
compsci 514: algorithms for data science

Andrew McGregor

Lecture 3

0

today

Today:

• Continue random hash functions and hash tables.

• See an application of random hashing to load balancing in distributed

systems.

• Through this application learn about:

• Chebyshev’s inequality, which strengthens Markov’s inequality.
• The union bound, for understanding the probabilities of correlated random

events.

1

hash tables

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP

addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:

Hash tables

• Static hashing since we won’t worry about insertion and deletion today.

2

hash tables

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP

addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:

Hash tables

• Static hashing since we won’t worry about insertion and deletion today.

2

hash tables

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP

addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:

Hash tables

• Static hashing since we won’t worry about insertion and deletion today.

2

hash tables

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP

addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

• Static hashing since we won’t worry about insertion and deletion today.

2

hash tables

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP

addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

• Static hashing since we won’t worry about insertion and deletion today.

2

hash tables

• hash function h : U → [n] maps elements in universe U = {x1, x2, . . .}
to indices of an array. Assume h is fully independent, i.e.,

a) Pr(h(xi) = j) = 1
n

for all xi ∈ U and j ∈ [n] and

b) all h(x1), h(x2), h(x3) . . . are all independent.

It is very expensive to represent and compute fully independent random

functions. Later, we will see how efficient hash functions are sufficient.

• Collisions: when we insert m items into the hash table we may have

to store multiple items in the same location (typically as a linked list).

3

hash tables

• hash function h : U → [n] maps elements in universe U = {x1, x2, . . .}
to indices of an array. Assume h is fully independent, i.e.,

a) Pr(h(xi) = j) = 1
n

for all xi ∈ U and j ∈ [n] and

b) all h(x1), h(x2), h(x3) . . . are all independent.

It is very expensive to represent and compute fully independent random

functions. Later, we will see how efficient hash functions are sufficient.
• Collisions: when we insert m items into the hash table we may have

to store multiple items in the same location (typically as a linked list).
3

hash tables

• hash function h : U → [n] maps elements in universe U = {x1, x2, . . .}
to indices of an array. Assume h is fully independent, i.e.,

a) Pr(h(xi) = j) = 1
n

for all xi ∈ U and j ∈ [n] and

b) all h(x1), h(x2), h(x3) . . . are all independent.

It is very expensive to represent and compute fully independent random

functions. Later, we will see how efficient hash functions are sufficient.
• Collisions: when we insert m items into the hash table we may have

to store multiple items in the same location (typically as a linked list).
3

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise collisions is:

C =
∑

i,j∈[m],i<j

Ci,j .

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)]

= 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

4

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise collisions is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)]

= 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

4

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise collisions is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)]

= 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

4

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise collisions is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

4

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise collisions is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

4

linearity of expectation

Let Ci,j = 1 if items i and j collide (h(xi) = h(xj)), and 0 otherwise. The

number of pairwise collisions is:

E[C] =
∑

i,j∈[m],i<j

E[Ci,j]. (linearity of expectation)

For any pair i , j , i < j :

E[Ci,j] = Pr[Ci,j = 1] = Pr[h(xi) = h(xj)] = 1
n .

E[C] =
∑

i,j∈[m],i<j

1

n
=

(
m
2

)
n

=
m(m − 1)

2n
.

Identical to the CAPTCHA analysis!

xi , xj : pair of stored items, m: total number of stored items, n: hash table size, C: total

pairwise collisions in table, h: random hash function.

4

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

5

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

5

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

5

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality:

Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

5

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1

= 1
8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

5

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

5

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1]

≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

5

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8

=
7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

5

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

5

collision free hashing

E[C] =
m(m − 1)

2n
.

• For n = 4m2 we have: E[C] = m(m−1)
8m2 ≤ 1

8 .

Apply Markov’s Inequality: Pr[C ≥ 1] ≤ E[C]
1 = 1

8 .

Pr[C = 0] = 1− Pr[C ≥ 1] ≥ 1− 1

8
=

7

8
.

Pretty good but we are using O(m2) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

5

two level hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash function mapping

[si]→ [4s2i].

• Previously: Showed that a random function is collision free with probability

≥ 7
8

so can just generate a random hash function and check if it is collision

free.

6

two level hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash function mapping

[si]→ [4s2i].

• Previously: Showed that a random function is collision free with probability

≥ 7
8

so can just generate a random hash function and check if it is collision

free.

6

two level hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash function mapping

[si]→ [4s2i].

• Previously: Showed that a random function is collision free with probability

≥ 7
8

so can just generate a random hash function and check if it is collision

free.

6

two level hashing

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with si values, pick a collision free hash function mapping

[si]→ [4s2i].

