COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor
Lecture 5

THE CHERNOFF BOUND

A variation of the Bernstein inequality for binary random variables is:
Chernoff Bound (simplified version): Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ taking values in $\{0,1\}$. Let $\mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$. For any $\delta \geq 0$

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq \delta \mu\right) \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
$$

THE CHERNOFF BOUND

A variation of the Bernstein inequality for binary random variables is:
Chernoff Bound (simplified version): Consider independent random variables $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ taking values in $\{0,1\}$. Let $\mu=\mathbb{E}\left[\sum_{i=1}^{n} \mathbf{X}_{i}\right]$. For any $\delta \geq 0$

$$
\operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i}-\mu\right| \geq \delta \mu\right) \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
$$

As δ gets larger and larger, the bound falls of exponentially fast.

RETURN TO RANDOM HASHING

We hash m values x_{1}, \ldots, x_{m} using a random hash function into a table with $n=m$ entries.

RETURN TO RANDOM HASHING

We hash m values x_{1}, \ldots, x_{m} using a random hash function into a table with $n=m$ entries.

- I.e., for all $j \in[m]$ and $i \in[n], \operatorname{Pr}(\mathbf{h}(x)=i)=\frac{1}{m}$ and hash values are chosen independently.

RETURN TO RANDOM HASHING

We hash m values x_{1}, \ldots, x_{m} using a random hash function into a table with $n=m$ entries.

- I.e., for all $j \in[m]$ and $i \in[n], \operatorname{Pr}(\mathbf{h}(x)=i)=\frac{1}{m}$ and hash values are chosen independently.

What will be the maximum number of items hashed into the same location?

MAXIMUM LOAD IN RANDOMIZED HASHING

Let \mathbf{S}_{i} be the number of items hashed into position i and $\mathbf{S}_{i, j}$ be 1 if x_{j} is hashed into bucket $i\left(\mathbf{h}\left(x_{j}\right)=i\right)$ and 0 otherwise.
m : total number of items hashed and size of hash table. x_{1}, \ldots, x_{m} : the items. \mathbf{h} : random hash function mapping $x_{1}, \ldots, x_{m} \rightarrow[m]$.

MAXIMUM LOAD IN RANDOMIZED HASHING

Let \mathbf{S}_{i} be the number of items hashed into position i and $\mathbf{S}_{i, j}$ be 1 if x_{j} is hashed into bucket $i\left(\mathbf{h}\left(x_{j}\right)=i\right)$ and 0 otherwise.

$$
\mathbb{E}\left[\mathbf{S}_{i}\right]=\sum_{j=1}^{m} \mathbb{E}\left[\mathbf{S}_{i, j}\right]=m \cdot \frac{1}{m}=1
$$

m : total number of items hashed and size of hash table. x_{1}, \ldots, x_{m} : the items. \mathbf{h} : random hash function mapping $x_{1}, \ldots, x_{m} \rightarrow[m]$.

MAXIMUM LOAD IN RANDOMIZED HASHING

Let \mathbf{S}_{i} be the number of items hashed into position i and $\mathbf{S}_{i, j}$ be 1 if x_{j} is hashed into bucket $i\left(\mathbf{h}\left(x_{j}\right)=i\right)$ and 0 otherwise.

$$
\mathbb{E}\left[\mathbf{S}_{i}\right]=\sum_{j=1}^{m} \mathbb{E}\left[\mathbf{S}_{i, j}\right]=m \cdot \frac{1}{m}=1=\mu .
$$

m : total number of items hashed and size of hash table. x_{1}, \ldots, x_{m} : the items. \mathbf{h} : random hash function mapping $x_{1}, \ldots, x_{m} \rightarrow[m]$.

MAXIMUM LOAD IN RANDOMIZED HASHING

Let \mathbf{S}_{i} be the number of items hashed into position i and $\mathbf{S}_{i, j}$ be 1 if x_{j} is hashed into bucket $i\left(\mathbf{h}\left(x_{j}\right)=i\right)$ and 0 otherwise.

$$
\mathbb{E}\left[\mathbf{S}_{i}\right]=\sum_{j=1}^{m} \mathbb{E}\left[\mathbf{S}_{i, j}\right]=m \cdot \frac{1}{m}=1=\mu
$$

By the Chernoff Bound: for any $\delta \geq 0$,

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{i=1}^{n} \mathbf{S}_{i, j}-1\right| \geq \delta \cdot \mu\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

m : total number of items hashed and size of hash table. x_{1}, \ldots, x_{m} : the items. \mathbf{h} : random hash function mapping $x_{1}, \ldots, x_{m} \rightarrow[m]$.

