COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 3

TODAY

Today:

- Continue random hash functions and hash tables.
- See an application of random hashing to load balancing in distributed systems.
- Through this application learn about:
 - Chebyshev's inequality, which strengthens Markov's inequality.
 - The union bound, for understanding the probabilities of correlated random events.

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128-bit IP addresses).

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution:

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

Want to store a set of items from some finite but massive universe of items (e.g., images of a certain size, text documents, 128-bit IP addresses).

Goal: support query(x) to check if x is in the set in O(1) time.

Classic Solution: Hash tables

• Static hashing since we won't worry about insertion and deletion today.

)

- hash function $h: U \to [n]$ maps elements in universe $U = \{x_1, x_2, \ldots\}$ to indices of an array. Assume **h** is fully independent, i.e.,
 - a) $Pr(\mathbf{h}(x_i) = j) = \frac{1}{n}$ for all $x_i \in U$ and $j \in [n]$ and
 - b) all $\mathbf{h}(x_1), \mathbf{h}(x_2), \mathbf{h}(x_3) \dots$ are all independent.

It is *very expensive* to represent and compute fully independent random functions. Later, we will see how efficient hash functions are sufficient.

- hash function $h: U \to [n]$ maps elements in universe $U = \{x_1, x_2, \ldots\}$ to indices of an array. Assume **h** is fully independent, i.e.,
 - a) $Pr(\mathbf{h}(x_i) = j) = \frac{1}{n}$ for all $x_i \in U$ and $j \in [n]$ and
 - b) all $\mathbf{h}(x_1), \mathbf{h}(x_2), \mathbf{h}(x_3) \dots$ are all independent.

It is *very expensive* to represent and compute fully independent random functions. Later, we will see how efficient hash functions are sufficient.

• **Collisions:** when we insert *m* items into the hash table we may have to store multiple items in the same location (typically as a linked list).

- hash function $h: U \to [n]$ maps elements in universe $U = \{x_1, x_2, \ldots\}$ to indices of an array. Assume **h** is fully independent, i.e.,
 - a) $\Pr(\mathbf{h}(x_i) = j) = \frac{1}{n}$ for all $x_i \in U$ and $j \in [n]$ and
 - b) all $\mathbf{h}(x_1), \mathbf{h}(x_2), \mathbf{h}(x_3) \dots$ are all independent.

It is *very expensive* to represent and compute fully independent random functions. Later, we will see how efficient hash functions are sufficient.

Collisions: when we insert m items into the hash table we may have
to store multiple items in the same location (typically as a linked list).

Let $C_{i,j} = 1$ if items i and j collide $(\mathbf{h}(x_i) = \mathbf{h}(x_j))$, and 0 otherwise. The number of pairwise collisions is:

$$\mathbf{C} = \sum_{i,j \in [m], i < j} \mathbf{C}_{i,j}.$$

 x_i, x_j : pair of stored items, m: total number of stored items, n: hash table size, C: total pairwise collisions in table, h: random hash function.

Let $C_{i,j} = 1$ if items i and j collide $(\mathbf{h}(x_i) = \mathbf{h}(x_j))$, and 0 otherwise. The number of pairwise collisions is:

$$\mathbb{E}[\mathbf{C}] = \sum_{i,j \in [m], i < j} \mathbb{E}[\mathbf{C}_{i,j}]. \tag{linearity of expectation}$$

 x_i, x_j : pair of stored items, m: total number of stored items, n: hash table size, C: total pairwise collisions in table, h: random hash function.

Let $C_{i,j} = 1$ if items i and j collide $(\mathbf{h}(x_i) = \mathbf{h}(x_j))$, and 0 otherwise. The number of pairwise collisions is:

$$\mathbb{E}[\mathbf{C}] = \sum_{i,j \in [m], i < j} \mathbb{E}[\mathbf{C}_{i,j}].$$
 (linearity of expectation)

For any pair i, j, i < j:

$$\mathbb{E}[\mathbf{C}_{i,j}] = \Pr[\mathbf{C}_{i,j} = 1] = \Pr[\mathbf{h}(x_i) = \mathbf{h}(x_j)]$$

 x_i, x_j : pair of stored items, m: total number of stored items, n: hash table size, C: total pairwise collisions in table, h: random hash function.