• Previously: Showed that a random function is collision free with probability

≥ 7
8

so can just generate a random hash function and check if it is collision

free.

6

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions.

What is the expected space usage?

Up to constants, space used is:

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i



=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is:

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i



=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: S = n + 4
∑n

i=1 s2i

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i



=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i



=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i



=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i



=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i



=
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

Collisions again!

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i

 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i

 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i

 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]

= Pr[h(xj) = i] = 1
n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i

 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i]

= 1
n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i

 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i

 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k,

E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i

 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]

= Pr[h(xj) = i ∩ h(xk) = i] = 1
n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i

 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i]

= 1
n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

Query time for two level hashing is O(1): requires evaluating two hash

functions. What is the expected space usage?

Up to constants, space used is: E[S] = n + 4
∑n

i=1 E[s2i]

E[s2i] = E

[(
m∑
j=1

Ih(xj)=i

)2]

= E

 ∑
j,k∈[m]

Ih(xj)=i · Ih(xk)=i

 =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
.

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= E

[(
Ih(xj)=i

)2]
= Pr[h(xj) = i] = 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= Pr[h(xj) = i ∩ h(xk) = i] = 1

n2
.

xj , xk : stored items, n: hash table size, h: random hash function, S: space usage of two

level hashing, si : # items stored in hash table at position i .

7

space usage

E[s2i] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]

= m · 1

n
+ 2 ·

(
m

2

)
· 1

n2

=
m

n
+

m(m − 1)

n2
≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2
.

Total Expected Space Usage: (if we set n = m)

E[S] = n + 4
n∑

i=1

E[s2i]

≤ n + 4n · 2 = 9n = 9m.

Near optimal space with O(1) query time!

xj , xk : stored items, m: # stored items, n: hash table size, h: random hash function, S:

space usage of two level hashing, si : # items stored at pos i .

8

space usage

E[s2i] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1

n
+ 2 ·

(
m

2

)
· 1

n2

=
m

n
+

m(m − 1)

n2
≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2
.

Total Expected Space Usage: (if we set n = m)

E[S] = n + 4
n∑

i=1

E[s2i]

≤ n + 4n · 2 = 9n = 9m.

Near optimal space with O(1) query time!

xj , xk : stored items, m: # stored items, n: hash table size, h: random hash function, S:

space usage of two level hashing, si : # items stored at pos i .

8

space usage

E[s2i] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1

n
+ 2 ·

(
m

2

)
· 1

n2

=
m

n
+

m(m − 1)

n2
≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2
.

Total Expected Space Usage: (if we set n = m)

E[S] = n + 4
n∑

i=1

E[s2i]

≤ n + 4n · 2 = 9n = 9m.

Near optimal space with O(1) query time!

xj , xk : stored items, m: # stored items, n: hash table size, h: random hash function, S:

space usage of two level hashing, si : # items stored at pos i .

8

space usage

E[s2i] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1

n
+ 2 ·

(
m

2

)
· 1

n2

=
m

n
+

m(m − 1)

n2
≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2
.

Total Expected Space Usage: (if we set n = m)

E[S] = n + 4
n∑

i=1

E[s2i]

≤ n + 4n · 2 = 9n = 9m.

Near optimal space with O(1) query time!

xj , xk : stored items, m: # stored items, n: hash table size, h: random hash function, S:

space usage of two level hashing, si : # items stored at pos i .

8

space usage

E[s2i] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1

n
+ 2 ·

(
m

2

)
· 1

n2

=
m

n
+

m(m − 1)

n2

≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2
.

Total Expected Space Usage: (if we set n = m)

E[S] = n + 4
n∑

i=1

E[s2i]

≤ n + 4n · 2 = 9n = 9m.

Near optimal space with O(1) query time!

xj , xk : stored items, m: # stored items, n: hash table size, h: random hash function, S:

space usage of two level hashing, si : # items stored at pos i .

8

space usage

E[s2i] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1

n
+ 2 ·

(
m

2

)
· 1

n2

=
m

n
+

m(m − 1)

n2
≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2
.

Total Expected Space Usage: (if we set n = m)

E[S] = n + 4
n∑

i=1

E[s2i]

≤ n + 4n · 2 = 9n = 9m.

Near optimal space with O(1) query time!

xj , xk : stored items, m: # stored items, n: hash table size, h: random hash function, S:

space usage of two level hashing, si : # items stored at pos i .

8

space usage

E[s2i] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1

n
+ 2 ·

(
m

2

)
· 1

n2

=
m

n
+

m(m − 1)

n2
≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2
.

