COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 4

LAST TIME

Last Class:

- 2-Level Hashing Analysis (linearity of expectation and Markov's inequality)
- 2-universal and pairwise independent hash functions
- Chebyshev: $\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t) \leq \operatorname{Var}[\mathbf{X}] / t^{2}$

LAST TIME

Last Class:

- 2-Level Hashing Analysis (linearity of expectation and Markov's inequality)
- 2-universal and pairwise independent hash functions
- Chebyshev: $\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t) \leq \operatorname{Var}[\mathbf{X}] / t^{2}$

This Time:

- Random hashing for load balancing. Motivating:
- Stronger concentration inequalities: Chebyshev's inequality, exponential tail bounds, and their connections to the law of large numbers.
- The union bound.

BINOMIAL DISTRIBUTION

- Suppose random variable X and can be written as

$$
X=A_{1}+A_{2}+\ldots+A_{n}
$$

where each A_{i} are independent indicator variables with $\operatorname{Pr}\left(A_{i}\right)=p$.

BINOMIAL DISTRIBUTION

- Suppose random variable X and can be written as

$$
X=A_{1}+A_{2}+\ldots+A_{n}
$$

where each A_{i} are independent indicator variables with $\operatorname{Pr}\left(A_{i}\right)=p$.

- Then, the distribution of X is the Binomial Distribution and

$$
\operatorname{Pr}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

BINOMIAL DISTRIBUTION

- Suppose random variable X and can be written as

$$
X=A_{1}+A_{2}+\ldots+A_{n}
$$

where each A_{i} are independent indicator variables with $\operatorname{Pr}\left(A_{i}\right)=p$.

- Then, the distribution of X is the Binomial Distribution and

$$
\operatorname{Pr}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

- Note $\mathbb{E}\left[A_{i}\right]=p$ and $\operatorname{Var}\left[A_{i}\right]=\mathbb{E}\left[A_{i}^{2}\right]-\mathbb{E}\left[A_{i}\right]^{2}=p-p^{2}$.

BINOMIAL DISTRIBUTION

- Suppose random variable X and can be written as

$$
X=A_{1}+A_{2}+\ldots+A_{n}
$$

where each A_{i} are independent indicator variables with $\operatorname{Pr}\left(A_{i}\right)=p$.

- Then, the distribution of X is the Binomial Distribution and

$$
\operatorname{Pr}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

- Note $\mathbb{E}\left[A_{i}\right]=p$ and $\operatorname{Var}\left[A_{i}\right]=\mathbb{E}\left[A_{i}^{2}\right]-\mathbb{E}\left[A_{i}\right]^{2}=p-p^{2}$.
- By linearity of expectation and variance,

$$
\mathbb{E}[X]=n p \quad \operatorname{Var}[X]=n p(1-p) .
$$

RANDOMIZED LOAD BALANCING

Randomized Load Balancing:

- n requests randomly assigned to k servers.

RANDOMIZED LOAD BALANCING

Randomized Load Balancing:

- n requests randomly assigned to k servers.
- Let \mathbf{R}_{i} be the number requests assigned to the i th server.

RANDOMIZED LOAD BALANCING

Randomized Load Balancing:

- n requests randomly assigned to k servers.
- Let \mathbf{R}_{i} be the number requests assigned to the ith server.
- \mathbf{R}_{i} is binomial and hence has expectation:

$$
\mathbb{E}\left[\mathbf{R}_{i}\right]=\sum_{j=1}^{n} \mathbb{E}\left[\mathbb{I}_{\text {request } j \text { assigned to } i}\right]=\sum_{j=1}^{n} \operatorname{Pr}[j \text { assigned to } i]=\frac{n}{k} .
$$

RANDOMIZED LOAD BALANCING

Randomized Load Balancing:

- n requests randomly assigned to k servers.
- Let \mathbf{R}_{i} be the number requests assigned to the i th server.
- \mathbf{R}_{i} is binomial and hence has expectation:

$$
\mathbb{E}\left[\mathbf{R}_{i}\right]=\sum_{j=1}^{n} \mathbb{E}\left[\mathbb{I}_{\text {request }} j \text { assigned to } i\right]=\sum_{j=1}^{n} \operatorname{Pr}[j \text { assigned to } i]=\frac{n}{k} .
$$

- Variance:
$\operatorname{Var}\left[\mathbf{R}_{i}\right]=\operatorname{Var}\left[\sum_{j=1}^{n} \mathbb{I}_{\text {request } j \text { assigned to } i}\right]=\sum_{j=1}^{n} \operatorname{Var}\left[\mathbb{I}_{j \text { assigned to } i}\right]=n\left(\frac{1}{k}-\frac{1}{k^{2}}\right)$

MAXIMUM SERVER LOAD

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{2 n}{k}$. I.e., some server is overloaded if each has $\frac{2 n}{k}$ capacity?

MAXIMUM SERVER LOAD

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{2 n}{k}$. I.e., some server is overloaded if each has $\frac{2 n}{k}$ capacity?

- By Markov's inequality, $\operatorname{Pr}\left[\mathbf{R}_{i} \geq 2 \mathbb{E}\left[\mathbf{R}_{i}\right]\right] \leq 1 / 2$.

MAXIMUM SERVER LOAD

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{2 n}{k}$. I.e., some server is overloaded if each has $\frac{2 n}{k}$ capacity?

