
compsci 514: algorithms for data science

Andrew McGregor

Lecture 5

0



the chernoff bound

A variation of the Bernstein inequality for binary random variables is:

Chernoff Bound (simplified version): Consider independent random

variables X1, . . . ,Xn taking values in {0, 1}. Let µ = E[
∑n

i=1 Xi ]. For

any δ ≥ 0

Pr

(∣∣∣∣∣
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ δµ
)
≤ 2 exp

(
− δ2µ

2 + δ

)
.

As δ gets larger and larger, the bound falls of exponentially fast.

1



the chernoff bound

A variation of the Bernstein inequality for binary random variables is:

Chernoff Bound (simplified version): Consider independent random

variables X1, . . . ,Xn taking values in {0, 1}. Let µ = E[
∑n

i=1 Xi ]. For

any δ ≥ 0

Pr

(∣∣∣∣∣
n∑

i=1

Xi − µ

∣∣∣∣∣ ≥ δµ
)
≤ 2 exp

(
− δ2µ

2 + δ

)
.

As δ gets larger and larger, the bound falls of exponentially fast.

1



return to random hashing

We hash m values x1, . . . , xm using a random hash function into a table

with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [n], Pr(h(x) = i) = 1
m and hash values are

chosen independently.

What will be the maximum number of items hashed into the same

location?

2



return to random hashing

We hash m values x1, . . . , xm using a random hash function into a table

with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [n], Pr(h(x) = i) = 1
m and hash values are

chosen independently.

What will be the maximum number of items hashed into the same

location?

2



return to random hashing

We hash m values x1, . . . , xm using a random hash function into a table

with n = m entries.

• I.e., for all j ∈ [m] and i ∈ [n], Pr(h(x) = i) = 1
m and hash values are

chosen independently.

What will be the maximum number of items hashed into the same

location?

2



maximum load in randomized hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj is

hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si ] =
m∑
j=1

E[Si,j ] = m · 1

m
= 1

= µ.

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1 + δ) ≤ Pr

(∣∣∣∣∣
n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ · µ
)
≤ 2 exp

(
− δ2

2 + δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm: the items. h:

random hash function mapping x1, . . . , xm → [m].

3



maximum load in randomized hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj is

hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si ] =
m∑
j=1

E[Si,j ] = m · 1

m
= 1

= µ.

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1 + δ) ≤ Pr

(∣∣∣∣∣
n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ · µ
)
≤ 2 exp

(
− δ2

2 + δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm: the items. h:

random hash function mapping x1, . . . , xm → [m].

3



maximum load in randomized hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj is

hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si ] =
m∑
j=1

E[Si,j ] = m · 1

m
= 1 = µ.

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1 + δ) ≤ Pr

(∣∣∣∣∣
n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ · µ
)
≤ 2 exp

(
− δ2

2 + δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm: the items. h:

random hash function mapping x1, . . . , xm → [m].

3



maximum load in randomized hashing

Let Si be the number of items hashed into position i and Si,j be 1 if xj is

hashed into bucket i (h(xj) = i) and 0 otherwise.

E[Si ] =
m∑
j=1

E[Si,j ] = m · 1

m
= 1 = µ.

By the Chernoff Bound: for any δ ≥ 0,

Pr(Si ≥ 1 + δ) ≤ Pr

(∣∣∣∣∣
n∑

i=1

Si,j − 1

∣∣∣∣∣ ≥ δ · µ
)
≤ 2 exp

(
− δ2

2 + δ

)

m: total number of items hashed and size of hash table. x1, . . . , xm: the items. h:

random hash function mapping x1, . . . , xm → [m].