Total Expected Space Usage: (if we set n = m)

E[S] = n + 4
n∑

i=1

E[s2i]

≤ n + 4n · 2 = 9n = 9m.

Near optimal space with O(1) query time!

xj , xk : stored items, m: # stored items, n: hash table size, h: random hash function, S:

space usage of two level hashing, si : # items stored at pos i .

8

space usage

E[s2i] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1

n
+ 2 ·

(
m

2

)
· 1

n2

=
m

n
+

m(m − 1)

n2
≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2
.

Total Expected Space Usage: (if we set n = m)

E[S] = n + 4
n∑

i=1

E[s2i] ≤ n + 4n · 2 = 9n = 9m.

Near optimal space with O(1) query time!

xj , xk : stored items, m: # stored items, n: hash table size, h: random hash function, S:

space usage of two level hashing, si : # items stored at pos i .

8

space usage

E[s2i] =
∑

j,k∈[m]

E
[
Ih(xj)=i · Ih(xk)=i

]
= m · 1

n
+ 2 ·

(
m

2

)
· 1

n2

=
m

n
+

m(m − 1)

n2
≤ 2 (If we set n = m.)

• For j = k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n
.

• For j 6= k, E
[
Ih(xj)=i · Ih(xk)=i

]
= 1

n2
.

Total Expected Space Usage: (if we set n = m)

E[S] = n + 4
n∑

i=1

E[s2i] ≤ n + 4n · 2 = 9n = 9m.

Near optimal space with O(1) query time!

xj , xk : stored items, m: # stored items, n: hash table size, h: random hash function, S:

space usage of two level hashing, si : # items stored at pos i .

8

efficiently computable hash functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash

function from h : U → [n] is two universal if for all x 6= y ∈ U:

Pr[h(x) = h(y)] ≤ 1

n
.

Exercise: Rework the two level hashing proof to show that this property is

really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],

Pr[h(x) = h(y)] = 1
n

(so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p ≥ |U|. Choose random

a, b ∈ [p] with a 6= 0. Let:

h(x) = (ax + b mod p) mod n.

9

efficiently computable hash functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash

function from h : U → [n] is two universal if for all x 6= y ∈ U:

Pr[h(x) = h(y)] ≤ 1

n
.

Exercise: Rework the two level hashing proof to show that this property is

really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],

Pr[h(x) = h(y)] = 1
n

(so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p ≥ |U|. Choose random

a, b ∈ [p] with a 6= 0. Let:

h(x) = (ax + b mod p) mod n.

9

efficiently computable hash functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash

function from h : U → [n] is two universal if for all x 6= y ∈ U:

Pr[h(x) = h(y)] ≤ 1

n
.

Exercise: Rework the two level hashing proof to show that this property is

really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],

Pr[h(x) = h(y)] = 1
n

(so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p ≥ |U|. Choose random

a, b ∈ [p] with a 6= 0. Let:

h(x) = (ax + b mod p) mod n.

9

efficiently computable hash functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash

function from h : U → [n] is two universal if for all x 6= y ∈ U:

Pr[h(x) = h(y)] ≤ 1

n
.

Exercise: Rework the two level hashing proof to show that this property is

really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],

Pr[h(x) = h(y)] = 1
n

(so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p ≥ |U|. Choose random

a, b ∈ [p] with a 6= 0. Let:

h(x) = (ax + b mod p) mod n.

9

efficiently computable hash functions

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash

function from h : U → [n] is two universal if for all x 6= y ∈ U:

Pr[h(x) = h(y)] ≤ 1

n
.

Exercise: Rework the two level hashing proof to show that this property is

really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],

Pr[h(x) = h(y)] = 1
n

(so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p ≥ |U|. Choose random

a, b ∈ [p] with a 6= 0. Let:

h(x) = (ax + b mod p) mod n.

9

pairwise independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from

h : U → [n] is pairwise independent if for all i , j ∈ [n] and for all

x 6= y ∈ U:

Pr[h(x) = i ∩ h(y) = j] =
1

n2
.

Which is a more stringent requirement? 2-universal or pairwise independent?

Pr[h(x) = h(y)] =
n∑

i=1

Pr[h(x) = i ∩ h(y) = i] = n · 1

n2
=

1

n
.

A closely related (ax + b) mod p construction gives pairwise independence

on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise

independent. But it is not efficiently implementable.

10

pairwise independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from

h : U → [n] is pairwise independent if for all i , j ∈ [n] and for all

x 6= y ∈ U:

Pr[h(x) = i ∩ h(y) = j] =
1

n2
.

Which is a more stringent requirement? 2-universal or pairwise independent?

