# COMPSCI 514: ALGORITHMS FOR DATA SCIENCE 

Andrew McGregor
Lecture 8

## SEARCH WITH JACCARD SIMILARITY

Jaccard Index: A similarity measure between two sets.

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}=\frac{\# \text { shared elements }}{\# \text { total elements }} .
$$

## Want Fast Implementations For:

## SEARCH WITH JACCARD SIMILARITY

Jaccard Index: A similarity measure between two sets.

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}=\frac{\# \text { shared elements }}{\# \text { total elements }} .
$$

## Want Fast Implementations For:

- Near Neighbor Search: Have a database of $n$ sets and given a set $A$, want to find if it has high Jaccard similarity to anything in the database. $\Omega(n)$ time with a linear scan.


## SEARCH WITH JACCARD SIMILARITY

Jaccard Index: A similarity measure between two sets.

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}=\frac{\# \text { shared elements }}{\# \text { total elements }}
$$

## Want Fast Implementations For:

- Near Neighbor Search: Have a database of $n$ sets and given a set $A$, want to find if it has high Jaccard similarity to anything in the database. $\Omega(n)$ time with a linear scan.
- All-pairs Similarity Search: Have $n$ different sets and want to find all pairs with high Jaccard similarity. $\Omega\left(n^{2}\right)$ time if we check all pairs explicitly.

Will speed up via randomized locality sensitive hashing.

## MINHASHING

Goal: Speed up Jaccard similarity search.

## MINHASHING

Goal: Speed up Jaccard similarity search.
Strategy: Use random hashing to map each set to a very compressed representation. Jaccard similarity can be estimated from these.

## MINHASHING

Goal: Speed up Jaccard similarity search.
Strategy: Use random hashing to map each set to a very compressed representation. Jaccard similarity can be estimated from these.

MinHash(A): [Andrei Broder, 1997 at Altavista]

- Let $\mathbf{h}: U \rightarrow[0,1]$ be a random hash
function
- $\mathbf{s}:=1$
- For $x_{1}, \ldots, x_{|A|} \in A$
- $\mathbf{s}:=\min \left(\mathbf{s}, \mathbf{h}\left(x_{k}\right)\right)$
- Return s


## MINHASHING

Goal: Speed up Jaccard similarity search.
Strategy: Use random hashing to map each set to a very compressed representation. Jaccard similarity can be estimated from these.

MinHash(A): [Andrei Broder, 1997 at Altavista]

- Let $\mathbf{h}: U \rightarrow[0,1]$ be a random hash function
- $\mathbf{s}:=1$
- For $x_{1}, \ldots, x_{|A|} \in A$
- $\mathbf{s}:=\min \left(\mathbf{s}, \mathbf{h}\left(x_{k}\right)\right)$
- Return s


MinHash(A)

## MINHASHING

Goal: Speed up Jaccard similarity search.
Strategy: Use random hashing to map each set to a very compressed representation. Jaccard similarity can be estimated from these.

MinHash(A): [Andrei Broder, 1997 at Altavista]

- Let $\mathbf{h}: U \rightarrow[0,1]$ be a random hash function
- $\mathbf{s}:=1$
- For $x_{1}, \ldots, x_{|A|} \in A$
- $\mathbf{s}:=\min \left(\mathbf{s}, \mathbf{h}\left(x_{k}\right)\right)$
- Return s


MinHash(A)

## MINHASH

For two sets $A$ and $B$, what is $\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))$ ?

## MINHASH

For two sets $A$ and $B$, what is $\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))$ ?

- Since we are hashing into the continuous range $[0,1]$, we will never have $\mathbf{h}(x)=\mathbf{h}(y)$ for $x \neq y$ (i.e., no spurious collisions)



## MINHASH

For two sets $A$ and $B$, what is $\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))$ ?

- Since we are hashing into the continuous range $[0,1]$, we will never have $\mathbf{h}(x)=\mathbf{h}(y)$ for $x \neq y$ (i.e., no spurious collisions)

- $M H(A)=M H(B)$ iff an item in $A \cap B$ has the minimum hash value in both sets.