Let $C_{i,j} = 1$ if items i and j collide $(\mathbf{h}(x_i) = \mathbf{h}(x_j))$, and 0 otherwise. The number of pairwise collisions is:

$$\mathbb{E}[\mathbf{C}] = \sum_{i,j \in [m], i < j} \mathbb{E}[\mathbf{C}_{i,j}]. \qquad \text{(linearity of expectation)}$$

For any pair i, j, i < j:

$$\mathbb{E}[\mathbf{C}_{i,j}] = \Pr[\mathbf{C}_{i,j} = 1] = \Pr[\mathbf{h}(x_i) = \mathbf{h}(x_j)] = \frac{1}{n}.$$

 x_i, x_j : pair of stored items, m: total number of stored items, n: hash table size, C: total pairwise collisions in table, h: random hash function.

Let $C_{i,j} = 1$ if items i and j collide $(\mathbf{h}(x_i) = \mathbf{h}(x_j))$, and 0 otherwise. The number of pairwise collisions is:

$$\mathbb{E}[\mathbf{C}] = \sum_{i,j \in [m], i < j} \mathbb{E}[\mathbf{C}_{i,j}]. \tag{linearity of expectation}$$

For any pair i, j, i < j:

$$\mathbb{E}[\mathbf{C}_{i,j}] = \Pr[\mathbf{C}_{i,j} = 1] = \Pr[\mathbf{h}(x_i) = \mathbf{h}(x_j)] = \frac{1}{n}.$$

$$\mathbb{E}[\mathbf{C}] = \sum_{i,j \in [m], i < j} \frac{1}{n} = \frac{\binom{m}{2}}{n} = \frac{m(m-1)}{2n}.$$

 x_i, x_j : pair of stored items, m: total number of stored items, n: hash table size, C: total pairwise collisions in table, h: random hash function.

Let $C_{i,j} = 1$ if items i and j collide $(\mathbf{h}(x_i) = \mathbf{h}(x_j))$, and 0 otherwise. The number of pairwise collisions is:

$$\mathbb{E}[\mathbf{C}] = \sum_{i,j \in [m], i < j} \mathbb{E}[\mathbf{C}_{i,j}]. \tag{linearity of expectation}$$

For any pair i, j, i < j:

$$\mathbb{E}[\mathbf{C}_{i,j}] = \Pr[\mathbf{C}_{i,j} = 1] = \Pr[\mathbf{h}(x_i) = \mathbf{h}(x_j)] = \frac{1}{n}.$$

$$\mathbb{E}[\mathbf{C}] = \sum_{i,j \in [m], i < j} \frac{1}{n} = \frac{\binom{m}{2}}{n} = \frac{m(m-1)}{2n}.$$

Identical to the CAPTCHA analysis!

 x_i, x_j : pair of stored items, m: total number of stored items, n: hash table size, C: total pairwise collisions in table, h: random hash function.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}.$$

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}.$$

• For $n = 4m^2$ we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}.$$

• For $n = 4m^2$ we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}.$$

• For $n = 4m^2$ we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

Apply Markov's Inequality:

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}.$$

• For $n = 4m^2$ we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

Apply Markov's Inequality: $\Pr[\mathbf{C} \geq 1] \leq \frac{\mathbb{E}[\mathbf{C}]}{1}$

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}.$$

• For $n = 4m^2$ we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

Apply Markov's Inequality: $\Pr[\mathbf{C} \ge 1] \le \frac{\mathbb{E}[\mathbf{C}]}{1} = \frac{1}{8}$.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}.$$

• For $n = 4m^2$ we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

Apply Markov's Inequality: $\Pr[\mathbf{C} \ge 1] \le \frac{\mathbb{E}[\mathbf{C}]}{1} = \frac{1}{8}$.

