COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor

Lecture 5



THE CHERNOFF BOUND

A variation of the Bernstein inequality for binary random variables is:

Chernoff Bound (simplified version): Consider independent random
variables Xi,..., X, taking values in {0,1}. Let p = E[>_", X;]. For

any § >0
2u
> < — .
Pr(l _6u>_2exp( 2+6)

X -
i=1




THE CHERNOFF BOUND

A variation of the Bernstein inequality for binary random variables is:

Chernoff Bound (simplified version): Consider independent random
variables Xi,..., X, taking values in {0,1}. Let p = E[>_", X;]. For

any 6 >0
5
> < — .
Pr(l _6u>_2exp( 2+6)

X
i=1
As § gets larger and larger, the bound falls of exponentially fast.




RETURN TO RANDOM HASHING

128-bit IP addresses Hash Table

=1
. 17216254 ) *

BWN R

172.16.250.1

192.168.134

h( 1658266 ) =1590

16.58.26.164

We hash m values xi, ..., x, using a random hash function into a table

with n = m entries.



RETURN TO RANDOM HASHING

128-bit IP addresses Hash Table

o ) 2L

172.16.250.1

R WN R

192.168.134

h( 1658266 ) =1590

16.58.26.164

We hash m values xi, ..., x, using a random hash function into a table

with n = m entries.

® le, forall j € [m] and i € [n], Pr(h(x) = i) = L1 and hash values are

chosen independently.



RETURN TO RANDOM HASHING

128-bit IP addresses Hash Table

o ) 2L DN

172.16.250.1

R WN R

192.168.134

16.58.26.164

h( 1658266 ) =1590

We hash m values xi, ..., x, using a random hash function into a table

with n = m entries.
® le, forall j € [m] and i € [n], Pr(h(x) = i) = L1 and hash values are
chosen independently.

What will be the maximum number of items hashed into the same

location?



MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position / and S;; be 1 if x; is
hashed into bucket i (h(x;) = i) and 0 otherwise.

m: total number of items hashed and size of hash table. xi,...,xn: the items. h:
random hash function mapping xi, . . ., Xm — [m].




MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position / and S;; be 1 if x; is
hashed into bucket i (h(x;) = i) and 0 otherwise.

- 1
E[S,] = ZE[Si’j] =m- ; =1
j=1

m: total number of items hashed and size of hash table. xi,...,xn: the items. h:
random hash function mapping xi, . . ., Xm — [m].




MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position / and S;; be 1 if x; is
hashed into bucket i (h(x;) = i) and 0 otherwise.

“ 1
E[S] =D ES,]=m - =1=p.
j=1

m: total number of items hashed and size of hash table. xi,...,xn: the items. h:
random hash function mapping xi, . . ., Xm — [m].




MAXIMUM LOAD IN RANDOMIZED HASHING

Let S; be the number of items hashed into position / and S;; be 1 if x; is
hashed into bucket i (h(x;) = i) and 0 otherwise.

“ 1
E[S] = ElS)=m-—=1=p.
j=1
By the Chernoff Bound: for any § > 0,

i Sij—1
i=1

Pr(S;Zl—I—&)SPr(

52
>0-p §2exp(—2+5)

m: total number of items hashed and size of hash table. xi,...,xn: the items. h:
random hash function mapping xi, . . ., Xm — [m].




MAXIMUM LOAD IN RANDOMIZED HASHING
62
> 6) < 2exp (—m) .

Pr(S,—>1+5)<Pr<

Zn: Sij—1
=1

m: total number of items hashed and size of hash table. S;: number of items hashed to
bucket i. S; ;: indicator if x; is hashed to bucket i. d: any value > 0.




MAXIMUM LOAD IN RANDOMIZED HASHING
62
> 6) < 2exp (—m) .

Pr(S,—>1+5)<Pr<

Zn: Sij—1
=1

Set § = 20log m. Gives:

m: total number of items hashed and size of hash table. S;: number of items hashed to
bucket i. S; ;: indicator if x; is hashed to bucket i. d: any value > 0.




MAXIMUM LOAD IN RANDOMIZED HASHING
62
> 6) < 2exp (—m) .

2
Pr(S; > 20log m + 1) < 2exp (7%)

Pr(S,—>1+5)<Pr<

Zn: Sij—1
=1

Set § = 20log m. Gives:

m: total number of items hashed and size of hash table. S;: number of items hashed to
bucket i. S; ;: indicator if x; is hashed to bucket i. d: any value > 0.




MAXIMUM LOAD IN RANDOMIZED HASHING
62
> 6) < 2exp (—m) .