3



maximum load in randomized hashing

Pr(Si ≥ 1 + δ) ≤ Pr

(∣∣∣∣∣
n∑

j=1

Si,j − 1

∣∣∣∣∣ ≥ δ
)
≤ 2 exp

(
− δ2

2 + δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm + 1) ≤ 2 exp

(
− (20 logm)2

2 + 20 logm

)

≤ 2 exp(−18 logm) ≤ 2

m18

.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm + 1) = Pr

(
m⋃
i=1

(Si ≥ 20 logm + 1)

)

≤
m∑
i=1

Pr(Si ≥ 20 logm + 1) ≤ m · 2

m18
=

2

m17

.

m: total number of items hashed and size of hash table. Si : number of items hashed to

bucket i . Si,j : indicator if xj is hashed to bucket i . δ: any value ≥ 0.

4



maximum load in randomized hashing

Pr(Si ≥ 1 + δ) ≤ Pr

(∣∣∣∣∣
n∑

j=1

Si,j − 1

∣∣∣∣∣ ≥ δ
)
≤ 2 exp

(
− δ2

2 + δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm + 1) ≤ 2 exp

(
− (20 logm)2

2 + 20 logm

)

≤ 2 exp(−18 logm) ≤ 2

m18

.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm + 1) = Pr

(
m⋃
i=1

(Si ≥ 20 logm + 1)

)

≤
m∑
i=1

Pr(Si ≥ 20 logm + 1) ≤ m · 2

m18
=

2

m17

.

m: total number of items hashed and size of hash table. Si : number of items hashed to

bucket i . Si,j : indicator if xj is hashed to bucket i . δ: any value ≥ 0.

4



maximum load in randomized hashing

Pr(Si ≥ 1 + δ) ≤ Pr

(∣∣∣∣∣
n∑

j=1

Si,j − 1

∣∣∣∣∣ ≥ δ
)
≤ 2 exp

(
− δ2

2 + δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm + 1) ≤ 2 exp

(
− (20 logm)2

2 + 20 logm

)

≤ 2 exp(−18 logm) ≤ 2

m18

.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm + 1) = Pr

(
m⋃
i=1

(Si ≥ 20 logm + 1)

)

≤
m∑
i=1

Pr(Si ≥ 20 logm + 1) ≤ m · 2

m18
=

2

m17

.

m: total number of items hashed and size of hash table. Si : number of items hashed to

bucket i . Si,j : indicator if xj is hashed to bucket i . δ: any value ≥ 0.

4



maximum load in randomized hashing

Pr(Si ≥ 1 + δ) ≤ Pr

(∣∣∣∣∣
n∑

j=1

Si,j − 1

∣∣∣∣∣ ≥ δ
)
≤ 2 exp

(
− δ2

2 + δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm + 1) ≤ 2 exp

(
− (20 logm)2

2 + 20 logm

)
≤ 2 exp(−18 logm) ≤ 2

m18
.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm + 1) = Pr

(
m⋃
i=1

(Si ≥ 20 logm + 1)

)

≤
m∑
i=1

Pr(Si ≥ 20 logm + 1) ≤ m · 2

m18
=

2

m17

.

m: total number of items hashed and size of hash table. Si : number of items hashed to

bucket i . Si,j : indicator if xj is hashed to bucket i . δ: any value ≥ 0.

4



maximum load in randomized hashing

Pr(Si ≥ 1 + δ) ≤ Pr

(∣∣∣∣∣
n∑

j=1

Si,j − 1

∣∣∣∣∣ ≥ δ
)
≤ 2 exp

(
− δ2

2 + δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm + 1) ≤ 2 exp

(
− (20 logm)2

2 + 20 logm

)
≤ 2 exp(−18 logm) ≤ 2

m18
.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm + 1) = Pr

(
m⋃
i=1

(Si ≥ 20 logm + 1)

)

≤
m∑
i=1

Pr(Si ≥ 20 logm + 1)

≤ m · 2

m18
=

2

m17

.

m: total number of items hashed and size of hash table. Si : number of items hashed to

bucket i . Si,j : indicator if xj is hashed to bucket i . δ: any value ≥ 0.

4



maximum load in randomized hashing

Pr(Si ≥ 1 + δ) ≤ Pr

(∣∣∣∣∣
n∑

j=1

Si,j − 1

∣∣∣∣∣ ≥ δ
)
≤ 2 exp

(
− δ2

2 + δ

)
.