- By Markov's inequality, $\operatorname{Pr}\left[\mathbf{R}_{i} \geq 2 \mathbb{E}\left[\mathbf{R}_{i}\right]\right] \leq 1 / 2$.
- By Chebyshev's inequality, $\operatorname{Pr}\left[\mathbf{R}_{i} \geq 2 \mathbb{E}\left[\mathbf{R}_{i}\right]\right] \leq \frac{\operatorname{Var}\left[\mathbf{R}_{i}\right]}{\mathbb{E}\left[\mathbf{R}_{i}\right]^{2}}<\frac{k}{n}$.

MAXIMUM SERVER LOAD

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{2 n}{k}$. I.e., some server is overloaded if each has $\frac{2 n}{k}$ capacity?

- By Markov's inequality, $\operatorname{Pr}\left[\mathbf{R}_{i} \geq 2 \mathbb{E}\left[\mathbf{R}_{i}\right]\right] \leq 1 / 2$.
- By Chebyshev's inequality, $\operatorname{Pr}\left[\mathbf{R}_{i} \geq 2 \mathbb{E}\left[\mathbf{R}_{i}\right]\right] \leq \frac{\operatorname{Var}\left[\mathbf{R}_{i}\right]}{\mathbb{E}\left[\mathbf{R}_{i}\right]^{2}}<\frac{k}{n}$.

We want to upper bound:

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{i}\left(\mathbf{R}_{i}\right) \geq \frac{2 n}{k}\right) & =\operatorname{Pr}\left(\left[\mathbf{R}_{1} \geq \frac{2 n}{k}\right] \text { or } \ldots \text { or }\left[\mathbf{R}_{k} \geq \frac{2 n}{k}\right]\right) \\
& =\operatorname{Pr}\left(\bigcup_{i=1}^{k}\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right)
\end{aligned}
$$

MAXIMUM SERVER LOAD

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{2 n}{k}$. I.e., some server is overloaded if each has $\frac{2 n}{k}$ capacity?

- By Markov's inequality, $\operatorname{Pr}\left[\mathbf{R}_{i} \geq 2 \mathbb{E}\left[\mathbf{R}_{i}\right]\right] \leq 1 / 2$.
- By Chebyshev's inequality, $\operatorname{Pr}\left[\mathbf{R}_{i} \geq 2 \mathbb{E}\left[\mathbf{R}_{i}\right]\right] \leq \frac{\operatorname{Var}\left[\mathbf{R}_{i}\right]}{\mathbb{E}\left[\mathbf{R}_{i}\right]^{2}}<\frac{k}{n}$.

We want to upper bound:

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{i}\left(\mathbf{R}_{i}\right) \geq \frac{2 n}{k}\right) & =\operatorname{Pr}\left(\left[\mathbf{R}_{1} \geq \frac{2 n}{k}\right] \text { or } \ldots \text { or }\left[\mathbf{R}_{k} \geq \frac{2 n}{k}\right]\right) \\
& =\operatorname{Pr}\left(\bigcup_{i=1}^{k}\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right)
\end{aligned}
$$

How do we do this since $\mathbf{R}_{1}, \ldots, \mathbf{R}_{k}$ are not independent?

THE UNION BOUND

Union Bound: For any random events $A_{1}, A_{2}, \ldots, A_{k}$,

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\ldots+\operatorname{Pr}\left(A_{k}\right) .
$$

THE UNION BOUND

Union Bound: For any random events $A_{1}, A_{2}, \ldots, A_{k}$,

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\ldots+\operatorname{Pr}\left(A_{k}\right) .
$$

THE UNION BOUND

Union Bound: For any random events $A_{1}, A_{2}, \ldots, A_{k}$,

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\ldots+\operatorname{Pr}\left(A_{k}\right) .
$$

When is the union bound tight?

THE UNION BOUND

Union Bound: For any random events $A_{1}, A_{2}, \ldots, A_{k}$,

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\ldots+\operatorname{Pr}\left(A_{k}\right) .
$$

When is the union bound tight? When A_{1}, \ldots, A_{k} are all disjoint.

THE UNION BOUND

Union Bound: For any random events $A_{1}, A_{2}, \ldots, A_{k}$,

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\ldots+\operatorname{Pr}\left(A_{k}\right) .
$$

When is the union bound tight? When A_{1}, \ldots, A_{k} are all disjoint.

THE UNION BOUND

Union Bound: For any random events $A_{1}, A_{2}, \ldots, A_{k}$,

$$
\operatorname{Pr}\left(A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right) \leq \operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)+\ldots+\operatorname{Pr}\left(A_{k}\right) .
$$

When is the union bound tight? When A_{1}, \ldots, A_{k} are all disjoint.
On the first problem set, you will prove the union bound, as a consequence of Markov's inquality.

APPLYING THE UNION BOUND

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{2 n}{k}$. I.e., that some server is overloaded if we give each $\frac{2 n}{k}$ capacity?

$$
\operatorname{Pr}\left(\max _{i}\left(\mathbf{R}_{i}\right) \geq \frac{2 n}{k}\right)=\operatorname{Pr}\left(\bigcup_{i=1}^{k}\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right)
$$

n : total number of requests, k : number of servers randomly assigned requests, \mathbf{R}_{i} : number of requests assigned to server $i . \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{n}{k} . \operatorname{Var}\left[\mathbf{R}_{i}\right]=\frac{n}{k}$.