~ (20log m)?
2+ 20logm

Pr(S,—>1+5)<Pr<

Zn: Sij—1
=1

Set § = 20log m. Gives:

2

Pr(S;220|ogm+1)§2exp( prh

) < 2exp(—18log m) <

Apply Union Bound:

Pr(maxS; > 20log m + 1) = Pr <U(S; > 20logm+ 1))

i€[m] P

m: total number of items hashed and size of hash table. S;: number of items hashed to
bucket i. S; ;: indicator if x; is hashed to bucket i. d: any value > 0.




MAXIMUM LOAD IN RANDOMIZED HASHING
62
> 6) < 2exp (—m) .

~ (20log m)?
2+ 20logm

Pr(S,—>1+5)<Pr<

Zn: Sij—1
=1

Set § = 20log m. Gives:

2

Pr(S;220|ogm+1)§2exp( prh

) < 2exp(—18log m) <

Apply Union Bound:

Pr(maxS; > 20log m + 1) = Pr <U(S; > 20logm+ 1))

i€[m] P

< Z Pr(S; > 20log m + 1)
i=1

m: total number of items hashed and size of hash table. S;: number of items hashed to
bucket i. S; ;: indicator if x; is hashed to bucket i. d: any value > 0.




MAXIMUM LOAD IN RANDOMIZED HASHING
62
6) < 2exp (—m) .

) < 2exp(—18log m) < %.

i =

Pr(S,—>1+5)<Pr<

Set § = 20log m. Gives:

(20 log m)?

Pr(S; > 20log m + 1) < 2exp (fm

Apply Union Bound:

€
i€[m] P

(maxS >20logm+1) = Pr <U(S; > 20logm+1) )
<m

<> Pr(S; > 20logm + 1)

m: total number of items hashed and size of hash table. S;: number of items hashed to
bucket i. S; ;: indicator if x; is hashed to bucket i. d: any value > 0.




MAXIMUM LOAD IN RANDOMIZED HASHING

Upshot: If we randomly hash m items into a hash table with m entries
the maximum load per bucket is O(log m) with very high probability.



MAXIMUM LOAD IN RANDOMIZED HASHING

Upshot: If we randomly hash m items into a hash table with m entries
the maximum load per bucket is O(log m) with very high probability.

® So, even with a simple linked list to store the items in each bucket,
worst case query time is O(log m).



MAXIMUM LOAD IN RANDOMIZED HASHING

Upshot: If we randomly hash m items into a hash table with m entries
the maximum load per bucket is O(log m) with very high probability.

® So, even with a simple linked list to store the items in each bucket,
worst case query time is O(log m).

® Using Chebyshev's inequality could only show the maximum load is
bounded by O(y/m) with good probability (good exercise).



MAXIMUM LOAD IN RANDOMIZED HASHING

Upshot: If we randomly hash m items into a hash table with m entries
the maximum load per bucket is O(log m) with very high probability.

® So, even with a simple linked list to store the items in each bucket,
worst case query time is O(log m).

® Using Chebyshev's inequality could only show the maximum load is
bounded by O(y/m) with good probability (good exercise).

® The Chebyshev bound holds even with a pairwise independent hash
function. The stronger Chernoff-based bound can be shown to hold
with a k-wise independent hash function for k = O(log m).



Questions on Exponential Concentration Bounds?

This concludes the probability foundations part of the course.
On to algorithms. ..



APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items
(e.g., images, text documents, IP addresses).



APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items
(e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is
in the set. Both in O(1) time.



APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items
(e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is
in the set. Both in O(1) time.



APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items
(e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is
in the set. Both in O(1) time.

® Allow small probability 6 > 0 of false positives. l.e., for any x,

Pr(query(x) =1and x ¢ S) < 4.



APPROXIMATELY MAINTAINING A SET

Want to store a set S of items from a massive universe of possible items
(e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is
in the set. Both in O(1) time.

® Allow small probability 6 > 0 of false positives. l.e., for any x,

Pr(query(x) =1and x ¢ S) < 4.

Solution: Bloom filters (repeated random hashing). Will use much less
space than a hash table.



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.

® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.
® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = A[hk(x)] = 1.



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.
® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = A[hk(x)] = 1.

m bit array A| 0 0 0 0 0 0 0 0 0 0




BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.

® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] = ... = Alh«(x)] = 1.
Insertions

m bit array A| 0 0 0 0 0 0 0 0 0 0

Queries:



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.
® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = Alh«(x)] = 1.

Insertions: X

m bit array A| 0 0 0 0 0 0 0 0 0 0

Queries:



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.
® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = A[hk(x)] = 1.

Insertions: X

hy(x)

mbitarray A 1 0 0 0 0 0 0 0 0 0

Queries:



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.
® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = A[hk(x)] = 1.

Insertions: X

hy(x) \
hy(x)

mbitarray A 1 0 0 0 1 0 0 0 0 0

Queries:



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.
® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = Alh«(x)] = 1.