MAXIMUM LOAD IN RANDOMIZED HASHING

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{j=1}^{n} \mathbf{S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right) .
$$

m : total number of items hashed and size of hash table. \mathbf{S}_{i} : number of items hashed to bucket $i . \mathbf{S}_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

MAXIMUM LOAD IN RANDOMIZED HASHING

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{j=1}^{n} \mathbf{S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

Set $\delta=20 \log m$. Gives:
m : total number of items hashed and size of hash table. \mathbf{S}_{i} : number of items hashed to bucket $i . \mathbf{S}_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

MAXIMUM LOAD IN RANDOMIZED HASHING

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{j=1}^{n} \mathbf{S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

Set $\delta=20 \log m$. Gives:

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 20 \log m+1\right) \leq 2 \exp \left(-\frac{(20 \log m)^{2}}{2+20 \log m}\right)
$$

m : total number of items hashed and size of hash table. \mathbf{S}_{i} : number of items hashed to bucket $i . \mathbf{S}_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

MAXIMUM LOAD IN RANDOMIZED HASHING

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{j=1}^{n} \mathbf{S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

Set $\delta=20 \log m$. Gives:

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 20 \log m+1\right) \leq 2 \exp \left(-\frac{(20 \log m)^{2}}{2+20 \log m}\right) \leq 2 \exp (-18 \log m) \leq \frac{2}{m^{18}}
$$

Apply Union Bound:

$$
\operatorname{Pr}\left(\max _{i \in[m]} \mathbf{S}_{i} \geq 20 \log m+1\right)=\operatorname{Pr}\left(\bigcup_{i=1}^{m}\left(\mathbf{S}_{i} \geq 20 \log m+1\right)\right)
$$

m : total number of items hashed and size of hash table. \mathbf{S}_{i} : number of items hashed to bucket $i . \mathbf{S}_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

MAXIMUM LOAD IN RANDOMIZED HASHING

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{j=1}^{n} \mathbf{S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

Set $\delta=20 \log m$. Gives:

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 20 \log m+1\right) \leq 2 \exp \left(-\frac{(20 \log m)^{2}}{2+20 \log m}\right) \leq 2 \exp (-18 \log m) \leq \frac{2}{m^{18}}
$$

Apply Union Bound:

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{i \in[m]} \mathbf{S}_{i} \geq 20 \log m+1\right) & =\operatorname{Pr}\left(\bigcup_{i=1}^{m}\left(\mathbf{S}_{i} \geq 20 \log m+1\right)\right) \\
& \leq \sum_{i=1}^{m} \operatorname{Pr}\left(\mathbf{S}_{i} \geq 20 \log m+1\right)
\end{aligned}
$$

m : total number of items hashed and size of hash table. \mathbf{S}_{i} : number of items hashed to bucket $i . \mathbf{S}_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

MAXIMUM LOAD IN RANDOMIZED HASHING

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 1+\delta\right) \leq \operatorname{Pr}\left(\left|\sum_{j=1}^{n} \mathbf{S}_{i, j}-1\right| \geq \delta\right) \leq 2 \exp \left(-\frac{\delta^{2}}{2+\delta}\right)
$$

Set $\delta=20 \log m$. Gives:

$$
\operatorname{Pr}\left(\mathbf{S}_{i} \geq 20 \log m+1\right) \leq 2 \exp \left(-\frac{(20 \log m)^{2}}{2+20 \log m}\right) \leq 2 \exp (-18 \log m) \leq \frac{2}{m^{18}}
$$

Apply Union Bound:

$$
\begin{aligned}
\operatorname{Pr}\left(\max _{i \in[m]} \mathbf{S}_{i} \geq 20 \log m+1\right) & =\operatorname{Pr}\left(\bigcup_{i=1}^{m}\left(\mathbf{S}_{i} \geq 20 \log m+1\right)\right) \\
& \leq \sum_{i=1}^{m} \operatorname{Pr}\left(\mathbf{S}_{i} \geq 20 \log m+1\right) \leq m \cdot \frac{2}{m^{18}}=\frac{2}{m^{17}}
\end{aligned}
$$

m : total number of items hashed and size of hash table. \mathbf{S}_{i} : number of items hashed to bucket $i . \mathbf{S}_{i, j}$: indicator if x_{j} is hashed to bucket i. δ : any value ≥ 0.

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

- So, even with a simple linked list to store the items in each bucket, worst case query time is $O(\log m)$.

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

- So, even with a simple linked list to store the items in each bucket, worst case query time is $O(\log m)$.
- Using Chebyshev's inequality could only show the maximum load is bounded by $O(\sqrt{m})$ with good probability (good exercise).

Upshot: If we randomly hash m items into a hash table with m entries the maximum load per bucket is $O(\log m)$ with very high probability.