APPLYING THE UNION BOUND

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{2 n}{k}$. I.e., that some server is overloaded if we give each $\frac{2 n}{k}$ capacity?

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{i}\left(\mathbf{R}_{i}\right) \geq \frac{2 n}{k}\right) & =\operatorname{Pr}\left(\bigcup_{i=1}^{k}\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right) \\
& \leq \sum_{i=1}^{k} \operatorname{Pr}\left(\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right)
\end{aligned}
$$

(Union Bound)
n : total number of requests, k : number of servers randomly assigned requests, \mathbf{R}_{i} : number of requests assigned to server $i . \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{n}{k} . \operatorname{Var}\left[\mathbf{R}_{i}\right]=\frac{n}{k}$.

APPLYING THE UNION BOUND

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{2 n}{k}$. l.e., that some server is overloaded if we give each $\frac{2 n}{k}$ capacity?

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{i}\left(\mathbf{R}_{i}\right) \geq \frac{2 n}{k}\right) & =\operatorname{Pr}\left(\bigcup_{i=1}^{k}\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right) \\
& \leq \sum_{i=1}^{k} \operatorname{Pr}\left(\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right) \quad \text { (Union Bound) } \\
& \leq \sum_{i=1}^{k} \frac{k}{n} \quad \text { (Bound from Chebyshev's) }
\end{aligned}
$$

n : total number of requests, k : number of servers randomly assigned requests, \mathbf{R}_{i} : number of requests assigned to server $i . \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{n}{k} . \operatorname{Var}\left[\mathbf{R}_{i}\right]=\frac{n}{k}$.

APPLYING THE UNION BOUND

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{2 n}{k}$. l.e., that some server is overloaded if we give each $\frac{2 n}{k}$ capacity?

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{i}\left(\mathbf{R}_{i}\right) \geq \frac{2 n}{k}\right) & =\operatorname{Pr}\left(\bigcup_{i=1}^{k}\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right) \\
& \leq \sum_{i=1}^{k} \operatorname{Pr}\left(\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right) \\
& \leq \sum_{i=1}^{k} \frac{k}{n}=\frac{k^{2}}{n}
\end{aligned}
$$

(Union Bound)
(Bound from Chebyshev's)
n : total number of requests, k : number of servers randomly assigned requests, \mathbf{R}_{i} : number of requests assigned to server $i . \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{n}{k} . \operatorname{Var}\left[\mathbf{R}_{i}\right]=\frac{n}{k}$.

APPLYING THE UNION BOUND

What is the probability that the maximum server load exceeds $2 \cdot \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{2 n}{k}$. I.e., that some server is overloaded if we give each $\frac{2 n}{k}$ capacity?

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{i}\left(\mathbf{R}_{i}\right) \geq \frac{2 n}{k}\right) & =\operatorname{Pr}\left(\bigcup_{i=1}^{k}\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right) \\
& \leq \sum_{i=1}^{k} \operatorname{Pr}\left(\left[\mathbf{R}_{i} \geq \frac{2 n}{k}\right]\right) \\
& \leq \sum_{i=1}^{k} \frac{k}{n}=\frac{k^{2}}{n}
\end{aligned}
$$

(Union Bound)
(Bound from Chebyshev's)

As long as $k \ll \sqrt{n}$, the maximum server load will be small (compared to the expected load) with good probability.
n : total number of requests, k : number of servers randomly assigned requests, \mathbf{R}_{i} : number of requests assigned to server $i . \mathbb{E}\left[\mathbf{R}_{i}\right]=\frac{n}{k} . \operatorname{Var}\left[\mathbf{R}_{i}\right]=\frac{n}{k}$.

BACK TO CHEBYSHEV'S INEQUALITY

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t) \leq \frac{\operatorname{Var}[\mathbf{X}]}{t^{2}}
$$

X: any random variable, t, s : any fixed numbers.

BACK TO CHEBYSHEV'S INEQUALITY

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t) \leq \frac{\operatorname{Var}[\mathbf{X}]}{t^{2}}
$$

What is the probability that \mathbf{X} falls s standard deviations from it's mean?

X: any random variable, t, s : any fixed numbers.

BACK TO CHEBYSHEV'S INEQUALITY

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t) \leq \frac{\operatorname{Var}[\mathbf{X}]}{t^{2}}
$$

What is the probability that \mathbf{X} falls s standard deviations from it's mean?

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq s \cdot \sqrt{\operatorname{Var}[\mathbf{X}]}) \leq \frac{\operatorname{Var}[\mathbf{X}]}{s^{2} \cdot \operatorname{Var}[\mathbf{X}]}=\frac{1}{s^{2}} .
$$

X : any random variable, t, s : any fixed numbers.

BACK TO CHEBYSHEV'S INEQUALITY

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t) \leq \frac{\operatorname{Var}[\mathbf{X}]}{t^{2}}
$$

What is the probability that \mathbf{X} falls s standard deviations from it's mean?

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq s \cdot \sqrt{\operatorname{Var}[\mathbf{X}]}) \leq \frac{\operatorname{Var}[\mathbf{X}]}{s^{2} \cdot \operatorname{Var}[\mathbf{X}]}=\frac{1}{s^{2}} .
$$

Why is this so powerful?

