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last time

Last Class:

• 2-Level Hashing Analysis (linearity of expectation and Markov’s

inequality)

• 2-universal and pairwise independent hash functions

• Chebyshev: Pr(|X− E[X]| ≥ t) ≤ Var[X]/t2

This Time:

• Random hashing for load balancing. Motivating:

• Stronger concentration inequalities: Chebyshev’s inequality, exponential

tail bounds, and their connections to the law of large numbers.
• The union bound.
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binomial distribution

• Suppose random variable X and can be written as

X = A1 + A2 + . . .+ An

where each Ai are independent indicator variables with Pr(Ai ) = p.

• Then, the distribution of X is the Binomial Distribution and

Pr[X = i ] =

(
n

i

)
pi (1− p)n−i

• Note E[Ai ] = p and Var[Ai ] = E[A2
i ]− E[Ai ]

2 = p − p2.

• By linearity of expectation and variance,

E[X ] = np Var[X ] = np(1− p) .
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randomized load balancing

Randomized Load Balancing:

• n requests randomly assigned to k servers.

• Let Ri be the number requests assigned to the ith server.
• Ri is binomial and hence has expectation:

E[Ri ] =
n∑

j=1

E[Irequest j assigned to i ] =
n∑

j=1

Pr [j assigned to i ] =
n

k
.

• Variance:

Var[Ri ] = Var[
n∑

j=1

Irequest j assigned to i ] =
n∑

j=1

Var[Ij assigned to i ] = n

(
1

k
− 1

k2

)
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maximum server load

What is the probability that the maximum server load exceeds

2 · E[Ri ] = 2n
k . I.e., some server is overloaded if each has 2n

k capacity?

• By Markov’s inequality, Pr[Ri ≥ 2E[Ri ]] ≤ 1/2.

• By Chebyshev’s inequality, Pr[Ri ≥ 2E[Ri ]] ≤ Var[Ri ]
E[Ri ]2 < k

n .

We want to upper bound:

Pr

(
max

i
(Ri ) ≥

2n

k

)
= Pr

([
R1 ≥

2n

k

]
or . . . or

[
Rk ≥

2n

k

])
= Pr

(
k⋃

i=1

[
Ri ≥

2n

k

])

How do we do this since R1, . . . ,Rk are not independent?
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the union bound

Union Bound: For any random events A1,A2, ...,Ak ,

Pr (A1 ∪ A2 ∪ . . . ∪ Ak) ≤ Pr(A1) + Pr(A2) + . . .+ Pr(Ak).

When is the union bound tight? When A1, ...,Ak are all disjoint.

On the first problem set, you will prove the union bound, as a

consequence of Markov’s inquality.
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applying the union bound

What is the probability that the maximum server load exceeds 2 · E[Ri ] = 2n
k

.

I.e., that some server is overloaded if we give each 2n
k

capacity?

Pr

(
max

i
(Ri ) ≥

2n

k

)
= Pr

(
k⋃

i=1

[
Ri ≥

2n

k

])

≤
k∑

i=1

Pr

([
Ri ≥

2n

k

])
(Union Bound)

≤
k∑

i=1

k

n

=
k2

n

(Bound from Chebyshev’s)

As long as k �
√
n, the maximum server load will be small (compared to the

expected load) with good probability.

n: total number of requests, k: number of servers randomly assigned requests, Ri : number

of requests assigned to server i . E[Ri ] = n
k . Var[Ri ] = n

k .
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back to chebyshev’s inequality

Pr(|X− E[X]| ≥ t) ≤ Var[X]

t2

What is the probability that X falls s standard deviations from it’s mean?

Pr(|X− E[X]| ≥ s ·
√

Var[X]) ≤ Var[X]

s2 · Var[X]
=

1

s2
.

Why is this so powerful?

X: any random variable, t, s: any fixed numbers.
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law of large numbers

Consider drawing independent identically distributed (i.i.d.) random

variables X1, . . . ,Xn with mean µ and variance σ2.

How well does the sample average S = 1
n

∑n
i=1 Xi approximate the true

mean µ?

Var[S] = Var

[
1

n

n∑
i=1

Xi

]

=
1

n2

n∑
i=1

Var [Xi ] =
1

n2
· n · σ2 =

σ2

n
.

By Chebyshev’s Inequality: for any fixed value ε > 0,

Pr(|S− | ≥ ε) ≤ Var[S]

ε2
=

σ2

nε2
.

Law of Large Numbers: with enough samples n, the sample average

will always concentrate to the mean.

• Cannot show from vanilla Markov’s inequality.
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server load and law of large numbers

The number of servers must be small compared to the number of

requests (k = O(
√
n)) for the maximum load to be bounded in

comparison to the expected load with good probability.

• There are many requests routed to a relatively small number of servers

so the load seen on each server is close to what is expected via law of

large numbers.

n: total number of requests, k: number of servers randomly assigned requests.
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Questions on union bound, Chebyshev’s inequality, random

hashing?

11



flipping coins

We flip n = 100 independent coins, each are heads with probability 1/2

and tails with probability 1/2. Let H be the number of heads.