Set δ = 20 logm. Gives:

Pr(Si ≥ 20 logm + 1) ≤ 2 exp

(
− (20 logm)2

2 + 20 logm

)
≤ 2 exp(−18 logm) ≤ 2

m18
.

Apply Union Bound:

Pr(max
i∈[m]

Si ≥ 20 logm + 1) = Pr

(
m⋃
i=1

(Si ≥ 20 logm + 1)

)

≤
m∑
i=1

Pr(Si ≥ 20 logm + 1) ≤ m · 2

m18
=

2

m17
.

m: total number of items hashed and size of hash table. Si : number of items hashed to

bucket i . Si,j : indicator if xj is hashed to bucket i . δ: any value ≥ 0.

4



maximum load in randomized hashing

Upshot: If we randomly hash m items into a hash table with m entries

the maximum load per bucket is O(logm) with very high probability.

• So, even with a simple linked list to store the items in each bucket,

worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the maximum load is

bounded by O(
√
m) with good probability (good exercise).

• The Chebyshev bound holds even with a pairwise independent hash

function. The stronger Chernoff-based bound can be shown to hold

with a k-wise independent hash function for k = O(logm).

5



maximum load in randomized hashing

Upshot: If we randomly hash m items into a hash table with m entries

the maximum load per bucket is O(logm) with very high probability.

• So, even with a simple linked list to store the items in each bucket,

worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the maximum load is

bounded by O(
√
m) with good probability (good exercise).

• The Chebyshev bound holds even with a pairwise independent hash

function. The stronger Chernoff-based bound can be shown to hold

with a k-wise independent hash function for k = O(logm).

5



maximum load in randomized hashing

Upshot: If we randomly hash m items into a hash table with m entries

the maximum load per bucket is O(logm) with very high probability.

• So, even with a simple linked list to store the items in each bucket,

worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the maximum load is

bounded by O(
√
m) with good probability (good exercise).

• The Chebyshev bound holds even with a pairwise independent hash

function. The stronger Chernoff-based bound can be shown to hold

with a k-wise independent hash function for k = O(logm).

5



maximum load in randomized hashing

Upshot: If we randomly hash m items into a hash table with m entries

the maximum load per bucket is O(logm) with very high probability.

• So, even with a simple linked list to store the items in each bucket,

worst case query time is O(logm).

• Using Chebyshev’s inequality could only show the maximum load is

bounded by O(
√
m) with good probability (good exercise).

• The Chebyshev bound holds even with a pairwise independent hash

function. The stronger Chernoff-based bound can be shown to hold

with a k-wise independent hash function for k = O(logm).

5



Questions on Exponential Concentration Bounds?

This concludes the probability foundations part of the course.

On to algorithms. . .

6



approximately maintaining a set

Want to store a set S of items from a massive universe of possible items

(e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is

in the set. Both in O(1) time.

• Allow small probability δ > 0 of false positives. I.e., for any x ,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use much less

space than a hash table.

7



approximately maintaining a set

Want to store a set S of items from a massive universe of possible items

(e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is

in the set. Both in O(1) time.

• Allow small probability δ > 0 of false positives. I.e., for any x ,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use much less

space than a hash table.

7



approximately maintaining a set

Want to store a set S of items from a massive universe of possible items

(e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is

in the set. Both in O(1) time.

• Allow small probability δ > 0 of false positives. I.e., for any x ,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use much less

space than a hash table.

7



approximately maintaining a set

Want to store a set S of items from a massive universe of possible items

(e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is

in the set. Both in O(1) time.

• Allow small probability δ > 0 of false positives. I.e., for any x ,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use much less

space than a hash table.

7



approximately maintaining a set

Want to store a set S of items from a massive universe of possible items

(e.g., images, text documents, IP addresses).

Goal: support insert(x) to add x to the set and query(x) to check if x is

in the set. Both in O(1) time.