- So, even with a simple linked list to store the items in each bucket, worst case query time is $O(\log m)$.
- Using Chebyshev's inequality could only show the maximum load is bounded by $O(\sqrt{m})$ with good probability (good exercise).
- The Chebyshev bound holds even with a pairwise independent hash function. The stronger Chernoff-based bound can be shown to hold with a k-wise independent hash function for $k=O(\log m)$.

Questions on Exponential Concentration Bounds?

This concludes the probability foundations part of the course. On to algorithms...

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert (x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time.

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert (x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time.

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert (x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time.

- Allow small probability $\delta>0$ of false positives. I.e., for any x,

$$
\operatorname{Pr}(\text { query }(x)=1 \text { and } x \notin S) \leq \delta .
$$

APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items (e.g., images, text documents, IP addresses).

Goal: support insert (x) to add x to the set and query (x) to check if x is in the set. Both in $O(1)$ time.

- Allow small probability $\delta>0$ of false positives. I.e., for any x,

$$
\operatorname{Pr}(\text { query }(x)=1 \text { and } x \notin S) \leq \delta .
$$

Solution: Bloom filters (repeated random hashing). Will use much less space than a hash table.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

m bit array \mathbf{A}| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

Insertions

m bit array \mathbf{A}| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Queries:

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

Insertions: x

m bit array \mathbf{A}| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Queries:

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x)$: set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

Queries:

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x)$: set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

Queries:

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

Queries:

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

Queries:
X

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

BLOOM FILTERS

Chose k independent random hash functions $\mathbf{h}_{1}, \ldots, \mathbf{h}_{k}$ mapping the universe of elements $U \rightarrow[m]$.

- Maintain an array A containing m bits, all initially 0 .
- $\operatorname{insert}(x):$ set all bits $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]:=1$.
- query (x) : return 1 only if $A\left[\mathbf{h}_{1}(x)\right]=\ldots=A\left[\mathbf{h}_{k}(x)\right]=1$.

No false negatives. False positives more likely with more insertions.

APPLICATIONS: DETERMINING WHEN TO CACHE

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' - pages only visited once fill over 75% of cache.

APPLICATIONS: DETERMINING WHEN TO CACHE

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' - pages only visited once fill over 75% of cache.

- A Bloom Filter can be used to approximately track the url's you've seen before without have to store them all!

APPLICATIONS: DETERMINING WHEN TO CACHE

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' - pages only visited once fill over 75% of cache.

- A Bloom Filter can be used to approximately track the url's you've seen before without have to store them all! When url x comes in, if query $(x)=1$, cache the page if it isn't already cached. If not, run insert (x) so that if it comes in again, it will be cached.

APPLICATIONS: DETERMINING WHEN TO CACHE

Akamai (Boston-based company serving $15-30 \%$ of all web traffic) applies bloom filters to prevent caching of 'one-hit-wonders' - pages only visited once fill over 75% of cache.

- A Bloom Filter can be used to approximately track the url's you've seen before without have to store them all! When url x comes in, if query $(x)=1$, cache the page if it isn't already cached. If not, run insert (x) so that if it comes in again, it will be cached.
- False positive: A new url (possible one-hit-wonder) is cached. If the bloom filter has a false positive rate of $\delta=.05$, the number of cached one-hit-wonders will be reduced by at least 95%.

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$.

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{t h}$ bit of the array A is still 0 ? $n \times k$ total hashes must not hit bit i.

$$
\begin{aligned}
\operatorname{Pr}(A[i]=0)=\operatorname{Pr}\left(\mathbf{h}_{1}\left(x_{1}\right)\right. & \neq i \cap \ldots \cap \mathbf{h}_{k}\left(x_{1}\right) \neq i \\
& \left.\cap \mathbf{h}_{1}\left(x_{2}\right) \neq i \ldots \cap \mathbf{h}_{k}\left(x_{2}\right) \neq i \cap \ldots\right)
\end{aligned}
$$

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ? $n \times k$ total hashes must not hit bit i.

$$
\begin{aligned}
\operatorname{Pr}(A[i]=0) & =\operatorname{Pr}\left(\mathbf{h}_{1}\left(x_{1}\right) \neq i \cap \ldots \cap \mathbf{h}_{k}\left(x_{1}\right) \neq i\right. \\
& \left.\cap \mathbf{h}_{1}\left(x_{2}\right) \neq i \ldots \cap \mathbf{h}_{k}\left(x_{2}\right) \neq i \cap \ldots\right) \\
& =\underbrace{\operatorname{Pr}\left(\mathbf{h}_{1}\left(x_{1}\right) \neq i\right) \times \ldots \times \operatorname{Pr}\left(\mathbf{h}_{k}\left(x_{1}\right) \neq i\right) \times \operatorname{Pr}\left(\mathbf{h}_{1}\left(x_{2}\right) \neq i\right) \ldots}_{k \cdot n \text { events each occuring with probability } 1-1 / m}
\end{aligned}
$$

ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query time is $O(k)$. How does the false positive rate δ depend on m, k, and the number of items inserted?