$$\Pr[\boldsymbol{\mathsf{C}}=0] = 1 - \Pr[\boldsymbol{\mathsf{C}} \geq 1]$$

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}.$$

• For $n = 4m^2$ we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

Apply Markov's Inequality: $\Pr[\mathbf{C} \ge 1] \le \frac{\mathbb{E}[\mathbf{C}]}{1} = \frac{1}{8}$.

$$\Pr[\mathbf{C} = 0] = 1 - \Pr[\mathbf{C} \ge 1] \ge 1 - \frac{1}{8}$$

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}.$$

• For $n = 4m^2$ we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

Apply Markov's Inequality: $\Pr[\mathbf{C} \ge 1] \le \frac{\mathbb{E}[\mathbf{C}]}{1} = \frac{1}{8}$.

$$\Pr[\textbf{C} = 0] = 1 - \Pr[\textbf{C} \ge 1] \ge 1 - \frac{1}{8} = \frac{7}{8}.$$

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

$$\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{2n}.$$

• For $n = 4m^2$ we have: $\mathbb{E}[\mathbf{C}] = \frac{m(m-1)}{8m^2} \le \frac{1}{8}$.

Apply Markov's Inequality: $\Pr[C \ge 1] \le \frac{\mathbb{E}[C]}{1} = \frac{1}{8}$.

$$\Pr[\mathbf{C} = 0] = 1 - \Pr[\mathbf{C} \ge 1] \ge 1 - \frac{1}{8} = \frac{7}{8}.$$

Pretty good but we are using $O(m^2)$ space to store m items.

m: total number of stored items, n: hash table size, C: total pairwise collisions in table.

Want to preserve O(1) query time while using O(m) space.

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

• For each bucket with s_i values, pick a collision free hash function mapping $[s_i] \rightarrow [4s_i^2]$.

Want to preserve O(1) query time while using O(m) space.

Two-Level Hashing:

- For each bucket with s_i values, pick a collision free hash function mapping $[s_i] \rightarrow [4s_i^2]$.
- **Previously:** Showed that a random function is collision free with probability $\geq \frac{7}{8}$ so can just generate a random hash function and check if it is collision free.

Query time for two level hashing is O(1): requires evaluating two hash functions.

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbf{S} = n + 4 \sum_{i=1}^{n} \mathbf{s}_{i}^{2}$

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}] = n + 4 \sum_{i=1}^{n} \mathbb{E}[\mathbf{s}_{i}^{2}]$

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_i^2] = \mathbb{E}\left[\left(\sum_{j=1}^m \mathbb{I}_{\mathbf{h}(x_j)=i}\right)^2\right]$$

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$
$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right]$$

Collisions again!

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right].$$

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right].$$

• For j = k,

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right].$$

 $\bullet \ \, \mathsf{For} \, j = k, \, \mathbb{E}\left[\mathbb{I}_{\mathsf{h}(\mathsf{x}_j) = i} \cdot \mathbb{I}_{\mathsf{h}(\mathsf{x}_k) = i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{\mathsf{h}(\mathsf{x}_j) = i}\right)^2\right]$

 x_i, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right].$$

• For
$$j = k$$
, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}(x_j)=i}\right)^2\right] = \Pr[\mathbf{h}(x_j)=i]$

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right].$$

• For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}(x_j)=i}\right)^2\right] = \Pr[\mathbf{h}(x_j)=i] = \frac{1}{n}$.

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right].$$

- For j=k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i}\cdot\mathbb{I}_{\mathbf{h}(x_k)=i}\right]=\mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}(x_j)=i}\right)^2\right]=\Pr[\mathbf{h}(x_j)=i]=\frac{1}{n}$.
- For $j \neq k$,

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[\mathbf{S}] = n + 4 \sum_{i=1}^{n} \mathbb{E}[\mathbf{s}_{i}^{2}]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right].$$

- For j=k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i}\cdot\mathbb{I}_{\mathbf{h}(x_k)=i}\right]=\mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}(x_j)=i}\right)^2\right]=\Pr[\mathbf{h}(x_j)=i]=\frac{1}{n}.$
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right]$

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right].$$

- For j=k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i}\cdot\mathbb{I}_{\mathbf{h}(x_k)=i}\right]=\mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}(x_j)=i}\right)^2\right]=\Pr[\mathbf{h}(x_j)=i]=\frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \Pr[\mathbf{h}(x_j)=i \cap \mathbf{h}(x_k)=i]$

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

Query time for two level hashing is O(1): requires evaluating two hash functions. What is the expected space usage?