## MINHASH

For two sets $A$ and $B$, what is $\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))$ ?

- Since we are hashing into the continuous range $[0,1]$, we will never have $\mathbf{h}(x)=\mathbf{h}(y)$ for $x \neq y$ (i.e., no spurious collisions)

- $M H(A)=M H(B)$ iff an item in $A \cap B$ has the minimum hash value in both sets. Therefore,


## MINHASH

For two sets $A$ and $B$, what is $\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))$ ?

- Since we are hashing into the continuous range $[0,1]$, we will never have $\mathbf{h}(x)=\mathbf{h}(y)$ for $x \neq y$ (i.e., no spurious collisions)

- $M H(A)=M H(B)$ iff an item in $A \cap B$ has the minimum hash value in both sets. Therefore,

$$
\begin{aligned}
\operatorname{Pr}(M H(A)=M H(B)) & =\sum_{x \in A \cap B} \operatorname{Pr}(M H(A)=\mathbf{h}(x) \cap M H(B)=\mathbf{h}(x)) \\
& =\sum_{x \in A \cap B} \operatorname{Pr}(x=\underset{y \in A \cup B}{\arg \min } \mathbf{h}(y))
\end{aligned}
$$

## MINHASH

For two sets $A$ and $B$, what is $\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))$ ?

- Since we are hashing into the continuous range $[0,1]$, we will never have $\mathbf{h}(x)=\mathbf{h}(y)$ for $x \neq y$ (i.e., no spurious collisions)

- $M H(A)=M H(B)$ iff an item in $A \cap B$ has the minimum hash value in both sets. Therefore,

$$
\begin{aligned}
\operatorname{Pr}(M H(A)=M H(B)) & =\sum_{x \in A \cap B} \operatorname{Pr}(M H(A)=\mathbf{h}(x) \cap M H(B)=\mathbf{h}(x)) \\
& =\sum_{x \in A \cap B} \operatorname{Pr}(x=\underset{y \in A \cup B}{\arg \min } \mathbf{h}(y)) \\
& =\sum_{x \in A \cap B} \frac{1}{|A \cup B|}
\end{aligned}
$$

## MINHASH

For two sets $A$ and $B$, what is $\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))$ ?

- Since we are hashing into the continuous range $[0,1]$, we will never have $\mathbf{h}(x)=\mathbf{h}(y)$ for $x \neq y$ (i.e., no spurious collisions)

- $M H(A)=M H(B)$ iff an item in $A \cap B$ has the minimum hash value in both sets. Therefore,

$$
\begin{aligned}
\operatorname{Pr}(M H(A)=M H(B)) & =\sum_{x \in A \cap B} \operatorname{Pr}(M H(A)=\mathbf{h}(x) \cap M H(B)=\mathbf{h}(x)) \\
& =\sum_{x \in A \cap B} \operatorname{Pr}(x=\underset{y \in A \cup B}{\arg \min } \mathbf{h}(y)) \\
& =\sum_{x \in A \cap B} \frac{1}{|A \cup B|}=\frac{|A \cap B|}{|A \cup B|}=J(A, B)
\end{aligned}
$$

## LOCALITY SENSITIVE HASHING

Upshot: MinHash reduces estimating the Jaccard similarity to checking equality of a single number.

$$
\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))=J(A, B) .
$$

## LOCALITY SENSITIVE HASHING

Upshot: MinHash reduces estimating the Jaccard similarity to checking equality of a single number.

$$
\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))=J(A, B) .
$$

- An instance of locality sensitive hashing (LSH).


## LOCALITY SENSITIVE HASHING

Upshot: MinHash reduces estimating the Jaccard similarity to checking equality of a single number.

$$
\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))=J(A, B) .
$$

- An instance of locality sensitive hashing (LSH).
- A hash function where the collision probability is higher when two inputs are more similar (can design different functions for different similarity metrics.)