X: any random variable, t, s : any fixed numbers.

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with mean μ and variance σ^{2}.

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with mean μ and variance σ^{2}.

How well does the sample average $\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ approximate the true mean μ ?

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with mean μ and variance σ^{2}.

How well does the sample average $\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ approximate the true mean μ ?

$$
\operatorname{Var}[\mathbf{S}]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right]
$$

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with mean μ and variance σ^{2}.

How well does the sample average $\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ approximate the true mean μ ?

$$
\operatorname{Var}[\mathbf{S}]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[\mathbf{X}_{i}\right]
$$

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with mean μ and variance σ^{2}.

How well does the sample average $\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ approximate the true mean μ ?

$$
\operatorname{Var}[\mathbf{S}]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[\mathbf{X}_{i}\right]=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2}
$$

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with mean μ and variance σ^{2}.

How well does the sample average $\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ approximate the true mean μ ?

$$
\operatorname{Var}[\mathbf{S}]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[\mathbf{X}_{i}\right]=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2}=\frac{\sigma^{2}}{n} .
$$

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with mean μ and variance σ^{2}.

How well does the sample average $\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ approximate the true mean μ ?

$$
\operatorname{Var}[\mathbf{S}]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[\mathbf{X}_{i}\right]=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2}=\frac{\sigma^{2}}{n} .
$$

By Chebyshev's Inequality: for any fixed value $\epsilon>0$,

$$
\operatorname{Pr}(|\mathbf{S}-\mathbb{E}[\mathbf{S}]| \geq \epsilon) \leq \frac{\operatorname{Var}[\mathbf{S}]}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}}
$$

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with mean μ and variance σ^{2}.

How well does the sample average $\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ approximate the true mean μ ?

$$
\operatorname{Var}[\mathbf{S}]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[\mathbf{X}_{i}\right]=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2}=\frac{\sigma^{2}}{n} .
$$

By Chebyshev's Inequality: for any fixed value $\epsilon>0$,

$$
\operatorname{Pr}(|\mathbf{S}-\mu| \geq \epsilon) \leq \frac{\operatorname{Var}[\mathbf{S}]}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}} .
$$

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with mean μ and variance σ^{2}.

How well does the sample average $\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ approximate the true mean μ ?

$$
\operatorname{Var}[\mathbf{S}]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[\mathbf{X}_{i}\right]=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2}=\frac{\sigma^{2}}{n} .
$$

By Chebyshev's Inequality: for any fixed value $\epsilon>0$,

$$
\operatorname{Pr}(|\mathbf{S}-\mu| \geq \epsilon) \leq \frac{\operatorname{Var}[\mathbf{S}]}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}} .
$$

Law of Large Numbers: with enough samples n, the sample average will always concentrate to the mean.

LAW OF LARGE NUMBERS

Consider drawing independent identically distributed (i.i.d.) random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ with mean μ and variance σ^{2}.

How well does the sample average $\mathbf{S}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ approximate the true mean μ ?

$$
\operatorname{Var}[\mathbf{S}]=\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[\mathbf{X}_{i}\right]=\frac{1}{n^{2}} \cdot n \cdot \sigma^{2}=\frac{\sigma^{2}}{n} .
$$

By Chebyshev's Inequality: for any fixed value $\epsilon>0$,

$$
\operatorname{Pr}(|\mathbf{S}-\mu| \geq \epsilon) \leq \frac{\operatorname{Var}[\mathbf{S}]}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}} .
$$

Law of Large Numbers: with enough samples n, the sample average will always concentrate to the mean.

- Cannot show from vanilla Markov's inequality.

SERVER LOAD AND LAW OF LARGE NUMBERS

The number of servers must be small compared to the number of requests $(k=O(\sqrt{n}))$ for the maximum load to be bounded in comparison to the expected load with good probability.
n : total number of requests, k : number of servers randomly assigned requests.

SERVER LOAD AND LAW OF LARGE NUMBERS

The number of servers must be small compared to the number of requests $(k=O(\sqrt{n}))$ for the maximum load to be bounded in comparison to the expected load with good probability.

- There are many requests routed to a relatively small number of servers so the load seen on each server is close to what is expected via law of large numbers.

[^0]Questions on union bound, Chebyshev's inequality, random hashing?

FLIPPING COINS

We flip $n=100$ independent coins, each are heads with probability $1 / 2$ and tails with probability $1 / 2$. Let \mathbf{H} be the number of heads.