• Allow small probability δ > 0 of false positives. I.e., for any x ,

Pr(query(x) = 1 and x /∈ S) ≤ δ.

Solution: Bloom filters (repeated random hashing). Will use much less

space than a hash table.

7



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



bloom filters

Chose k independent random hash functions h1, . . . , hk mapping the universe

of elements U → [m].

• Maintain an array A containing m bits, all initially 0.

• insert(x): set all bits A[h1(x)] = . . . = A[hk(x)] := 1.

• query(x): return 1 only if A[h1(x)] = . . . = A[hk(x)] = 1.

No false negatives. False positives more likely with more insertions.

8



applications: determining when to cache

Akamai (Boston-based company serving 15− 30% of all web traffic) applies

bloom filters to prevent caching of ‘one-hit-wonders’ – pages only visited once

fill over 75% of cache.

• A Bloom Filter can be used to approximately track the url’s you’ve seen

before without have to store them all! When url x comes in, if query(x) = 1,

cache the page if it isn’t already cached. If not, run insert(x) so that if it

comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If the bloom

filter has a false positive rate of δ = .05, the number of cached

one-hit-wonders will be reduced by at least 95%.

9



applications: determining when to cache

Akamai (Boston-based company serving 15− 30% of all web traffic) applies

bloom filters to prevent caching of ‘one-hit-wonders’ – pages only visited once

fill over 75% of cache.

• A Bloom Filter can be used to approximately track the url’s you’ve seen

before without have to store them all!

When url x comes in, if query(x) = 1,

cache the page if it isn’t already cached. If not, run insert(x) so that if it

comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If the bloom

filter has a false positive rate of δ = .05, the number of cached

one-hit-wonders will be reduced by at least 95%.

9



applications: determining when to cache

Akamai (Boston-based company serving 15− 30% of all web traffic) applies

bloom filters to prevent caching of ‘one-hit-wonders’ – pages only visited once

fill over 75% of cache.

• A Bloom Filter can be used to approximately track the url’s you’ve seen

before without have to store them all! When url x comes in, if query(x) = 1,

cache the page if it isn’t already cached. If not, run insert(x) so that if it

comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If the bloom

filter has a false positive rate of δ = .05, the number of cached

one-hit-wonders will be reduced by at least 95%.

9



applications: determining when to cache

Akamai (Boston-based company serving 15− 30% of all web traffic) applies

bloom filters to prevent caching of ‘one-hit-wonders’ – pages only visited once

fill over 75% of cache.

• A Bloom Filter can be used to approximately track the url’s you’ve seen

before without have to store them all! When url x comes in, if query(x) = 1,

cache the page if it isn’t already cached. If not, run insert(x) so that if it

comes in again, it will be cached.

• False positive: A new url (possible one-hit-wonder) is cached. If the bloom

filter has a false positive rate of δ = .05, the number of cached

one-hit-wonders will be reduced by at least 95%.

9



analysis

For a bloom filter with m bits and k hash functions, the insertion and query

time is O(k).

How does the false positive rate δ depend on m, k, and the

number of items inserted?

Step 1: What is the probability that after inserting n elements, the i th bit of

the array A is still 0? n × k total hashes must not hit bit i .

Pr(A[i ] = 0) = Pr
(
h1(x1) 6= i ∩ . . . ∩ hk(x1) 6= i

∩ h1(x2) 6= i . . . ∩ hk(x2) 6= i ∩ . . .
)

= Pr
(
h1(x1) 6= i)× . . .× Pr

(
hk(x1) 6= i)× Pr

(
h1(x2) 6= i) . . .︸ ︷︷ ︸

k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

10



analysis

For a bloom filter with m bits and k hash functions, the insertion and query

time is O(k). How does the false positive rate δ depend on m, k, and the

number of items inserted?

Step 1: What is the probability that after inserting n elements, the i th bit of

the array A is still 0? n × k total hashes must not hit bit i .