## LOCALITY SENSITIVE HASHING

Upshot: MinHash reduces estimating the Jaccard similarity to checking equality of a single number.

$$
\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))=J(A, B)
$$

- An instance of locality sensitive hashing (LSH).
- A hash function where the collision probability is higher when two inputs are more similar (can design different functions for different similarity metrics.)



## LOCALITY SENSITIVE HASHING

Upshot: MinHash reduces estimating the Jaccard similarity to checking equality of a single number.

$$
\operatorname{Pr}(\operatorname{MinHash}(A)=\operatorname{MinHash}(B))=J(A, B)
$$

- An instance of locality sensitive hashing (LSH).
- A hash function where the collision probability is higher when two inputs are more similar (can design different functions for different similarity metrics.)



## LSH FOR SIMILARITY SEARCH

How does locality sensitive hashing help for similarity search?


## LSH FOR SIMILARITY SEARCH

How does locality sensitive hashing help for similarity search?


- Near Neighbor Search: Given item $x$, compute $\mathbf{h}(x)$. Only search for similar items in the $\mathbf{h}(x)$ bucket of the hash table.


## LSH FOR SIMILARITY SEARCH

How does locality sensitive hashing help for similarity search?


- Near Neighbor Search: Given item $x$, compute $\mathbf{h}(x)$. Only search for similar items in the $\mathbf{h}(x)$ bucket of the hash table.
- All-pairs Similarity Search: Scan through all buckets of the hash table and look for similar pairs within each bucket.


## LSH WITH MINHASH

Goal: Given a document $y$, identify all documents $x$ in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1 / 2$.

## LSH WITH MINHASH

Goal: Given a document $y$, identify all documents $x$ in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1 / 2$.

Our Approach:

## LSH WITH MINHASH

Goal: Given a document $y$, identify all documents $x$ in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1 / 2$.

Our Approach:

- Create a hash table of size $m$, choose a random hash function $\mathbf{g}:[0,1] \rightarrow[m]$, and insert each item $x$ into bucket $\mathbf{g}(M H(x))$. Search for items similar to $y$ in bucket $\mathbf{g}(M H(y))$.


## LSH WITH MINHASH

Goal: Given a document $y$, identify all documents $x$ in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1 / 2$.

Our Approach:

- Create a hash table of size $m$, choose a random hash function $\mathbf{g}:[0,1] \rightarrow[m]$, and insert each item $x$ into bucket $\mathbf{g}(M H(x))$. Search for items similar to $y$ in bucket $\mathbf{g}(M H(y))$.
- What is $\operatorname{Pr}[\mathrm{g}(M H(z))=\mathrm{g}(M H(y))]$ assuming $J(z, y) \leq 1 / 3$ and g is collision free?


## LSH WITH MINHASH

Goal: Given a document $y$, identify all documents $x$ in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1 / 2$.

Our Approach:

- Create a hash table of size $m$, choose a random hash function $\mathbf{g}:[0,1] \rightarrow[m]$, and insert each item $x$ into bucket $\mathbf{g}(M H(x))$. Search for items similar to $y$ in bucket $\mathbf{g}(M H(y))$.
- What is $\operatorname{Pr}[\mathrm{g}(M H(z))=\mathrm{g}(M H(y))]$ assuming $J(z, y) \leq 1 / 3$ and g is collision free? At most $1 / 3$


## LSH WITH MINHASH

Goal: Given a document $y$, identify all documents $x$ in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1 / 2$.

Our Approach:

- Create a hash table of size $m$, choose a random hash function $\mathbf{g}:[0,1] \rightarrow[m]$, and insert each item $x$ into bucket $\mathbf{g}(M H(x))$. Search for items similar to $y$ in bucket $\mathbf{g}(M H(y))$.
- What is $\operatorname{Pr}[\mathrm{g}(M H(z))=\mathrm{g}(M H(y))]$ assuming $J(z, y) \leq 1 / 3$ and g is collision free? At most $1 / 3$
- For each document $x$ in your database with $J(x, y) \geq 1 / 2$ what is the probability you will find $x$ in bucket $\mathbf{g}(M H(y))$ ?