FLIPPING COINS

We flip $n=100$ independent coins, each are heads with probability $1 / 2$ and tails with probability $1 / 2$. Let \mathbf{H} be the number of heads.

$$
\mathbb{E}[\mathbf{H}]=\frac{n}{2}=50 \text { and } \operatorname{Var}[\mathbf{H}]=
$$

FLIPPING COINS

We flip $n=100$ independent coins, each are heads with probability $1 / 2$ and tails with probability $1 / 2$. Let \mathbf{H} be the number of heads.

$$
\mathbb{E}[\mathbf{H}]=\frac{n}{2}=50 \text { and } \operatorname{Var}[\mathbf{H}]=\frac{n}{4}=25
$$

FLIPPING COINS

We flip $n=100$ independent coins, each are heads with probability $1 / 2$ and tails with probability $1 / 2$. Let \mathbf{H} be the number of heads.

$$
\mathbb{E}[\mathbf{H}]=\frac{n}{2}=50 \text { and } \operatorname{Var}[\mathbf{H}]=\frac{n}{4}=25
$$

Markov's:

$$
\begin{aligned}
& \operatorname{Pr}(\mathbf{H} \geq 60) \leq .833 \\
& \operatorname{Pr}(\mathbf{H} \geq 70) \leq .714 \\
& \operatorname{Pr}(\mathbf{H} \geq 80) \leq .625
\end{aligned}
$$

FLIPPING COINS

We flip $n=100$ independent coins, each are heads with probability $1 / 2$ and tails with probability $1 / 2$. Let \mathbf{H} be the number of heads.

$$
\mathbb{E}[\mathbf{H}]=\frac{n}{2}=50 \text { and } \operatorname{Var}[\mathbf{H}]=\frac{n}{4}=25 \rightarrow \text { s.d. }=5
$$

Markov's:
Chebyshev's:

$$
\begin{array}{ll}
\operatorname{Pr}(\mathbf{H} \geq 60) \leq .833 & \operatorname{Pr}(\mathbf{H} \geq 60) \leq .25 \\
\operatorname{Pr}(\mathbf{H} \geq 70) \leq .714 & \operatorname{Pr}(\mathbf{H} \geq 70) \leq .0625 \\
\operatorname{Pr}(\mathbf{H} \geq 80) \leq .625 & \operatorname{Pr}(\mathbf{H} \geq 80) \leq .0278
\end{array}
$$

FLIPPING COINS

We flip $n=100$ independent coins, each are heads with probability $1 / 2$ and tails with probability $1 / 2$. Let \mathbf{H} be the number of heads.

$$
\mathbb{E}[\mathbf{H}]=\frac{n}{2}=50 \text { and } \operatorname{Var}[\mathbf{H}]=\frac{n}{4}=25 \rightarrow \text { s.d. }=5
$$

$$
\begin{array}{ccr}
\text { Markov's: } & \text { Chebyshev's: } & \text { In Reality: } \\
\operatorname{Pr}(\mathbf{H} \geq 60) \leq .833 & \operatorname{Pr}(\mathbf{H} \geq 60) \leq .25 & \operatorname{Pr}(\mathbf{H} \geq 60)=0.0284 \\
\operatorname{Pr}(\mathbf{H} \geq 70) \leq .714 & \operatorname{Pr}(\mathbf{H} \geq 70) \leq .0625 & \operatorname{Pr}(\mathbf{H} \geq 70)=.000039 \\
\operatorname{Pr}(\mathbf{H} \geq 80) \leq .625 & \operatorname{Pr}(\mathbf{H} \geq 80) \leq .0278 & \operatorname{Pr}(\mathbf{H} \geq 80)<10^{-9}
\end{array}
$$

H has a simple Binomial distribution, so can compute these probabilities exactly.

TIGHTER CONCENTRATION BOUNDS

To be fair... Markov and Chebyshev's inequalities apply much more generally than to Binomial random variables like coin flips.

TIGHTER CONCENTRATION BOUNDS

To be fair... Markov and Chebyshev's inequalities apply much more generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very general distributions?

TIGHTER CONCENTRATION BOUNDS

To be fair... Markov and Chebyshev's inequalities apply much more generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very general distributions?

- Markov's: $\operatorname{Pr}(\mathbf{X} \geq t) \leq \frac{\mathbb{E}[\mathbf{X}]}{t}$. First Moment.

TIGHTER CONCENTRATION BOUNDS

To be fair... Markov and Chebyshev's inequalities apply much more generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very general distributions?

- Markov's: $\operatorname{Pr}(\mathbf{X} \geq t) \leq \frac{\mathbb{E}[\mathbf{X}]}{t}$. First Moment.
- Chebyshev's: $\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t)=\operatorname{Pr}\left(|\mathbf{X}-\mathbb{E}[\mathbf{X}]|^{2} \geq t^{2}\right) \leq \frac{\operatorname{Var}[\mathbf{X}]}{t^{2}}$. Second Moment.

TIGHTER CONCENTRATION BOUNDS

To be fair... Markov and Chebyshev's inequalities apply much more generally than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very general

 distributions?- Markov's: $\operatorname{Pr}(\mathbf{X} \geq t) \leq \frac{\mathbb{E}[\mathbf{X}]}{t}$. First Moment.
- Chebyshev's: $\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t)=\operatorname{Pr}\left(|\mathbf{X}-\mathbb{E}[\mathbf{X}]|^{2} \geq t^{2}\right) \leq \frac{\operatorname{Var}[\mathbf{X}]}{t^{2}}$. Second Moment.
- What if we just apply Markov's inequality to even higher moments?