Insertions: X

h(x)
hy(x) h,(x)

mbitarray A 1 0 0 0 1 0 0 0 1 0

Queries:



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.
® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = Alh«(x)] = 1.

Insertions: X

h(x)
hy(x) h,(x)

mbitarray A 1 0 0 0 1 0 0 0 1 0

Queries: X



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.

® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = A[hk(x)] =1
Insertions:
/ z()\
mbitarray A 1 0 0 0 0 1 0

\/

Queries:



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.

® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = A[hk(x)] =1
Insertions:
/ z()\
mbitarray A 1 0 0 0 0 1 0

\«/

Queries: X



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.

® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = A[hk(x)] =1
Insertions:
/ z<x\
mbitarray A 1 0 0 0 0 1 0

\«/

Queries: X



BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.

® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] = ... = Alh«(x)] = 1.
Insertions: X y

mbitarray A 1 1 0 0 1 0 1 0 1 0

v

Queries: X




BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.

® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] = ... = Alh«(x)] = 1.
Insertions: X y

mbitarray A 1 1 0 0 1 0 1 0 1 0

v

Queries: X w




BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.

® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] = ... = Alh«(x)] = 1.
Insertions: X y

mbitarray A 1 1 0 0 1 0 1 0 1 0

v\ —

Queries: X w




BLOOM FILTERS

Chose k independent random hash functions hy, ..., hy mapping the universe
of elements U — [m].

® Maintain an array A containing m bits, all initially 0.

® jnsert(x): set all bits A[h1(x)] = ... = Alhx(x)] := 1.
® query(x): return 1 only if Alhi(x)] =... = Alh«(x)] = 1.
Insertions: X y

mbitarray A 1 1 0 0 1 0 1 0 1 0

v\ —

Queries: X w X

No false negatives. False positives more likely with more insertions.



APPLICATIONS: DETERMINING WHEN TO CACHE

Akamai (Boston-based company serving 15 — 30% of all web traffic) applies
bloom filters to prevent caching of ‘one-hit-wonders’ — pages only visited once

fill over 75% of cache.

o 14000

2000 <4— Bloom filter ——ypp

0 turned on
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date



APPLICATIONS: DETERMINING WHEN TO CACHE

Akamai (Boston-based company serving 15 — 30% of all web traffic) applies
bloom filters to prevent caching of ‘one-hit-wonders’ — pages only visited once

fill over 75% of cache.

o 14000

2000 <4— Bloom filter ——ypp

0 turned on
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

® A Bloom Filter can be used to approximately track the url's you've seen
before without have to store them all!



APPLICATIONS: DETERMINING WHEN TO CACHE

Akamai (Boston-based company serving 15 — 30% of all web traffic) applies
bloom filters to prevent caching of ‘one-hit-wonders’ — pages only visited once
fill over 75% of cache.

o 14000

2000 €— Bloom filter ——ypy

0 turned on
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

® A Bloom Filter can be used to approximately track the url's you've seen
before without have to store them alll When url x comes in, if query(x) =1,
cache the page if it isn't already cached. If not, run insert(x) so that if it
comes in again, it will be cached.



APPLICATIONS: DETERMINING WHEN TO CACHE

Akamai (Boston-based company serving 15 — 30% of all web traffic) applies
bloom filters to prevent caching of ‘one-hit-wonders’ — pages only visited once
fill over 75% of cache.

o 14000

2000 €— Bloom filter ——ypy

0 turned on
17-Feb 27-Feb 9-Mar 19-Mar 29-Mar 8-Apr 18-Apr 28-Apr 8-May 18-May 28-May
Date

® A Bloom Filter can be used to approximately track the url's you've seen
before without have to store them alll When url x comes in, if query(x) =1,
cache the page if it isn't already cached. If not, run insert(x) so that if it
comes in again, it will be cached.

® False positive: A new url (possible one-hit-wonder) is cached. If the bloom
filter has a false positive rate of § = .05, the number of cached

one-hit-wonders will be reduced by at least 95%.



ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query
time is O(k).

10



ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query
time is O(k). How does the false positive rate 0 depend on m, k, and the

number of items inserted?

10



ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query
time is O(k). How does the false positive rate 0 depend on m, k, and the

number of items inserted?

Step 1: What is the probability that after inserting n elements, the i bit of
the array A is still 0?

10



ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query
time is O(k). How does the false positive rate 0 depend on m, k, and the

number of items inserted?

Step 1: What is the probability that after inserting n elements, the i bit of
the array A is still 07 n x k total hashes must not hit bit /.

PF(A[I] = 0) = Pr (hl(Xl) 75 in... ﬂhk(Xl) 751
ﬂhl(Xz) 7é I'...f-WI'Ik(Xz);'é Iﬂ)

10



ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query
time is O(k). How does the false positive rate 0 depend on m, k, and the

number of items inserted?

