COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 3

Today:

- Continue random hash functions and hash tables.
- See an application of random hashing to load balancing in distributed systems.
- Through this application learn about:
- Chebyshev's inequality, which strengthens Markov's inequality.
- The union bound, for understanding the probabilities of correlated random events.

HASH TABLES

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128 -bit IP addresses).

HASH TABLES

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128 -bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.

HASH TABLES

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128 -bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.
Classic Solution:

HASH TABLES

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128 -bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.
Classic Solution: Hash tables

HASH TABLES

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128 -bit IP addresses).

Goal: support query (x) to check if x is in the set in $O(1)$ time.
Classic Solution: Hash tables

- Static hashing since we won't worry about insertion and deletion today.

HASH TABLES

- hash function $h: U \rightarrow[n]$ maps elements in universe $U=\left\{x_{1}, x_{2}, \ldots\right\}$ to indices of an array. Assume \mathbf{h} is fully independent, i.e.,
a) $\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right)=j\right)=\frac{1}{n}$ for all $x_{i} \in U$ and $j \in[n]$ and
b) all $\mathbf{h}\left(x_{1}\right), \mathbf{h}\left(x_{2}\right), \mathbf{h}\left(x_{3}\right) \ldots$ are all independent.

It is very expensive to represent and compute fully independent random functions. Later, we will see how efficient hash functions are sufficient.

HASH TABLES

- hash function $h: U \rightarrow[n]$ maps elements in universe $U=\left\{x_{1}, x_{2}, \ldots\right\}$ to indices of an array. Assume \mathbf{h} is fully independent, i.e.,
a) $\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right)=j\right)=\frac{1}{n}$ for all $x_{i} \in U$ and $j \in[n]$ and
b) all $\mathbf{h}\left(x_{1}\right), \mathbf{h}\left(x_{2}\right), \mathbf{h}\left(x_{3}\right) \ldots$ are all independent.

It is very expensive to represent and compute fully independent random functions. Later, we will see how efficient hash functions are sufficient.

- Collisions: when we insert m items into the hash table we may have to store multiple items in the same location (typically as a linked list).

HASH TABLES

128-bit IP addresses
Hash Table

- hash function $h: U \rightarrow[n]$ maps elements in universe $U=\left\{x_{1}, x_{2}, \ldots\right\}$ to indices of an array. Assume \mathbf{h} is fully independent, i.e.,
a) $\operatorname{Pr}\left(\mathbf{h}\left(x_{i}\right)=j\right)=\frac{1}{n}$ for all $x_{i} \in U$ and $j \in[n]$ and
b) all $\mathbf{h}\left(x_{1}\right), \mathbf{h}\left(x_{2}\right), \mathbf{h}\left(x_{3}\right) \ldots$ are all independent.

It is very expensive to represent and compute fully independent random functions. Later, we will see how efficient hash functions are sufficient.

- Collisions: when we insert m items into the hash table we may have to store multiple items in the same location (typically as a linked list).

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise collisions is:

$$
\mathbf{C}=\sum_{i, j \in[m], i<j} \mathbf{C}_{i, j} .
$$

x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table, \mathbf{h} : random hash function.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise collisions is:

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{C}_{i, j}\right] . \quad \quad \text { (linearity of expectation) }
$$

x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table, \mathbf{h} : random hash function.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise collisions is:

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{C}_{i, j}\right] . \quad \quad \text { (linearity of expectation) }
$$

For any pair $i, j, i<j$:
$\mathbb{E}\left[\mathbf{C}_{i, j}\right]=\operatorname{Pr}\left[\mathbf{C}_{i, j}=1\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right]$
x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table, \mathbf{h} : random hash function.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise collisions is:

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{C}_{i, j}\right] . \quad \quad \text { (linearity of expectation) }
$$

For any pair $i, j, i<j$:
$\mathbb{E}\left[\mathbf{C}_{i, j}\right]=\operatorname{Pr}\left[\mathbf{C}_{i, j}=1\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right]=\frac{1}{n}$.
x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table, \mathbf{h} : random hash function.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise collisions is:

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{C}_{i, j}\right] . \quad \quad \text { (linearity of expectation) }
$$

For any pair $i, j, i<j$:
$\mathbb{E}\left[\mathbf{C}_{i, j}\right]=\operatorname{Pr}\left[\mathbf{C}_{i, j}=1\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right]=\frac{1}{n}$.