A FOURTH MOMENT BOUND

Consider any random variable \mathbf{X} :

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t)=\operatorname{Pr}\left((\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4} \geq t^{4}\right)
$$

A FOURTH MOMENT BOUND

Consider any random variable \mathbf{X} :

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t)=\operatorname{Pr}\left((\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4} \geq t^{4}\right) \leq \frac{\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4}\right]}{t^{4}}
$$

A FOURTH MOMENT BOUND

Consider any random variable \mathbf{X} :

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t)=\operatorname{Pr}\left((\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4} \geq t^{4}\right) \leq \frac{\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4}\right]}{t^{4}}
$$

A FOURTH MOMENT BOUND

Consider any random variable \mathbf{X} :

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t)=\operatorname{Pr}\left((\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4} \geq t^{4}\right) \leq \frac{\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4}\right]}{t^{4}}
$$

Application to Coin Flips: Recall: $n=100$ independent fair coins, \mathbf{H} is the number of heads.

- Bound the fourth moment:

A FOURTH MOMENT BOUND

Consider any random variable \mathbf{X} :

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t)=\operatorname{Pr}\left((\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4} \geq t^{4}\right) \leq \frac{\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4}\right]}{t^{4}}
$$

Application to Coin Flips: Recall: $n=100$ independent fair coins, \mathbf{H} is the number of heads.

- Bound the fourth moment:

$$
\mathbb{E}\left[(\mathbf{H}-\mathbb{E}[\mathbf{H}])^{4}\right]=\mathbb{E}\left[\left(\sum_{i=1}^{100} \mathbf{H}_{i}-50\right)^{4}\right]
$$

where $\mathbf{H}_{i}=1$ if coin flip i is heads and 0 otherwise.

A FOURTH MOMENT BOUND

Consider any random variable \mathbf{X} :

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t)=\operatorname{Pr}\left((\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4} \geq t^{4}\right) \leq \frac{\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4}\right]}{t^{4}}
$$

Application to Coin Flips: Recall: $n=100$ independent fair coins, \mathbf{H} is the number of heads.

- Bound the fourth moment:
$\mathbb{E}\left[(\mathbf{H}-\mathbb{E}[\mathbf{H}])^{4}\right]=\mathbb{E}\left[\left(\sum_{i=1}^{100} \mathbf{H}_{i}-50\right)^{4}\right]=\sum_{i, j, k, \ell} c_{i j k \ell} \mathbb{E}\left[\mathbf{H}_{i} \mathbf{H}_{j} \mathbf{H}_{k} \mathbf{H}_{\ell}\right]$
where $\mathbf{H}_{i}=1$ if coin flip i is heads and 0 otherwise. Then apply some messy calculations...

A FOURTH MOMENT BOUND

Consider any random variable \mathbf{X} :

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t)=\operatorname{Pr}\left((\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4} \geq t^{4}\right) \leq \frac{\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4}\right]}{t^{4}}
$$

Application to Coin Flips: Recall: $n=100$ independent fair coins, \mathbf{H} is the number of heads.

- Bound the fourth moment:
$\mathbb{E}\left[(\mathbf{H}-\mathbb{E}[\mathbf{H}])^{4}\right]=\mathbb{E}\left[\left(\sum_{i=1}^{100} \mathbf{H}_{i}-50\right)^{4}\right]=\sum_{i, j, k, \ell} c_{i j k \ell} \mathbb{E}\left[\mathbf{H}_{i} \mathbf{H}_{j} \mathbf{H}_{k} \mathbf{H}_{\ell}\right]=1862.5$
where $\mathbf{H}_{i}=1$ if coin flip i is heads and 0 otherwise. Then apply some messy calculations...

A FOURTH MOMENT BOUND

Consider any random variable \mathbf{X} :

$$
\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq t)=\operatorname{Pr}\left((\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4} \geq t^{4}\right) \leq \frac{\mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{4}\right]}{t^{4}}
$$

Application to Coin Flips: Recall: $n=100$ independent fair coins, \mathbf{H} is the number of heads.

- Bound the fourth moment:

$$
\mathbb{E}\left[(\mathbf{H}-\mathbb{E}[\mathbf{H}])^{4}\right]=\mathbb{E}\left[\left(\sum_{i=1}^{100} \mathbf{H}_{i}-50\right)^{4}\right]=\sum_{i, j, k, \ell} c_{i j k \ell} \mathbb{E}\left[\mathbf{H}_{i} \mathbf{H}_{j} \mathbf{H}_{k} \mathbf{H}_{\ell}\right]=1862.5
$$

where $\mathbf{H}_{i}=1$ if coin flip i is heads and 0 otherwise. Then apply some messy calculations...

- Apply Fourth Moment Bound: $\operatorname{Pr}(|\mathbf{H}-\mathbb{E}[\mathbf{H}]| \geq t) \leq \frac{1862.5}{t^{4}}$.

TIGHTER BOUNDS

Chebyshev's:

$$
\begin{aligned}
& \operatorname{Pr}(\mathbf{H} \geq 60) \leq .25 \\
& \operatorname{Pr}(\mathbf{H} \geq 70) \leq .0625 \\
& \operatorname{Pr}(\mathbf{H} \geq 80) \leq .04
\end{aligned}
$$

In Reality:

$$
\begin{array}{r}
\operatorname{Pr}(\mathbf{H} \geq 60)=0.0284 \\
\operatorname{Pr}(\mathbf{H} \geq 70)=.000039 \\
\operatorname{Pr}(\mathbf{H} \geq 80)<10^{-9}
\end{array}
$$

TIGHTER BOUNDS

Chebyshev's:

