A3, . . . only compare a

pair if there exists i , their ith signatures match.

27

data streams algorithms

• We want to compute something about the stream x1, x2, . . . , xm with

only one pass over the stream and limited space.

• Let fi be the number of values in stream that equal i .

• Distinct Items: Can estimate D = |{i : fi > 0}| up to a factor 1 + ε with

probability 1− δ in O(ε−2 log 1/δ) space.
• Frequently Elements Items: Can return a set S such that:

fi ≥ m/k implies i ∈ S and i ∈ S implies fi ≥ m(1− ε)/k

with probability 1− δ in O(k/ε · log 1/δ) space.
• Sampling and Averaging Distinct Elements: Apply hash function

h : U → [0, 1] to each stream element. The element x with the smallest

value of h(x) is a uniform sample from the stream.

28

data streams algorithms

• We want to compute something about the stream x1, x2, . . . , xm with

only one pass over the stream and limited space.

• Let fi be the number of values in stream that equal i .

• Distinct Items: Can estimate D = |{i : fi > 0}| up to a factor 1 + ε with

probability 1− δ in O(ε−2 log 1/δ) space.
• Frequently Elements Items: Can return a set S such that:

fi ≥ m/k implies i ∈ S and i ∈ S implies fi ≥ m(1− ε)/k

with probability 1− δ in O(k/ε · log 1/δ) space.
• Sampling and Averaging Distinct Elements: Apply hash function

h : U → [0, 1] to each stream element. The element x with the smallest

value of h(x) is a uniform sample from the stream.

28

data streams algorithms

• We want to compute something about the stream x1, x2, . . . , xm with

only one pass over the stream and limited space.

• Let fi be the number of values in stream that equal i .

• Distinct Items: Can estimate D = |{i : fi > 0}| up to a factor 1 + ε with

probability 1− δ in O(ε−2 log 1/δ) space.

• Frequently Elements Items: Can return a set S such that:

fi ≥ m/k implies i ∈ S and i ∈ S implies fi ≥ m(1− ε)/k

with probability 1− δ in O(k/ε · log 1/δ) space.
• Sampling and Averaging Distinct Elements: Apply hash function

h : U → [0, 1] to each stream element. The element x with the smallest

value of h(x) is a uniform sample from the stream.

28

data streams algorithms

• We want to compute something about the stream x1, x2, . . . , xm with

only one pass over the stream and limited space.

• Let fi be the number of values in stream that equal i .

• Distinct Items: Can estimate D = |{i : fi > 0}| up to a factor 1 + ε with

probability 1− δ in O(ε−2 log 1/δ) space.
• Frequently Elements Items: Can return a set S such that:

fi ≥ m/k implies i ∈ S and i ∈ S implies fi ≥ m(1− ε)/k

with probability 1− δ in O(k/ε · log 1/δ) space.

• Sampling and Averaging Distinct Elements: Apply hash function

h : U → [0, 1] to each stream element. The element x with the smallest

value of h(x) is a uniform sample from the stream.

28

data streams algorithms

• We want to compute something about the stream x1, x2, . . . , xm with

only one pass over the stream and limited space.

• Let fi be the number of values in stream that equal i .

• Distinct Items: Can estimate D = |{i : fi > 0}| up to a factor 1 + ε with

probability 1− δ in O(ε−2 log 1/δ) space.
• Frequently Elements Items: Can return a set S such that:

fi ≥ m/k implies i ∈ S and i ∈ S implies fi ≥ m(1− ε)/k

with probability 1− δ in O(k/ε · log 1/δ) space.
• Sampling and Averaging Distinct Elements: Apply hash function

h : U → [0, 1] to each stream element. The element x with the smallest

value of h(x) is a uniform sample from the stream.

28

Thanks for a great semester!

29

	Part III: Optimization
	Part II: Linear Algebra
	Part I: Randomized Techniques