Pr(A[i ] = 0) = Pr
(
h1(x1) 6= i ∩ . . . ∩ hk(x1) 6= i

∩ h1(x2) 6= i . . . ∩ hk(x2) 6= i ∩ . . .
)

= Pr
(
h1(x1) 6= i)× . . .× Pr

(
hk(x1) 6= i)× Pr

(
h1(x2) 6= i) . . .︸ ︷︷ ︸

k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

10



analysis

For a bloom filter with m bits and k hash functions, the insertion and query

time is O(k). How does the false positive rate δ depend on m, k, and the

number of items inserted?

Step 1: What is the probability that after inserting n elements, the i th bit of

the array A is still 0?

n × k total hashes must not hit bit i .

Pr(A[i ] = 0) = Pr
(
h1(x1) 6= i ∩ . . . ∩ hk(x1) 6= i

∩ h1(x2) 6= i . . . ∩ hk(x2) 6= i ∩ . . .
)

= Pr
(
h1(x1) 6= i)× . . .× Pr

(
hk(x1) 6= i)× Pr

(
h1(x2) 6= i) . . .︸ ︷︷ ︸

k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

10



analysis

For a bloom filter with m bits and k hash functions, the insertion and query

time is O(k). How does the false positive rate δ depend on m, k, and the

number of items inserted?

Step 1: What is the probability that after inserting n elements, the i th bit of

the array A is still 0? n × k total hashes must not hit bit i .

Pr(A[i ] = 0) = Pr
(
h1(x1) 6= i ∩ . . . ∩ hk(x1) 6= i

∩ h1(x2) 6= i . . . ∩ hk(x2) 6= i ∩ . . .
)

= Pr
(
h1(x1) 6= i)× . . .× Pr

(
hk(x1) 6= i)× Pr

(
h1(x2) 6= i) . . .︸ ︷︷ ︸

k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

10



analysis

For a bloom filter with m bits and k hash functions, the insertion and query

time is O(k). How does the false positive rate δ depend on m, k, and the

number of items inserted?

Step 1: What is the probability that after inserting n elements, the i th bit of

the array A is still 0? n × k total hashes must not hit bit i .

Pr(A[i ] = 0) = Pr
(
h1(x1) 6= i ∩ . . . ∩ hk(x1) 6= i

∩ h1(x2) 6= i . . . ∩ hk(x2) 6= i ∩ . . .
)

= Pr
(
h1(x1) 6= i)× . . .× Pr

(
hk(x1) 6= i)× Pr

(
h1(x2) 6= i) . . .︸ ︷︷ ︸

k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

10



analysis

For a bloom filter with m bits and k hash functions, the insertion and query

time is O(k). How does the false positive rate δ depend on m, k, and the

number of items inserted?

Step 1: What is the probability that after inserting n elements, the i th bit of

the array A is still 0? n × k total hashes must not hit bit i .

Pr(A[i ] = 0) = Pr
(
h1(x1) 6= i ∩ . . . ∩ hk(x1) 6= i

∩ h1(x2) 6= i . . . ∩ hk(x2) 6= i ∩ . . .
)

= Pr
(
h1(x1) 6= i)× . . .× Pr

(
hk(x1) 6= i)× Pr

(
h1(x2) 6= i) . . .︸ ︷︷ ︸

k·n events each occuring with probability 1−1/m

=

(
1− 1

m

)kn

10



analysis

How does the false positive rate δ depend on m, k, and the number of items

inserted?

What is the probability that after inserting n elements, the i th bit of the array

A is still 0?

Pr(A[i ] = 0) =

(
1− 1

m

)kn

≈ e−
kn
m

Let T be the number of zeros in the array after n inserts. Then,

E [T ] = m

(
1− 1

m

)kn

≈ me−
kn
m

n: total number items in filter, m: number of bits in filter, k: number of random hash

functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate.

11



analysis

How does the false positive rate δ depend on m, k, and the number of items

inserted?

What is the probability that after inserting n elements, the i th bit of the array

A is still 0?