## LSH WITH MINHASH

Goal: Given a document $y$, identify all documents $x$ in a database with Jaccard similarity (of their shingle sets) $J(x, y) \geq 1 / 2$.

Our Approach:

- Create a hash table of size $m$, choose a random hash function $\mathbf{g}:[0,1] \rightarrow[m]$, and insert each item $x$ into bucket $\mathbf{g}(M H(x))$. Search for items similar to $y$ in bucket $\mathbf{g}(M H(y))$.
- What is $\operatorname{Pr}[\mathrm{g}(M H(z))=\mathrm{g}(M H(y))]$ assuming $J(z, y) \leq 1 / 3$ and g is collision free? At most $1 / 3$
- For each document $x$ in your database with $J(x, y) \geq 1 / 2$ what is the probability you will find $x$ in bucket $\mathrm{g}(\mathrm{MH}(y))$ ? At least $1 / 2$


## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $\mathbf{g}$ to map all these values to locations in $t$ hash tables.

## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $\mathbf{g}$ to map all these values to locations in $t$ hash tables.

- To search for items similar to $y$, look at all items in bucket $\mathbf{g}\left(M H_{1}(y)\right)$ of the $1^{\text {st }}$ table, bucket $\mathbf{g}\left(M H_{2}(y)\right)$ of the $2^{\text {nd }}$ table, etc.


## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $\mathbf{g}$ to map all these values to locations in $t$ hash tables.

- To search for items similar to $y$, look at all items in bucket $\mathbf{g}\left(M H_{1}(y)\right)$ of the $1^{\text {st }}$ table, bucket $\mathbf{g}\left(\mathrm{MH}_{2}(y)\right)$ of the $2^{\text {nd }}$ table, etc.
- What is the probability that $x$ with $J(x, y)=1 / 2$ is in at least one of these buckets, assuming for simplicity g has no collisions?


## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $\mathbf{g}$ to map all these values to locations in $t$ hash tables.

- To search for items similar to $y$, look at all items in bucket $\mathbf{g}\left(M H_{1}(y)\right)$ of the $1^{\text {st }}$ table, bucket $\mathbf{g}\left(\mathrm{MH}_{2}(y)\right)$ of the $2^{\text {nd }}$ table, etc.
- What is the probability that $x$ with $J(x, y)=1 / 2$ is in at least one of these buckets, assuming for simplicity g has no collisions?
1- (probability in no buckets)


## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $\mathbf{g}$ to map all these values to locations in $t$ hash tables.

- To search for items similar to $y$, look at all items in bucket $\mathbf{g}\left(M H_{1}(y)\right)$ of the $1^{\text {st }}$ table, bucket $\mathbf{g}\left(\mathrm{MH}_{2}(y)\right)$ of the $2^{\text {nd }}$ table, etc.
- What is the probability that $x$ with $J(x, y)=1 / 2$ is in at least one of these buckets, assuming for simplicity g has no collisions?
$1-($ probability in no buckets $)=1-\left(\frac{1}{2}\right)^{t}$


## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $\mathbf{g}$ to map all these values to locations in $t$ hash tables.

- To search for items similar to $y$, look at all items in bucket $\mathbf{g}\left(M H_{1}(y)\right)$ of the $1^{\text {st }}$ table, bucket $\mathbf{g}\left(\mathrm{MH}_{2}(y)\right)$ of the $2^{\text {nd }}$ table, etc.
- What is the probability that $x$ with $J(x, y)=1 / 2$ is in at least one of these buckets, assuming for simplicity $g$ has no collisions?
$1-($ probability in no buckets $)=1-\left(\frac{1}{2}\right)^{t} \approx .99$ for $t=7$.


## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $\mathbf{g}$ to map all these values to locations in $t$ hash tables.