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \frac{1}{n}=\frac{\binom{m}{2}}{n}=\frac{m(m-1)}{2 n} .
$$

x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table, \mathbf{h} : random hash function.

LINEARITY OF EXPECTATION

Let $\mathbf{C}_{i, j}=1$ if items i and j collide $\left(\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right)$, and 0 otherwise. The number of pairwise collisions is:

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \mathbb{E}\left[\mathbf{C}_{i, j}\right] . \quad \quad \text { (linearity of expectation) }
$$

For any pair $i, j, i<j$:
$\mathbb{E}\left[\mathbf{C}_{i, j}\right]=\operatorname{Pr}\left[\mathbf{C}_{i, j}=1\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{i}\right)=\mathbf{h}\left(x_{j}\right)\right]=\frac{1}{n}$.

$$
\mathbb{E}[\mathbf{C}]=\sum_{i, j \in[m], i<j} \frac{1}{n}=\frac{\binom{m}{2}}{n}=\frac{m(m-1)}{2 n} .
$$

Identical to the CAPTCHA analysis!
x_{i}, x_{j} : pair of stored items, m : total number of stored items, n : hash table size, C: total pairwise collisions in table, \mathbf{h} : random hash function.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.
m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.
m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality:

m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathbf{C}]}{1}$
m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathrm{C}]}{1}=\frac{1}{8}$.
m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathbf{C}]}{1}=\frac{1}{8}$.

$$
\operatorname{Pr}[\mathbf{C}=0]=1-\operatorname{Pr}[\mathbf{C} \geq 1]
$$

m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathbf{C}]}{1}=\frac{1}{8}$.

$$
\operatorname{Pr}[\mathbf{C}=0]=1-\operatorname{Pr}[\mathbf{C} \geq 1] \geq 1-\frac{1}{8}
$$

m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathrm{C}]}{1}=\frac{1}{8}$.

$$
\operatorname{Pr}[\mathbf{C}=0]=1-\operatorname{Pr}[\mathbf{C} \geq 1] \geq 1-\frac{1}{8}=\frac{7}{8} .
$$

m : total number of stored items, n : hash table size, \mathbf{C} : total pairwise collisions in table.

COLLISION FREE HASHING

$$
\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{2 n}
$$

- For $n=4 m^{2}$ we have: $\mathbb{E}[\mathbf{C}]=\frac{m(m-1)}{8 m^{2}} \leq \frac{1}{8}$.

Apply Markov's Inequality: $\operatorname{Pr}[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathbf{C}]}{1}=\frac{1}{8}$.

$$
\operatorname{Pr}[\mathbf{C}=0]=1-\operatorname{Pr}[\mathbf{C} \geq 1] \geq 1-\frac{1}{8}=\frac{7}{8}
$$

Pretty good but we are using $O\left(m^{2}\right)$ space to store m items.
m : total number of stored items, n : hash table size, C: total pairwise collisions in table.

TWO LEVEL HASHING

Want to preserve $O(1)$ query time while using $O(m)$ space.

TWO LEVEL HASHING

Want to preserve $O(1)$ query time while using $O(m)$ space.

Two-Level Hashing:

TWO LEVEL HASHING

Want to preserve $O(1)$ query time while using $O(m)$ space.

Two-Level Hashing:

- For each bucket with s_{i} values, pick a collision free hash function mapping $\left[s_{i}\right] \rightarrow\left[4 s_{i}^{2}\right]$.

TWO LEVEL HASHING

Want to preserve $O(1)$ query time while using $O(m)$ space.

Two-Level Hashing:

- For each bucket with s_{i} values, pick a collision free hash function mapping $\left[s_{i}\right] \rightarrow\left[4 s_{i}^{2}\right]$.
- Previously: Showed that a random function is collision free with probability $\geq \frac{7}{8}$ so can just generate a random hash function and check if it is collision free.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions.
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbf{S}=n+4 \sum_{i=1}^{n} \mathbf{s}_{i}^{2}$
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{s}_{i}^{2}\right]$
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{s}_{i}^{2}\right]$
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{s}_{i}^{2}\right]$

$$
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right]=\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right]
$$

x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathrm{~s}_{i}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j, k \in[m]} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]
\end{aligned}
$$

Collisions again!
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathrm{~s}_{i}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j, k \in[m]} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] .
\end{aligned}
$$

x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{s}_{i}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j, k \in[m]} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] .
\end{aligned}
$$