Up to constants, space used is: $\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$

$$\mathbb{E}[\mathbf{s}_{i}^{2}] = \mathbb{E}\left[\left(\sum_{j=1}^{m} \mathbb{I}_{\mathbf{h}(x_{j})=i}\right)^{2}\right]$$

$$= \mathbb{E}\left[\sum_{j,k\in[m]} \mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] = \sum_{j,k\in[m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right].$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \mathbb{E}\left[\left(\mathbb{I}_{\mathbf{h}(x_j)=i}\right)^2\right] = \Pr[\mathbf{h}(x_j)=i] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \Pr[\mathbf{h}(x_j)=i \cap \mathbf{h}(x_k)=i] = \frac{1}{n^2}$.

 x_j, x_k : stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored in hash table at position i.

$$\mathbb{E}[\mathbf{s}_i^2] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right]$$

- For j=k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(\mathbf{x}_j)=i}\cdot\mathbb{I}_{\mathbf{h}(\mathbf{x}_k)=i}\right]=\frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_i^2] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right]$$
$$= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^2}$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_i^2] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right]$$
$$= \mathbf{m} \cdot \frac{1}{\mathbf{n}} + 2 \cdot \binom{m}{2} \cdot \frac{1}{\mathbf{n}^2}$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_i^2] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right]$$
$$= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^2}$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(\mathbf{x}_j)=i} \cdot \mathbb{I}_{\mathbf{h}(\mathbf{x}_k)=i}\right] = \frac{1}{n^2}$.

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_i^2] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right]$$
$$= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^2}$$
$$= \frac{m}{n} + \frac{m(m-1)}{n^2}$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\mathbb{E}[\mathbf{s}_i^2] = \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(\mathbf{x}_j)=i} \cdot \mathbb{I}_{\mathbf{h}(\mathbf{x}_k)=i}\right]$$

$$= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^2}$$

$$= \frac{m}{n} + \frac{m(m-1)}{n^2} \le 2 \text{ (If we set } n = m.)$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\begin{split} \mathbb{E}[\mathbf{s}_i^2] &= \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(\mathbf{x}_j) = i} \cdot \mathbb{I}_{\mathbf{h}(\mathbf{x}_k) = i}\right] \\ &= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^2} \\ &= \frac{m}{n} + \frac{m(m-1)}{n^2} \le 2 \text{ (If we set } n = m.) \end{split}$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(\mathsf{x}_j)=i} \cdot \mathbb{I}_{\mathbf{h}(\mathsf{x}_k)=i}\right] = \frac{1}{n^2}$.

Total Expected Space Usage: (if we set n = m)

$$\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_i^2]$$

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\begin{split} \mathbb{E}[\mathbf{s}_{i}^{2}] &= \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] \\ &= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^{2}} \\ &= \frac{m}{n} + \frac{m(m-1)}{n^{2}} \le 2 \text{ (If we set } n = m.) \end{split}$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

Total Expected Space Usage: (if we set n = m)

$$\mathbb{E}[\mathbf{S}] = n + 4 \sum_{i=1}^{n} \mathbb{E}[\mathbf{s}_{i}^{2}] \le n + 4n \cdot 2 = 9n = 9m.$$

 x_j , x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

$$\begin{split} \mathbb{E}[\mathbf{s}_{i}^{2}] &= \sum_{j,k \in [m]} \mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_{j})=i} \cdot \mathbb{I}_{\mathbf{h}(x_{k})=i}\right] \\ &= m \cdot \frac{1}{n} + 2 \cdot \binom{m}{2} \cdot \frac{1}{n^{2}} \\ &= \frac{m}{n} + \frac{m(m-1)}{n^{2}} \le 2 \text{ (If we set } n = m.) \end{split}$$

- For j = k, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n}$.
- For $j \neq k$, $\mathbb{E}\left[\mathbb{I}_{\mathbf{h}(x_j)=i} \cdot \mathbb{I}_{\mathbf{h}(x_k)=i}\right] = \frac{1}{n^2}$.