- To search for items similar to $y$, look at all items in bucket $\mathbf{g}\left(M H_{1}(y)\right)$ of the $1^{\text {st }}$ table, bucket $\mathbf{g}\left(\mathrm{MH}_{2}(y)\right)$ of the $2^{\text {nd }}$ table, etc.
- What is the probability that $x$ with $J(x, y)=1 / 2$ is in at least one of these buckets, assuming for simplicity $g$ has no collisions?
$1-($ probability in no buckets $)=1-\left(\frac{1}{2}\right)^{t} \approx .99$ for $t=7$.
- What is the probability that $x$ with $J(x, y)=1 / 4$ is in at least one of these buckets, assuming for simplicity g has no collisions?


## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $\mathbf{g}$ to map all these values to locations in $t$ hash tables.

- To search for items similar to $y$, look at all items in bucket $\mathbf{g}\left(M H_{1}(y)\right)$ of the $1^{\text {st }}$ table, bucket $\mathbf{g}\left(\mathrm{MH}_{2}(y)\right)$ of the $2^{\text {nd }}$ table, etc.
- What is the probability that $x$ with $J(x, y)=1 / 2$ is in at least one of these buckets, assuming for simplicity $g$ has no collisions?
$1-($ probability in no buckets $)=1-\left(\frac{1}{2}\right)^{t} \approx .99$ for $t=7$.
- What is the probability that $x$ with $J(x, y)=1 / 4$ is in at least one of these buckets, assuming for simplicity g has no collisions?
$1-($ probability in no buckets $)=1-\left(\frac{3}{4}\right)^{t}$


## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $\mathbf{g}$ to map all these values to locations in $t$ hash tables.

- To search for items similar to $y$, look at all items in bucket $\mathbf{g}\left(M H_{1}(y)\right)$ of the $1^{\text {st }}$ table, bucket $\mathbf{g}\left(\mathrm{MH}_{2}(y)\right)$ of the $2^{\text {nd }}$ table, etc.
- What is the probability that $x$ with $J(x, y)=1 / 2$ is in at least one of these buckets, assuming for simplicity $g$ has no collisions?
$1-($ probability in no buckets $)=1-\left(\frac{1}{2}\right)^{t} \approx .99$ for $t=7$.
- What is the probability that $x$ with $J(x, y)=1 / 4$ is in at least one of these buckets, assuming for simplicity g has no collisions?
$1-\left(\right.$ probability in no buckets) $=1-\left(\frac{3}{4}\right)^{t} \approx .87$ for $t=7$.


## REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match $x$ with $J(x, y)=1 / 2$ with probability $1 / 2$. How can we reduce this false negative rate?

Repetition: Run MinHash $t$ times independently, to produce hash values $M H_{1}(x), \ldots, M H_{t}(x)$. Apply random hash function $\mathbf{g}$ to map all these values to locations in $t$ hash tables.

- To search for items similar to $y$, look at all items in bucket $\mathbf{g}\left(M H_{1}(y)\right)$ of the $1^{\text {st }}$ table, bucket $\mathbf{g}\left(\mathrm{MH}_{2}(y)\right)$ of the $2^{\text {nd }}$ table, etc.
- What is the probability that $x$ with $J(x, y)=1 / 2$ is in at least one of these buckets, assuming for simplicity $g$ has no collisions?
$1-($ probability in no buckets $)=1-\left(\frac{1}{2}\right)^{t} \approx .99$ for $t=7$.
- What is the probability that $x$ with $J(x, y)=1 / 4$ is in at least one of these buckets, assuming for simplicity g has no collisions?
$1-\left(\right.$ probability in no buckets) $=1-\left(\frac{3}{4}\right)^{t} \approx .87$ for $t=7$.
Potential for a lot of false positives! Slows down search time.


## BALANCING HIT RATE AND QUERY TIME

We want to balance a small probability of false negatives (a high hit rate) with a small probability of false positives (a small query time.)