- For $j=k$,
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathrm{~s}_{i}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j, k \in[m]} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] .
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right]$
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathrm{~s}_{i}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j, k \in[m]} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] .
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{j}\right)=i\right]$
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathrm{~s}_{i}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j, k \in[m]} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] .
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{j}\right)=i\right]=\frac{1}{n}$.
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathrm{~s}_{i}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j, k \in[m]} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] .
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\mathbb{E}\left[\left(\mathbb{I}_{\left.\mathbf{h}\left(x_{j}\right)=i\right)^{2}}\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{j}\right)=i\right]=\frac{1}{n}\right.$.
- For $j \neq k$,
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathrm{~s}_{i}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j, k \in[m]} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] .
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{j}\right)=i\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]$
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathrm{~s}_{i}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j, k \in[m]} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] .
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{j}\right)=i\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{j}\right)=i \cap \mathbf{h}\left(x_{k}\right)=i\right]$
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

Query time for two level hashing is $O(1)$: requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathrm{~s}_{i}^{2}\right]$

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{j, k \in[m]} \mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] .
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i}\right)^{2}\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{j}\right)=i\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\operatorname{Pr}\left[\mathbf{h}\left(x_{j}\right)=i \cap \mathbf{h}\left(x_{k}\right)=i\right]=\frac{1}{n^{2}}$.
x_{j}, x_{k} : stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, $\mathbf{s}_{i}: \#$ items stored in hash table at position i.

SPACE USAGE

$$
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right]=\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n^{2}}$.
x_{j}, x_{k} : stored items, m : \# stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, \mathbf{s}_{i} : \# items stored at pos i.

SPACE USAGE

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] \\
& =m \cdot \frac{1}{n}+2 \cdot\binom{m}{2} \cdot \frac{1}{n^{2}}
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n^{2}}$.
x_{j}, x_{k} : stored items, m : \# stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, \mathbf{s}_{i} : \# items stored at pos i.

SPACE USAGE

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] \\
& =m \cdot \frac{1}{n}+2 \cdot\binom{m}{2} \cdot \frac{1}{n^{2}}
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n^{2}}$.
x_{j}, x_{k} : stored items, m : \# stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, \mathbf{s}_{i} : \# items stored at pos i.

SPACE USAGE

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] \\
& =m \cdot \frac{1}{n}+2 \cdot\binom{m}{2} \cdot \frac{1}{n^{2}}
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n^{2}}$.
x_{j}, x_{k} : stored items, m : \# stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, \mathbf{s}_{i} : \# items stored at pos i.

SPACE USAGE

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] \\
& =m \cdot \frac{1}{n}+2 \cdot\binom{m}{2} \cdot \frac{1}{n^{2}} \\
& =\frac{m}{n}+\frac{m(m-1)}{n^{2}}
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n^{2}}$.
x_{j}, x_{k} : stored items, m : \# stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, \mathbf{s}_{i} : \# items stored at pos i.

SPACE USAGE

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] \\
& =m \cdot \frac{1}{n}+2 \cdot\binom{m}{2} \cdot \frac{1}{n^{2}} \\
& =\frac{m}{n}+\frac{m(m-1)}{n^{2}} \leq 2(\text { If we set } n=m .)
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n^{2}}$.
x_{j}, x_{k} : stored items, m : \# stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, \mathbf{s}_{i} : \# items stored at pos i.

SPACE USAGE

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] \\
& =m \cdot \frac{1}{n}+2 \cdot\binom{m}{2} \cdot \frac{1}{n^{2}} \\
& =\frac{m}{n}+\frac{m(m-1)}{n^{2}} \leq 2(\text { If we set } n=m .)
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n^{2}}$.

Total Expected Space Usage: (if we set $n=m$)

$$
\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{s}_{i}^{2}\right]
$$

x_{j}, x_{k} : stored items, m : \# stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, \mathbf{s}_{i} : \# items stored at pos i.

SPACE USAGE

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] \\
& =m \cdot \frac{1}{n}+2 \cdot\binom{m}{2} \cdot \frac{1}{n^{2}} \\
& =\frac{m}{n}+\frac{m(m-1)}{n^{2}} \leq 2(\text { If we set } n=m .)
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n^{2}}$.

Total Expected Space Usage: (if we set $n=m$)

$$
\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{s}_{i}^{2}\right] \leq n+4 n \cdot 2=9 n=9 m
$$

x_{j}, x_{k} : stored items, m : \# stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, \mathbf{s}_{i} : \# items stored at pos i.