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{H} \geq 60) & \leq .25 \\
\operatorname{Pr}(\mathbf{H} \geq 70) & \leq .0625 \\
\operatorname{Pr}(\mathbf{H} \geq 80) & \leq .04
\end{aligned}
$$

In Reality:

$$
\begin{array}{r}
\operatorname{Pr}(\mathbf{H} \geq 60)=0.0284 \\
\operatorname{Pr}(\mathbf{H} \geq 70)=.000039 \\
\operatorname{Pr}(\mathbf{H} \geq 80)<10^{-9}
\end{array}
$$

TIGHTER BOUNDS

Chebyshev's:

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{H} \geq 60) & \leq .25 \\
\operatorname{Pr}(\mathbf{H} \geq 70) & \leq .0625 \\
\operatorname{Pr}(\mathbf{H} \geq 80) & \leq .04
\end{aligned}
$$

In Reality:

$$
\begin{array}{r}
\operatorname{Pr}(\mathbf{H} \geq 60)=0.0284 \\
\operatorname{Pr}(\mathbf{H} \geq 70)=.000039 \\
\operatorname{Pr}(\mathbf{H} \geq 80)<10^{-9}
\end{array}
$$

TIGHTER BOUNDS

Chebyshev's:

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{H} \geq 60) & \leq .25 \\
\operatorname{Pr}(\mathbf{H} \geq 70) & \leq .0625 \\
\operatorname{Pr}(\mathbf{H} \geq 80) & \leq .04
\end{aligned}
$$

In Reality:

$$
\begin{array}{r}
\operatorname{Pr}(\mathbf{H} \geq 60)=0.0284 \\
\operatorname{Pr}(\mathbf{H} \geq 70)=.000039 \\
\operatorname{Pr}(\mathbf{H} \geq 80)<10^{-9}
\end{array}
$$

TIGHTER BOUNDS

Chebyshev's:

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{H} \geq 60) & \leq .25 \\
\operatorname{Pr}(\mathbf{H} \geq 70) & \leq .0625 \\
\operatorname{Pr}(\mathbf{H} \geq 80) & \leq .04
\end{aligned}
$$

In Reality:

$$
\begin{array}{lr}
\operatorname{Pr}(\mathbf{H} \geq 60) \leq .186 & \operatorname{Pr}(\mathbf{H} \geq 60)=0.0284 \\
\operatorname{Pr}(\mathbf{H} \geq 70) \leq .0116 & \operatorname{Pr}(\mathbf{H} \geq 70)=.000039 \\
\operatorname{Pr}(\mathbf{H} \geq 80) \leq .0023 & \operatorname{Pr}(\mathbf{H} \geq 80)<10^{-9}
\end{array}
$$

- We aren't restricted to applying Markov's to $|\mathbf{X}-\mathbb{E}[\mathbf{X}]|^{k}$ for some k. Can apply to any monotonic function $f(|\mathbf{X}-\mathbb{E}[\mathbf{X}]|)$.

TIGHTER BOUNDS

Chebyshev's:

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{H} \geq 60) & \leq .25 \\
\operatorname{Pr}(\mathbf{H} \geq 70) & \leq .0625 \\
\operatorname{Pr}(\mathbf{H} \geq 80) & \leq .04
\end{aligned}
$$

In Reality:

$$
\begin{array}{lr}
\operatorname{Pr}(\mathbf{H} \geq 60) \leq .186 & \operatorname{Pr}(\mathbf{H} \geq 60)=0.0284 \\
\operatorname{Pr}(\mathbf{H} \geq 70) \leq .0116 & \operatorname{Pr}(\mathbf{H} \geq 70)=.000039 \\
\operatorname{Pr}(\mathbf{H} \geq 80) \leq .0023 & \operatorname{Pr}(\mathbf{H} \geq 80)<10^{-9}
\end{array}
$$

- We aren't restricted to applying Markov's to $|\mathbf{X}-\mathbb{E}[\mathbf{X}]|^{k}$ for some k. Can apply to any monotonic function $f(|\mathbf{X}-\mathbb{E}[\mathbf{X}]|)$.
- Why monotonic?

TIGHTER BOUNDS

Chebyshev's:

$$
\begin{aligned}
& \operatorname{Pr}(\mathbf{H} \geq 60) \leq .25 \\
& \operatorname{Pr}(\mathbf{H} \geq 70) \leq .0625 \\
& \operatorname{Pr}(\mathbf{H} \geq 80) \leq .04
\end{aligned}
$$

$4^{\text {th }}$ Moment:

$$
\begin{array}{lr}
\operatorname{Pr}(\mathbf{H} \geq 60) \leq .186 & \operatorname{Pr}(\mathbf{H} \geq 60)=0.0284 \\
\operatorname{Pr}(\mathbf{H} \geq 70) \leq .0116 & \operatorname{Pr}(\mathbf{H} \geq 70)=.000039 \\
\operatorname{Pr}(\mathbf{H} \geq 80) \leq .0023 & \operatorname{Pr}(\mathbf{H} \geq 80)<10^{-9}
\end{array}
$$

- We aren't restricted to applying Markov's to $|\mathbf{X}-\mathbb{E}[\mathbf{X}]|^{k}$ for some k. Can apply to any monotonic function $f(|\mathbf{X}-\mathbb{E}[\mathbf{X}]|)$.
- Why monotonic? $\operatorname{Pr}(|\mathbf{X}-\mathbb{E}[\mathbf{X}]|>t)=\operatorname{Pr}(f(|\mathbf{X}-\mathbb{E}[\mathbf{X}]|)>f(t))$.

