COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor

Lecture 3



TODAY

Today:

® Continue random hash functions and hash tables.

® See an application of random hashing to load balancing in distributed
systems.

® Through this application learn about:

® Chebyshev's inequality, which strengthens Markov's inequality.
® The union bound, for understanding the probabilities of correlated random
events.



HASH TABLES

Want to store a set of items from some finite but massive universe of
items (e.g., images of a certain size, text documents, 128-bit IP
addresses).



HASH TABLES

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP
addresses).

Goal: support query(x) to check if x is in the set in O(1) time.



HASH TABLES

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP
addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:



HASH TABLES

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP
addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables



HASH TABLES

Want to store a set of items from some finite but massive universe of

items (e.g., images of a certain size, text documents, 128-bit IP
addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

® Static hashing since we won't worry about insertion and deletion today.
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128-bit IP addresses Hash Table
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® hash function h: U — [n] maps elements in universe U = {x1, x2, .
to indices of an array. Assume h is fully independent, i.e.,
a) Pr(h(x)) =j) =1 forall x; € U and j € [n] and
b) all h(x1), h(x2), h(x3)... are all independent.
It is very expensive to represent and compute fully independent random
functions. Later, we will see how efficient hash functions are sufficient.
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® hash function h: U — [n] maps elements in universe U = {x1, x2, ...}
to indices of an array. Assume h is fully independent, i.e.,
a) Pr(h(x)) =j) =12 forall x; € U and j € [n] and
b) all h(x1), h(x2),h(x3)... are all independent.
It is very expensive to represent and compute fully independent random
functions. Later, we will see how efficient hash functions are sufficient.
® Collisions: when we insert m items into the hash table we may have
to store multiple items in the same location (typically as a linked list).
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Let C;; = 1 if items / and j collide (h(x;) = h(x;)), and 0 otherwise. The
number of pairwise collisions is:

E[C] = Z E[C;}]. (linearity of expectation)

ijelm)i<j

For any pair i,, i < J:
E[C,‘J] = PI’[C,‘J = ].] = Pl’[h(X,') = h(XJ)] = l.

n

1 (5) _ mm-1)
ElCl= > L="=—p
ijelm],i<j

Identical to the CAPTCHA analysis!

Xj, xj: pair of stored items, m: total number of stored items, n: hash table size, C: total
pairwise collisions in table, h: random hash function.
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Pretty good but we are using O(m?) space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table. ]
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® For each bucket with s; values, pick a collision free hash function mapping
[si] — [4s7].



TWO LEVEL HASHING

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

random hash
function

172.16.254.1

AWON =

192.168.1.34 : collision free O(s?) space
. _s;values

hash function hash table
16.58.26.164

n

® For each bucket with s; values, pick a collision free hash function mapping
[si] — [4s7].
® Previously: Showed that a random function is collision free with probability

> % so can just generate a random hash function and check if it is collision
free.
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Collisions again!

Xj, Xk: stored items, n: hash table size, h: random hash function, S: space usage of two
level hashing, s;: # items stored in hash table at position i.
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Near optimal space with O(1) query time!

Xj, Xx: stored items, m: # stored items, n: hash table size, h: random hash function, S:
space usage of two level hashing, s;: # items stored at pos i.
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1 (so a fully random hash function is 2-universal)



EFFICIENTLY COMPUTABLE HASH FUNCTIONS

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash
function from h : U — [n] is two universal if for all x # y € U:

Prih(x) = h(y)] < -

Exercise: Rework the two level hashing proof to show that this property is

really all that is needed.

When h(x) and h(y) are chosen independently at random from [n],
Pr[h(x) = h(y)] = % (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with p > |U|. Choose random
a,b € [p] with a # 0. Let:

h(x) =(ax+b mod p) mod n.
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PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

s A

Pairwise Independent Hash Function. A random hash function from
h : U — [n] is pairwise independent if for all i,j € [n] and for all

x#yeU:

Prih(x) = i Nh(y) =] = —.

Which is a more stringent requirement? 2-universal or pairwise independent?
Pr[h(x) = h(y)] = Z Prlh(x) = inh(y) =] =n- = =1,
— n? n

A closely related (ax +b) mod p construction gives pairwise independence
on top of 2-universality.
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PAIRWISE INDEPENDENCE

Another common requirement for a hash function:

s A

Pairwise Independent Hash Function. A random hash function from
h : U — [n] is pairwise independent if for all i,j € [n] and for all
x#yeU:

Prih(x) = iNh(y) = ] = —

n?’

Which is a more stringent requirement? 2-universal or pairwise independent?

. . . 11

Pr[h(x) = h(y)] = ; Prln(x) =inh(y)=il=n-—=—.

A closely related (ax +b) mod p construction gives pairwise independence
on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise
independent. But it is not efficiently implementable.
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NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn't give much.
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NEXT STEP

1. We'll consider an application where our toolkit of linearity of
expectation + Markov's inequality doesn't give much.

2. Then we'll show how a simple twist on Markov's can give a much

stronger result.
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CHEBYSHEV’S INEQUALITY

With a very simple twist Markov's Inequality can be made much more
powerful.
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CHEBYSHEV’S INEQUALITY

With a very simple twist Markov's Inequality can be made much more
powerful.

For any random variable X and any value t > 0:
Pr(|X| > t) = Pr(X2 > t?).

X2 is a nonnegative random variable. So can apply Markov's inequality:

Chebyshev’s inequality:

Pr(IX —E[X][ > t) <

(by plugging in the random variable X — E[X])
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