Pr[h(x) = h(y)] =
n∑

i=1

Pr[h(x) = i ∩ h(y) = i] = n · 1

n2
=

1

n
.

A closely related (ax + b) mod p construction gives pairwise independence

on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise

independent. But it is not efficiently implementable.

10

pairwise independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from

h : U → [n] is pairwise independent if for all i , j ∈ [n] and for all

x 6= y ∈ U:

Pr[h(x) = i ∩ h(y) = j] =
1

n2
.

Which is a more stringent requirement? 2-universal or pairwise independent?

Pr[h(x) = h(y)] =
n∑

i=1

Pr[h(x) = i ∩ h(y) = i] = n · 1

n2
=

1

n
.

A closely related (ax + b) mod p construction gives pairwise independence

on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise

independent. But it is not efficiently implementable.

10

pairwise independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from

h : U → [n] is pairwise independent if for all i , j ∈ [n] and for all

x 6= y ∈ U:

Pr[h(x) = i ∩ h(y) = j] =
1

n2
.

Which is a more stringent requirement? 2-universal or pairwise independent?

Pr[h(x) = h(y)] =
n∑

i=1

Pr[h(x) = i ∩ h(y) = i] = n · 1

n2
=

1

n
.

A closely related (ax + b) mod p construction gives pairwise independence

on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise

independent. But it is not efficiently implementable.

10

pairwise independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from

h : U → [n] is pairwise independent if for all i , j ∈ [n] and for all

x 6= y ∈ U:

Pr[h(x) = i ∩ h(y) = j] =
1

n2
.

Which is a more stringent requirement? 2-universal or pairwise independent?

Pr[h(x) = h(y)] =
n∑

i=1

Pr[h(x) = i ∩ h(y) = i] = n · 1

n2
=

1

n
.

A closely related (ax + b) mod p construction gives pairwise independence

on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise

independent. But it is not efficiently implementable.

10

pairwise independence

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from

h : U → [n] is pairwise independent if for all i , j ∈ [n] and for all

x 6= y ∈ U:

Pr[h(x) = i ∩ h(y) = j] =
1

n2
.

Which is a more stringent requirement? 2-universal or pairwise independent?

Pr[h(x) = h(y)] =
n∑

i=1

Pr[h(x) = i ∩ h(y) = i] = n · 1

n2
=

1

n
.

A closely related (ax + b) mod p construction gives pairwise independence

on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise

independent. But it is not efficiently implementable.

10

next step

1. We’ll consider an application where our toolkit of linearity of

expectation + Markov’s inequality doesn’t give much.

2. Then we’ll show how a simple twist on Markov’s can give a much

stronger result.

11

next step

1. We’ll consider an application where our toolkit of linearity of

expectation + Markov’s inequality doesn’t give much.

2. Then we’ll show how a simple twist on Markov’s can give a much

stronger result.

11

chebyshev’s inequality

With a very simple twist Markov’s Inequality can be made much more

powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) =

Pr(X2 ≥ t2) ≤ E[X2]

t2
.

(by plugging in the random variable X− E[X])

12

chebyshev’s inequality

With a very simple twist Markov’s Inequality can be made much more

powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) =

Pr(X2 ≥ t2) ≤ E[X2]

t2
.

(by plugging in the random variable X− E[X])

12

chebyshev’s inequality

With a very simple twist Markov’s Inequality can be made much more

powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) =

Pr(X2 ≥ t2) ≤ E[X2]

t2
.

(by plugging in the random variable X− E[X])

12

chebyshev’s inequality

With a very simple twist Markov’s Inequality can be made much more

powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) =

Pr(X2 ≥ t2) ≤ E[X2]

t2
.

(by plugging in the random variable X− E[X])

12

chebyshev’s inequality

With a very simple twist Markov’s Inequality can be made much more

powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) = Pr(X2 ≥ t2) ≤ E[X2]

t2
.

(by plugging in the random variable X− E[X])

12

chebyshev’s inequality

With a very simple twist Markov’s Inequality can be made much more

powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s inequality:

Chebyshev’s inequality:

Pr(|X| ≥ t) = Pr(X2 ≥ t2) ≤ E[X2]

t2
.

(by plugging in the random variable X− E[X])

12

chebyshev’s inequality

With a very simple twist Markov’s Inequality can be made much more

powerful.

For any random variable X and any value t > 0:

Pr(|X| ≥ t) = Pr(X2 ≥ t2).

X2 is a nonnegative random variable. So can apply Markov’s inequality:

Chebyshev’s inequality:

Pr(|X− E[X]| ≥ t) ≤ Var[X]

t2
.

(by plugging in the random variable X− E[X])

12