E[H] =
n

2
= 50 and Var[H] =

n

4
= 25→ s.d . = 5

Markov’s:

Pr(H ≥ 60) ≤ .833

Pr(H ≥ 70) ≤ .714

Pr(H ≥ 80) ≤ .625

Chebyshev’s:

Pr(H ≥ 60) ≤ .25

Pr(H ≥ 70) ≤ .0625

Pr(H ≥ 80) ≤ .0278

In Reality:

Pr(H ≥ 60) = 0.0284

Pr(H ≥ 70) = .000039

Pr(H ≥ 80) < 10−9

H has a simple Binomial distribution, so can compute these probabilities

exactly.
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tighter concentration bounds

To be fair... Markov and Chebyshev’s inequalities apply much more generally

than to Binomial random variables like coin flips.

Can we obtain tighter concentration bounds that still apply to very general

distributions?

• Markov’s: Pr(X ≥ t) ≤ E[X]
t

. First Moment.

• Chebyshev’s: Pr(|X− E[X]| ≥ t) = Pr(|X− E[X]|2 ≥ t2) ≤ Var[X]

t2 . Second

Moment.

• What if we just apply Markov’s inequality to even higher moments?
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a fourth moment bound

Consider any random variable X:

Pr(|X− E[X]| ≥ t) = Pr
(

(X− E[X])4 ≥ t4
)

≤
E
[
(X− E[X])4

]
t4

.

Application to Coin Flips: Recall: n = 100 independent fair coins, H is the

number of heads.

• Bound the fourth moment:

E
[
(H− E[H])4

]
= E

( 100∑
i=1

Hi − 50

)4


=
∑
i,j,k,`

cijk`E[HiHjHkH`] = 1862.5

where Hi = 1 if coin flip i is heads and 0 otherwise.

Then apply some messy

calculations...

• Apply Fourth Moment Bound: Pr (|H− E[H]| ≥ t) ≤ 1862.5
t4 .
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tighter bounds

Chebyshev’s:

Pr(H ≥ 60) ≤ .25

Pr(H ≥ 70) ≤ .0625

Pr(H ≥ 80) ≤ .04

4th Moment:

Pr(H ≥ 60) ≤ .186

Pr(H ≥ 70) ≤ .0116

Pr(H ≥ 80) ≤ .0023

In Reality:

Pr(H ≥ 60) = 0.0284

Pr(H ≥ 70) = .000039

Pr(H ≥ 80) < 10−9

• We aren’t restricted to applying Markov’s to |X− E[X]|k for some k .

Can apply to any monotonic function f (|X− E[X]|).

• Why monotonic? Pr (|X− E[X]| > t) = Pr (f (|X− E[X]|) > f (t)).
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exponential concentration bounds

• Moment Generating Function: Consider for any r > 0:

Mr (X) = er ·(X−E[X]) =
∞∑
k=0

rk(X− E[X])k

k!

and note Mr (X) is monotonic for any r > 0

and so

Pr[|X− E[X]| ≥ λ] = Pr[Mr (X) ≥ erλ] ≤ E[Mr (X)]

erλ

• Weighted sum of all moments (r controls the weights) and choosing r

appropriately lets one prove a number of very powerful exponential

concentration bounds such as Chernoff, Bernstein, Hoeffding, Azuma,

Berry-Esseen, etc.

16
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bernstein inequality

Bernstein Inequality: Consider independent random variables

X1, . . . ,Xn ∈ [−M,M]. Let µ = E[
∑n

i=1 Xi ] and σ2 = Var[
∑n

i=1 Xi ].

For any t ≥ 0:

Pr

(∣∣∣∣∣
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2σ2 + 4
3
Mt

)
.

Assume that M = 1 and plug in t = s · σ for s ≤ σ.

Compare to Chebyshev’s: Pr
(∣∣∑n

i=1 Xi − µ
∣∣ ≥ sσ

)
≤ 1

s2 .

• An exponentially stronger dependence on s!
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bernstein inequality

Bernstein Inequality: Consider independent random variables

X1, . . . ,Xn ∈ [-1,1]. Let µ = E[
∑n

i=1 Xi ] and σ2 = Var[
∑n

i=1 Xi ]. For

any s ≥ 0:
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comparision to chebyshev

Consider again bounding the number of heads H in n = 100 independent

coin flips.

Chebyshev:

Pr(H ≥ 60) ≤ .25

Pr(H ≥ 70) ≤ .0625

Pr(H ≥ 80) ≤ .04

Bernstein:

Pr(H ≥ 60) ≤ .0.412

Pr(H ≥ 70) ≤ .0108

Pr(H ≥ 80) ≤ 0.0000907

In Reality:

Pr(H ≥ 60) = 0.0284

Pr(H ≥ 70) = .000039

Pr(H ≥ 80) < 10−9

Getting much closer to the true probability.

H: total number heads in 100 random coin flips. E[H] = 50.
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exponential tail bounds

Bernstein Inequality: Consider independent random variables

X1, . . . ,Xn all falling in [−M,M]. Let µ = E[
∑n

i=1 Xi ] and

σ2 = Var[
∑n

i=1 Xi ] =
∑n

i=1 Var[Xi ]. For any t ≥ 0:

Pr

(∣∣∣∣∣
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2σ2 + 4
3Mt

)
.

A useful variation for binary (indicator) random variables is:

Chernoff Bound (simplified version): Consider independent random

variables X1, . . . ,Xn taking values in {0, 1}. Let µ = E[
∑n

i=1 Xi ]. For

any δ ≥ 0

Pr

(∣∣∣∣∣
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ δµ
)
≤ 2 exp

(
− δ2µ

2 + δ

)
.
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