Total Expected Space Usage: (if we set n = m)

$$\mathbb{E}[S] = n + 4 \sum_{i=1}^{n} \mathbb{E}[s_{i}^{2}] \le n + 4n \cdot 2 = 9n = \frac{9m}{n}.$$

Near optimal space with O(1) query time!

 x_j, x_k : stored items, m: # stored items, n: hash table size, h: random hash function, S: space usage of two level hashing, s_i : # items stored at pos i.

What properties did we use of the randomly chosen hash function?

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash function from $\mathbf{h}: U \to [n]$ is two universal if for all $x \neq y \in U$:

$$\Pr[\mathbf{h}(x) = \mathbf{h}(y)] \le \frac{1}{n}.$$

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash function from $\mathbf{h}: U \to [n]$ is two universal if for all $x \neq y \in U$:

$$\Pr[\mathbf{h}(x) = \mathbf{h}(y)] \leq \frac{1}{n}.$$

Exercise: Rework the two level hashing proof to show that this property is really all that is needed.

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash function from $\mathbf{h}: U \to [n]$ is two universal if for all $x \neq y \in U$:

$$\Pr[\mathbf{h}(x) = \mathbf{h}(y)] \le \frac{1}{n}.$$

Exercise: Rework the two level hashing proof to show that this property is really all that is needed.

When $\mathbf{h}(x)$ and $\mathbf{h}(y)$ are chosen independently at random from [n], $\Pr[\mathbf{h}(x) = \mathbf{h}(y)] = \frac{1}{n}$ (so a fully random hash function is 2-universal)

What properties did we use of the randomly chosen hash function?

2-Universal Hash Function (low collision probability). A random hash function from $\mathbf{h}: U \to [n]$ is two universal if for all $x \neq y \in U$:

$$\Pr[\mathbf{h}(x) = \mathbf{h}(y)] \le \frac{1}{n}.$$

Exercise: Rework the two level hashing proof to show that this property is really all that is needed.

When $\mathbf{h}(x)$ and $\mathbf{h}(y)$ are chosen independently at random from [n], $\Pr[\mathbf{h}(x) = \mathbf{h}(y)] = \frac{1}{n}$ (so a fully random hash function is 2-universal)

Efficient Alternative: Let p be a prime with $p \ge |U|$. Choose random $\mathbf{a}, \mathbf{b} \in [p]$ with $\mathbf{a} \ne 0$. Let:

$$\mathbf{h}(x) = (\mathbf{a}x + \mathbf{b} \mod p) \mod n.$$

Another common requirement for a hash function:

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from

 $\mathbf{h}:U \to [n]$ is pairwise independent if for all $i,j \in [n]$ and for all $x \neq y \in U$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from

 $\mathbf{h}:U \to [n]$ is pairwise independent if for all $i,j \in [n]$ and for all $x \neq y \in U$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

Which is a more stringent requirement? 2-universal or pairwise independent?

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from

 $\mathbf{h}:U \to [n]$ is pairwise independent if for all $i,j \in [n]$ and for all $x \neq y \in U$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

Which is a more stringent requirement? 2-universal or pairwise independent?

$$\Pr[\mathbf{h}(x) = \mathbf{h}(y)] = \sum_{i=1}^{n} \Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = i] = n \cdot \frac{1}{n^{2}} = \frac{1}{n}.$$

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from

 $\mathbf{h}:U \to [n]$ is pairwise independent if for all $i,j \in [n]$ and for all $x \neq y \in U$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

Which is a more stringent requirement? 2-universal or pairwise independent?

$$\Pr[\mathbf{h}(x) = \mathbf{h}(y)] = \sum_{i=1}^{n} \Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = i] = n \cdot \frac{1}{n^{2}} = \frac{1}{n}.$$

A closely related $(\mathbf{a}x + \mathbf{b}) \mod p$ construction gives pairwise independence on top of 2-universality.