Step 1: What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ? $n \times k$ total hashes must not hit bit i.

$$
\begin{aligned}
\operatorname{Pr}(A[i]=0) & =\operatorname{Pr}\left(\mathbf{h}_{1}\left(x_{1}\right) \neq i \cap \ldots \cap \mathbf{h}_{k}\left(x_{1}\right) \neq i\right. \\
& =\underbrace{\operatorname{Pr}\left(\mathbf{h}_{1}\left(x_{2}\right) \neq i \ldots \cap \mathbf{h}_{k}\left(x_{2}\right) \neq i \cap \ldots\right) \times \ldots \times \operatorname{Pr}\left(\mathbf{h}_{k}\left(x_{1}\right) \neq i\right) \times \operatorname{Pr}\left(\mathbf{h}_{1}\left(x_{2}\right) \neq i\right) \ldots}_{k \cdot n \text { events each occuring with probability } 1-1 / m} \\
& =\left(1-\frac{1}{m}\right)^{k n}
\end{aligned}
$$

ANALYSIS

How does the false positive rate δ depend on m, k, and the number of items inserted?

What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $\mathbf{h}_{1}, \ldots \mathbf{h}_{k}$: hash functions, A : bit array, δ : false positive rate.

ANALYSIS

How does the false positive rate δ depend on m, k, and the number of items inserted?

What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $\mathbf{h}_{1}, \ldots \mathbf{h}_{k}$: hash functions, A : bit array, δ : false positive rate.

ANALYSIS

How does the false positive rate δ depend on m, k, and the number of items inserted?

What is the probability that after inserting n elements, the $i^{\text {th }}$ bit of the array A is still 0 ?

$$
\operatorname{Pr}(A[i]=0)=\left(1-\frac{1}{m}\right)^{k n} \approx e^{-\frac{k n}{m}}
$$

Let T be the number of zeros in the array after n inserts. Then,

$$
E[T]=m\left(1-\frac{1}{m}\right)^{k n} \approx m e^{-\frac{k n}{m}}
$$

n : total number items in filter, m : number of bits in filter, k : number of random hash functions, $\mathbf{h}_{1}, \ldots \mathbf{h}_{k}$: hash functions, A : bit array, δ : false positive rate.

CORRECT ANALYSIS SKETCH

If T is the number of 0 entries, for a non-inserted element w :

$$
\begin{aligned}
& \operatorname{Pr}\left(A\left[\mathbf{h}_{1}(w)\right]=\ldots=A\left[\mathbf{h}_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[\mathbf{h}_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[\mathbf{h}_{k}(w)\right]=1\right) \\
& =(1-T / m) \times \ldots \times(1-T / m) \\
& =(1-T / m)^{k}
\end{aligned}
$$

CORRECT ANALYSIS SKETCH

If T is the number of 0 entries, for a non-inserted element w :

$$
\begin{aligned}
& \operatorname{Pr}\left(A\left[\mathbf{h}_{1}(w)\right]=\ldots=A\left[\mathbf{h}_{k}(w)\right]=1\right) \\
& =\operatorname{Pr}\left(A\left[\mathbf{h}_{1}(w)\right]=1\right) \times \ldots \times \operatorname{Pr}\left(A\left[\mathbf{h}_{k}(w)\right]=1\right) \\
& =(1-T / m) \times \ldots \times(1-T / m) \\
& =(1-T / m)^{k}
\end{aligned}
$$

- How small is T / m ? Note that $\frac{T}{m} \geq \frac{m-n k}{m} \approx e^{-\frac{k n}{m}}$ when $k n \ll m$. More generally, it can be shown that $T / m=\Omega\left(e^{-\frac{k n}{m}}\right)$ via Theorem 2 of: cglab.ca/~morin/publications/ds/bloom-submitted.pdf

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

- Can differentiate to show optimal number of hashes is $k=\ln 2 \cdot \frac{m}{n}$ (rounded to the nearest integer). This gives $\delta \approx 1 / 2^{(m / n) \ln 2}$.

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items inserted $\delta \approx\left(1-e^{\frac{-k n}{m}}\right)^{k}$.

- Can differentiate to show optimal number of hashes is $k=\ln 2 \cdot \frac{m}{n}$ (rounded to the nearest integer). This gives $\delta \approx 1 / 2^{(m / n) \ln 2}$.
- Balances between filling up the array with too many hashes and having enough hashes so that even when the array is pretty full, a new item is unlikely to have all its bits set (yield a false positive)