Pr(A[i ] = 0) =

(
1− 1

m

)kn

≈ e−
kn
m

Let T be the number of zeros in the array after n inserts. Then,

E [T ] = m

(
1− 1

m

)kn

≈ me−
kn
m

n: total number items in filter, m: number of bits in filter, k: number of random hash

functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate.

11



analysis

How does the false positive rate δ depend on m, k, and the number of items

inserted?

What is the probability that after inserting n elements, the i th bit of the array

A is still 0?

Pr(A[i ] = 0) =

(
1− 1

m

)kn

≈ e−
kn
m

Let T be the number of zeros in the array after n inserts. Then,

E [T ] = m

(
1− 1

m

)kn

≈ me−
kn
m

n: total number items in filter, m: number of bits in filter, k: number of random hash

functions, h1, . . . hk : hash functions, A: bit array, δ: false positive rate.

11



correct analysis sketch

If T is the number of 0 entries, for a non-inserted element w :

Pr(A[h1(w)] = . . . = A[hk(w)] = 1)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

= (1− T/m)× . . .× (1− T/m)

= (1− T/m)k

• How small is T/m? Note that T
m
≥ m−nk

m
≈ e−

kn
m when kn� m. More

generally, it can be shown that T/m = Ω
(
e−

kn
m

)
via Theorem 2 of:

cglab.ca/~morin/publications/ds/bloom-submitted.pdf

12

cglab.ca/~morin/publications/ds/bloom-submitted.pdf


correct analysis sketch

If T is the number of 0 entries, for a non-inserted element w :

Pr(A[h1(w)] = . . . = A[hk(w)] = 1)

= Pr(A[h1(w)] = 1)× . . .× Pr(A[hk(w)] = 1)

= (1− T/m)× . . .× (1− T/m)

= (1− T/m)k

• How small is T/m? Note that T
m
≥ m−nk

m
≈ e−

kn
m when kn� m. More

generally, it can be shown that T/m = Ω
(
e−

kn
m

)
via Theorem 2 of:

cglab.ca/~morin/publications/ds/bloom-submitted.pdf

12

cglab.ca/~morin/publications/ds/bloom-submitted.pdf


false positive rate

False Positive Rate: with m bits of storage, k hash functions, and n items

inserted δ ≈
(

1− e
−kn
m

)k
.

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

• Can differentiate to show optimal number of hashes is k = ln 2 · m
n

(rounded

to the nearest integer). This gives δ ≈ 1/2(m/n) ln 2.

• Balances between filling up the array with too many hashes and having

enough hashes so that even when the array is pretty full, a new item is

unlikely to have all its bits set (yield a false positive)

13



false positive rate

False Positive Rate: with m bits of storage, k hash functions, and n items

inserted δ ≈
(

1− e
−kn
m

)k
.

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

• Can differentiate to show optimal number of hashes is k = ln 2 · m
n

(rounded

to the nearest integer). This gives δ ≈ 1/2(m/n) ln 2.

• Balances between filling up the array with too many hashes and having

enough hashes so that even when the array is pretty full, a new item is

unlikely to have all its bits set (yield a false positive)

13



false positive rate

False Positive Rate: with m bits of storage, k hash functions, and n items

inserted δ ≈
(

1− e
−kn
m

)k
.

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

• Can differentiate to show optimal number of hashes is k = ln 2 · m
n

(rounded

to the nearest integer). This gives δ ≈ 1/2(m/n) ln 2.

• Balances between filling up the array with too many hashes and having

enough hashes so that even when the array is pretty full, a new item is

unlikely to have all its bits set (yield a false positive)

13



false positive rate

False Positive Rate: with m bits of storage, k hash functions, and n items

inserted δ ≈
(

1− e
−kn
m

)k
.

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

• Can differentiate to show optimal number of hashes is k = ln 2 · m
n

(rounded

to the nearest integer). This gives δ ≈ 1/2(m/n) ln 2.

• Balances between filling up the array with too many hashes and having

enough hashes so that even when the array is pretty full, a new item is

unlikely to have all its bits set (yield a false positive)
13