Step 1: What is the probability that after inserting n elements, the i bit of
the array A is still 07 n x k total hashes must not hit bit /.

PF(A[I] = 0) = Pr (hl(Xl) 75 in...N hk(Xl) 7£ i

ﬂhl(Xz)#i...ﬁhk(Xz)#ir\I...)
= Pr (hl(Xl) # I) X ...X Pr (hk(X1) 7& I) x Pr (hl(Xz) # I)

k-n events each occuring with probability 1—1/m

10



ANALYSIS

For a bloom filter with m bits and k hash functions, the insertion and query
time is O(k). How does the false positive rate 0 depend on m, k, and the

number of items inserted?

Step 1: What is the probability that after inserting n elements, the i bit of
the array A is still 07 n x k total hashes must not hit bit /.

PF(A[I] = 0) = Pr (hl(Xl) 75 in...N hk(Xl) 7£ i

ﬂhl(Xz)#i...ﬁhk(Xz)#ir\I...)
= Pr (hl(Xl) # I) X ...X Pr (hk(X1) 7& I) x Pr (hl(Xz) # I)

k-n events each occuring with probability 1—1/m
kn
1
= 1 _ —
m

10



ANALYSIS

How does the false positive rate § depend on m, k, and the number of items

inserted?

What is the probability that after inserting n elements, the i*" bit of the array

As still 0? B
Pr(A[i] = 0) = (1 - %)

n: total number items in filter, m: number of bits in filter, k: number of random hash
functions, hy, ... hg: hash functions, A: bit array, §: false positive rate.

11



ANALYSIS

How does the false positive rate § depend on m, k, and the number of items

inserted?

What is the probability that after inserting n elements, the i*" bit of the array

A is still 07
1 kn .
PrA[ill=0)= (1—- = ~e m
Al =0 = (1- 1) ~e

n: total number items in filter, m: number of bits in filter, k: number of random hash
functions, hy, ... hg: hash functions, A: bit array, §: false positive rate.

11



ANALYSIS

How does the false positive rate § depend on m, k, and the number of items

inserted?

What is the probability that after inserting n elements, the i*" bit of the array

A is still 07
pr(a=0)= (1- 1) ~e®
r 1| = = ; ~ €

Let T be the number of zeros in the array after n inserts. Then,

1)\ s
E[Tl=m(1—-—=)] =~me »
m

n: total number items in filter, m: number of bits in filter, k: number of random hash
functions, hy, ... hg: hash functions, A: bit array, §: false positive rate.

11



CORRECT ANALYSIS SKETCH

If T is the number of 0 entries, for a non-inserted element w:
Pr(Alhi(w)] = ... = Alhx(w)] = 1)
= Pr(Alhi(w)] =1) x ... x Pr(Alhx(w)] = 1)
=1-T/m)x...x(1—T/m)
=(1-T/m)*

12


cglab.ca/~morin/publications/ds/bloom-submitted.pdf

CORRECT ANALYSIS SKETCH

If T is the number of 0 entries, for a non-inserted element w:

Pr(Alhy(w)] = ... = Alh(w)] = 1)

= Pr(A[hi(w )] 1) x ... x Pr(Alhe(w)] = 1)
=(1-T/m)x ><(17T/m)

=1~ T/m)"

. kn
® How small is T/m? Note that = > =% ~ e™m when kn < m. More

generally, it can be shown that T/m = Q (e_an"> via Theorem 2 of:

cglab.ca/~morin/publications/ds/bloom-submitted.pdf

12


cglab.ca/~morin/publications/ds/bloom-submitted.pdf

FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items
i\ k
inserted § ~ (1 —em > .

13



FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items
i\ k
inserted § ~ (1 —em > .

°
&

=

°
&

©

N

0.15

False Positive Rate &

°
s
&

o

°

5 10 15 20 25 30
Number of Hash Functions k

13



FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items
i\ k
inserted § ~ (1 —em > .

e o °
& 2 &

©

False Positive Rate &

°
s
&

o
°

5 10 15 20 25 30
Number of Hash Functions k

® Can differentiate to show optimal number of hashes is k =In2- 7 (rounded
to the nearest integer). This gives § = 1/2(m/min2

13



FALSE POSITIVE RATE

False Positive Rate: with m bits of storage, k hash functions, and n items
i\ k
inserted § ~ (1 —em > .

o

False Positive Rate &

o ° ° °
e Z 92 n 2 uw © &
23RBS &R &

°
s
&

o
°

5 10 15 20 25 30
Number of Hash Functions k

® Can differentiate to show optimal number of hashes is k =In2- 7 (rounded
to the nearest integer). This gives § = 1/2(m/min2

® Balances between filling up the array with too many hashes and having
enough hashes so that even when the array is pretty full, a new item is

unlikely to have all its bits set (yield a false positive)
13