SPACE USAGE

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{s}_{i}^{2}\right] & =\sum_{j, k \in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right] \\
& =m \cdot \frac{1}{n}+2 \cdot\binom{m}{2} \cdot \frac{1}{n^{2}} \\
& =\frac{m}{n}+\frac{m(m-1)}{n^{2}} \leq 2(\text { If we set } n=m .)
\end{aligned}
$$

- For $j=k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n}$.
- For $j \neq k, \mathbb{E}\left[\mathbb{I}_{\mathbf{h}\left(x_{j}\right)=i} \cdot \mathbb{I}_{\mathbf{h}\left(x_{k}\right)=i}\right]=\frac{1}{n^{2}}$.

Total Expected Space Usage: (if we set $n=m$)

$$
\mathbb{E}[\mathbf{S}]=n+4 \sum_{i=1}^{n} \mathbb{E}\left[\mathbf{s}_{i}^{2}\right] \leq n+4 n \cdot 2=9 n=9 m
$$

Near optimal space with $O(1)$ query time!

x_{j}, x_{k} : stored items, m : \# stored items, n : hash table size, \mathbf{h} : random hash function, \mathbf{S} : space usage of two level hashing, \mathbf{s}_{i} : \# items stored at pos i.

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash function from $\mathbf{h}: U \rightarrow[n]$ is two universal if for all $x \neq y \in U$:

$$
\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)] \leq \frac{1}{n}
$$

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash function from $\mathbf{h}: U \rightarrow[n]$ is two universal if for all $x \neq y \in U$:

$$
\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)] \leq \frac{1}{n}
$$

Exercise: Rework the two level hashing proof to show that this property is really all that is needed.

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash function from $\mathbf{h}: U \rightarrow[n]$ is two universal if for all $x \neq y \in U$:

$$
\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)] \leq \frac{1}{n}
$$

Exercise: Rework the two level hashing proof to show that this property is really all that is needed.

When $\mathbf{h}(x)$ and $\mathbf{h}(y)$ are chosen independently at random from [n], $\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)]=\frac{1}{n}$ (so a fully random hash function is 2-universal)

EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash function from $\mathbf{h}: U \rightarrow[n]$ is two universal if for all $x \neq y \in U$:

$$
\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)] \leq \frac{1}{n}
$$

Exercise: Rework the two level hashing proof to show that this property is really all that is needed.

When $\mathbf{h}(x)$ and $\mathbf{h}(y)$ are chosen independently at random from [n], $\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)]=\frac{1}{n}$ (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with $p \geq|U|$. Choose random $\mathbf{a}, \mathbf{b} \in[p]$ with $\mathbf{a} \neq 0$. Let:

$$
\mathbf{h}(x)=(\mathbf{a} x+\mathbf{b} \quad \bmod p) \quad \bmod n
$$

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \rightarrow[n]$ is pairwise independent if for all $i, j \in[n]$ and for all $x \neq y \in U$:

$$
\operatorname{Pr}[\mathbf{h}(x)=i \cap \mathbf{h}(y)=j]=\frac{1}{n^{2}} .
$$

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \rightarrow[n]$ is pairwise independent if for all $i, j \in[n]$ and for all $x \neq y \in U$:

$$
\operatorname{Pr}[\mathbf{h}(x)=i \cap \mathbf{h}(y)=j]=\frac{1}{n^{2}} .
$$

Which is a more stringent requirement? 2-universal or pairwise independent?

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \rightarrow[n]$ is pairwise independent if for all $i, j \in[n]$ and for all $x \neq y \in U$:

$$
\operatorname{Pr}[\mathbf{h}(x)=i \cap \mathbf{h}(y)=j]=\frac{1}{n^{2}} .
$$

Which is a more stringent requirement? 2-universal or pairwise independent?

$$
\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)]=\sum_{i=1}^{n} \operatorname{Pr}[\mathbf{h}(x)=i \cap \mathbf{h}(y)=i]=n \cdot \frac{1}{n^{2}}=\frac{1}{n}
$$

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \rightarrow[n]$ is pairwise independent if for all $i, j \in[n]$ and for all $x \neq y \in U$:

$$
\operatorname{Pr}[\mathbf{h}(x)=i \cap \mathbf{h}(y)=j]=\frac{1}{n^{2}} .
$$

Which is a more stringent requirement? 2-universal or pairwise independent?

$$
\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)]=\sum_{i=1}^{n} \operatorname{Pr}[\mathbf{h}(x)=i \cap \mathbf{h}(y)=i]=n \cdot \frac{1}{n^{2}}=\frac{1}{n}
$$

A closely related $(\mathbf{a} x+\mathbf{b})$ mod p construction gives pairwise independence on top of 2-universality.

PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}: U \rightarrow[n]$ is pairwise independent if for all $i, j \in[n]$ and for all $x \neq y \in U$:

$$
\operatorname{Pr}[\mathbf{h}(x)=i \cap \mathbf{h}(y)=j]=\frac{1}{n^{2}} .
$$

Which is a more stringent requirement? 2-universal or pairwise independent?

$$
\operatorname{Pr}[\mathbf{h}(x)=\mathbf{h}(y)]=\sum_{i=1}^{n} \operatorname{Pr}[\mathbf{h}(x)=i \cap \mathbf{h}(y)=i]=n \cdot \frac{1}{n^{2}}=\frac{1}{n}
$$

A closely related $(\mathbf{a} x+\mathbf{b})$ mod p construction gives pairwise independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise independent. But it is not efficiently implementable.

NEXT STEP

1. We'll consider an application where our toolkit of linearity of expectation + Markov's inequality doesn't give much.

NEXT STEP

1. We'll consider an application where our toolkit of linearity of expectation + Markov's inequality doesn't give much.
2. Then we'll show how a simple twist on Markov's can give a much stronger result.

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov's Inequality can be made much more powerful.

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable \mathbf{X} and any value $t>0$:

$$
\operatorname{Pr}(|\mathbf{X}| \geq t)=\operatorname{Pr}\left(\mathbf{X}^{2} \geq t^{2}\right)
$$

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable \mathbf{X} and any value $t>0$:

$$
\operatorname{Pr}(|\mathbf{X}| \geq t)=\operatorname{Pr}\left(\mathbf{X}^{2} \geq t^{2}\right)
$$

\mathbf{X}^{2} is a nonnegative random variable. So can apply Markov's inequality:

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable \mathbf{X} and any value $t>0$:

$$
\operatorname{Pr}(|\mathbf{X}| \geq t)=\operatorname{Pr}\left(\mathbf{X}^{2} \geq t^{2}\right)
$$

\mathbf{X}^{2} is a nonnegative random variable. So can apply Markov's inequality:

$$
\operatorname{Pr}\left(\mathbf{X}^{2} \geq t^{2}\right) \leq \frac{\mathbb{E}\left[\mathbf{X}^{2}\right]}{t^{2}}
$$

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable \mathbf{X} and any value $t>0$:

$$
\operatorname{Pr}(|\mathbf{X}| \geq t)=\operatorname{Pr}\left(\mathbf{X}^{2} \geq t^{2}\right)
$$

\mathbf{X}^{2} is a nonnegative random variable. So can apply Markov's inequality:

$$
\operatorname{Pr}(|\mathbf{X}| \geq t)=\operatorname{Pr}\left(\mathbf{X}^{2} \geq t^{2}\right) \leq \frac{\mathbb{E}\left[\mathbf{X}^{2}\right]}{t^{2}}
$$

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable \mathbf{X} and any value $t>0$:

$$
\operatorname{Pr}(|\mathbf{X}| \geq t)=\operatorname{Pr}\left(\mathbf{X}^{2} \geq t^{2}\right)
$$

\mathbf{X}^{2} is a nonnegative random variable. So can apply Markov's inequality:
Chebyshev's inequality:

$$
\operatorname{Pr}(|\mathbf{X}| \geq t)=\operatorname{Pr}\left(\mathbf{X}^{2} \geq t^{2}\right) \leq \frac{\mathbb{E}\left[\mathbf{X}^{2}\right]}{t^{2}}
$$

CHEBYSHEV'S INEQUALITY

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable \mathbf{X} and any value $t>0$:

$$
\operatorname{Pr}(|\mathbf{X}| \geq t)=\operatorname{Pr}\left(\mathbf{X}^{2} \geq t^{2}\right)
$$

\mathbf{X}^{2} is a nonnegative random variable. So can apply Markov's inequality:
Chebyshev's inequality:

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t) \leq \frac{\operatorname{Var}[\mathbf{X}]}{t^{2}}
$$

(by plugging in the random variable $\mathbf{X}-\mathbb{E}[\mathbf{X}]$)