Another common requirement for a hash function:

Pairwise Independent Hash Function. A random hash function from $\mathbf{h}:U\to [n]$ is pairwise independent if for all $i,j\in [n]$ and for all $x\neq y\in U$:

$$\Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = j] = \frac{1}{n^2}.$$

Which is a more stringent requirement? 2-universal or pairwise independent?

$$\Pr[\mathbf{h}(x) = \mathbf{h}(y)] = \sum_{i=1}^{n} \Pr[\mathbf{h}(x) = i \cap \mathbf{h}(y) = i] = n \cdot \frac{1}{n^{2}} = \frac{1}{n}.$$

A closely related $(\mathbf{a}x + \mathbf{b}) \mod p$ construction gives pairwise independence on top of 2-universality.

Remember: A fully random hash function is both 2-universal and pairwise independent. But it is not efficiently implementable.

NEXT STEP

1. We'll consider an application where our toolkit of linearity of expectation + Markov's inequality doesn't give much.

NEXT STEP

- 1. We'll consider an application where our toolkit of linearity of expectation + Markov's inequality doesn't give much.
- 2. Then we'll show how a simple twist on Markov's can give a much stronger result.

With a very simple twist Markov's Inequality can be made much more powerful.

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable **X** and any value t > 0:

$$\Pr(|\mathbf{X}| \geq t) = \Pr(\mathbf{X}^2 \geq t^2).$$

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable **X** and any value t > 0:

$$\Pr(|\mathbf{X}| \geq t) = \Pr(\mathbf{X}^2 \geq t^2).$$

 \mathbf{X}^2 is a nonnegative random variable. So can apply Markov's inequality:

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable **X** and any value t > 0:

$$\Pr(|\mathbf{X}| \geq t) = \Pr(\mathbf{X}^2 \geq t^2).$$

 \mathbf{X}^2 is a nonnegative random variable. So can apply Markov's inequality:

$$\mathsf{Pr}(\mathbf{X}^2 \geq t^2) \leq \frac{\mathbb{E}[\mathbf{X}^2]}{t^2}.$$

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable **X** and any value t > 0:

$$\Pr(|\mathbf{X}| \geq t) = \Pr(\mathbf{X}^2 \geq t^2).$$

 \mathbf{X}^2 is a nonnegative random variable. So can apply Markov's inequality:

$$\Pr(|\mathbf{X}| \geq t) = \Pr(\mathbf{X}^2 \geq t^2) \leq \frac{\mathbb{E}[\mathbf{X}^2]}{t^2}.$$

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable **X** and any value t > 0:

$$\Pr(|\mathbf{X}| \geq t) = \Pr(\mathbf{X}^2 \geq t^2).$$

 \mathbf{X}^2 is a nonnegative random variable. So can apply Markov's inequality:

Chebyshev's inequality:

$$\Pr(|\mathbf{X}| \geq t) = \Pr(\mathbf{X}^2 \geq t^2) \leq \frac{\mathbb{E}[\mathbf{X}^2]}{t^2}.$$

With a very simple twist Markov's Inequality can be made much more powerful.

For any random variable **X** and any value t > 0:

$$\Pr(|\mathbf{X}| \geq t) = \Pr(\mathbf{X}^2 \geq t^2).$$

 \mathbf{X}^2 is a nonnegative random variable. So can apply Markov's inequality:

Chebyshev's inequality:

$$\Pr(|\mathbf{X} - \mathbb{E}[\mathbf{X}]| \ge t) \le \frac{\mathsf{Var}[\mathbf{X}]}{t^2}.$$

(by plugging in the random variable $\mathbf{X} - \mathbb{E}[\mathbf{X}])$