EXPONENTIAL CONCENTRATION BOUNDS

- Moment Generating Function: Consider for any $r>0$:

$$
M_{r}(\mathbf{X})=e^{r \cdot(\mathbf{X}-\mathbb{E}[\mathbf{X}])}=\sum_{k=0}^{\infty} \frac{r^{k}(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{k}}{k!}
$$

and note $M_{r}(\mathbf{X})$ is monotonic for any $r>0$

EXPONENTIAL CONCENTRATION BOUNDS

- Moment Generating Function: Consider for any $r>0$:

$$
M_{r}(\mathbf{X})=e^{r \cdot(\mathbf{X}-\mathbb{E}[\mathbf{X}])}=\sum_{k=0}^{\infty} \frac{r^{k}(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{k}}{k!}
$$

and note $M_{r}(\mathbf{X})$ is monotonic for any $r>0$ and so

$$
\operatorname{Pr}[|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq \lambda]=\operatorname{Pr}\left[M_{r}(\mathbf{X}) \geq e^{r \lambda}\right] \leq \frac{\mathbb{E}\left[M_{r}(\mathbf{X})\right]}{e^{r \lambda}}
$$

EXPONENTIAL CONCENTRATION BOUNDS

- Moment Generating Function: Consider for any $r>0$:

$$
M_{r}(\mathbf{X})=e^{r \cdot(\mathbf{X}-\mathbb{E}[\mathbf{X}])}=\sum_{k=0}^{\infty} \frac{r^{k}(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{k}}{k!}
$$

and note $M_{r}(\mathbf{X})$ is monotonic for any $r>0$ and so

$$
\operatorname{Pr}[|\mathbf{X}-\mathbb{E}[\mathbf{X}]| \geq \lambda]=\operatorname{Pr}\left[M_{r}(\mathbf{X}) \geq e^{r \lambda}\right] \leq \frac{\mathbb{E}\left[M_{r}(\mathbf{X})\right]}{e^{r \lambda}}
$$

- Weighted sum of all moments (r controls the weights) and choosing r appropriately lets one prove a number of very powerful exponential concentration bounds such as Chernoff, Bernstein, Hoeffding, Azuma, Berry-Esseen, etc.

BERNSTEIN INEQUALITY

Bernstein Inequality: Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in[-M, M]$. Let $\mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$. For any $t \geq 0$:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}\right)
$$

BERNSTEIN INEQUALITY

Bernstein Inequality: Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in[-M, M]$. Let $\mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$. For any $t \geq 0$:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}\right)
$$

Assume that $M=1$ and plug in $t=s \cdot \sigma$ for $s \leq \sigma$.

BERNSTEIN INEQUALITY

$$
\begin{aligned}
& \text { Bernstein Inequality: Consider independent random variables } \\
& \mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in[-1,1] \text {. Let } \mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right] \text { and } \sigma^{2}=\operatorname{Var}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right] \text {. For } \\
& \text { any } s \geq 0 \text { : } \\
& \qquad \operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right) .
\end{aligned}
$$

Assume that $M=1$ and plug in $t=s \cdot \sigma$ for $s \leq \sigma$.

BERNSTEIN INEQUALITY

Bernstein Inequality: Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in[-1,1]$. Let $\mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$. For any $s \geq 0$:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right) .
$$

Assume that $M=1$ and plug in $t=s \cdot \sigma$ for $s \leq \sigma$.
Compare to Chebyshev's: $\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq \frac{1}{s^{2}}$.

BERNSTEIN INEQUALITY

Bernstein Inequality: Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \in[-1,1]$. Let $\mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$. For any $s \geq 0$:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq 2 \exp \left(-\frac{s^{2}}{4}\right) .
$$

Assume that $M=1$ and plug in $t=s \cdot \sigma$ for $s \leq \sigma$.
Compare to Chebyshev's: $\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq s \sigma\right) \leq \frac{1}{s^{2}}$.

- An exponentially stronger dependence on s !

COMPARISION TO CHEBYSHEV

Consider again bounding the number of heads \mathbf{H} in $n=100$ independent coin flips.

\[

\]

H : total number heads in 100 random coin flips. $\mathbb{E}[\mathbf{H}]=50$.

COMPARISION TO CHEBYSHEV

Consider again bounding the number of heads \mathbf{H} in $n=100$ independent coin flips.

\[

\]

Getting much closer to the true probability.

H: total number heads in 100 random coin flips. $\mathbb{E}[\mathbf{H}]=50$.

EXPONENTIAL TAIL BOUNDS

Bernstein Inequality: Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ all falling in $[-M, M]$. Let $\mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$ and $\sigma^{2}=\operatorname{Var}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[\mathbf{X}_{i}\right]$. For any $t \geq 0$:

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{x}_{i}-\mu\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}\right)
$$

A useful variation for binary (indicator) random variables is:
Chernoff Bound (simplified version): Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ taking values in $\{0,1\}$. Let $\mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$. For any $\delta \geq 0$

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq \delta \mu\right) \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
$$

[^0]: n : total number of requests, k : number of servers randomly assigned requests.