## BALANCING HIT RATE AND QUERY TIME

We want to balance a small probability of false negatives (a high hit rate) with a small probability of false positives (a small query time.)


Create $t$ hash tables. Each is indexed into not with a single MinHash value, but with $r$ values, appended together. A length $r$ signature.

## BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

## BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

- Probability that a single hash matches.

$$
\operatorname{Pr}\left[M H_{i, j}(x)=M H_{i, j}(y)\right]=J(x, y)=s .
$$

## BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

- Probability that a single hash matches.

$$
\operatorname{Pr}\left[M H_{i, j}(x)=M H_{i, j}(y)\right]=J(x, y)=s .
$$

- Probability that $x$ and $y$ having matching signatures in repetition $i$. $\operatorname{Pr}\left[M H_{i, 1}(x), \ldots, M H_{i, r}(x)=M H_{i, 1}(y), \ldots, M H_{i, r}(y)\right]$


## BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

- Probability that a single hash matches.

$$
\operatorname{Pr}\left[M H_{i, j}(x)=M H_{i, j}(y)\right]=J(x, y)=s .
$$

- Probability that $x$ and $y$ having matching signatures in repetition $i$. $\operatorname{Pr}\left[M H_{i, 1}(x), \ldots, M H_{i, r}(x)=M H_{i, 1}(y), \ldots, M H_{i, r}(y)\right]=s^{r}$.


## BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

- Probability that a single hash matches.

$$
\operatorname{Pr}\left[M H_{i, j}(x)=M H_{i, j}(y)\right]=J(x, y)=s .
$$

- Probability that $x$ and $y$ having matching signatures in repetition $i$. $\operatorname{Pr}\left[M H_{i, 1}(x), \ldots, M H_{i, r}(x)=M H_{i, 1}(y), \ldots, M H_{i, r}(y)\right]=s^{r}$.
- Probability that $x$ and $y$ don't match in repetition $i$ :


## BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

- Probability that a single hash matches.

$$
\operatorname{Pr}\left[M H_{i, j}(x)=M H_{i, j}(y)\right]=J(x, y)=s .
$$

- Probability that $x$ and $y$ having matching signatures in repetition $i$. $\operatorname{Pr}\left[M H_{i, 1}(x), \ldots, M H_{i, r}(x)=M H_{i, 1}(y), \ldots, M H_{i, r}(y)\right]=s^{r}$.
- Probability that $x$ and $y$ don't match in repetition $i: 1-s^{r}$.


## BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

- Probability that a single hash matches.

$$
\operatorname{Pr}\left[M H_{i, j}(x)=M H_{i, j}(y)\right]=J(x, y)=s .
$$

- Probability that $x$ and $y$ having matching signatures in repetition $i$.
$\operatorname{Pr}\left[M H_{i, 1}(x), \ldots, M H_{i, r}(x)=M H_{i, 1}(y), \ldots, M H_{i, r}(y)\right]=s^{r}$.
- Probability that $x$ and $y$ don't match in repetition $i: 1-s^{r}$.
- Probability that $x$ and $y$ don't match in all repetitions:


## BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

- Probability that a single hash matches.

$$
\operatorname{Pr}\left[M H_{i, j}(x)=M H_{i, j}(y)\right]=J(x, y)=s .
$$

- Probability that $x$ and $y$ having matching signatures in repetition $i$.
$\operatorname{Pr}\left[M H_{i, 1}(x), \ldots, M H_{i, r}(x)=M H_{i, 1}(y), \ldots, M H_{i, r}(y)\right]=s^{r}$.
- Probability that $x$ and $y$ don't match in repetition $i: 1-s^{r}$.
- Probability that $x$ and $y$ don't match in all repetitions: $\left(1-s^{r}\right)^{t}$.


## BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

- Probability that a single hash matches.

$$
\operatorname{Pr}\left[M H_{i, j}(x)=M H_{i, j}(y)\right]=J(x, y)=s .
$$

- Probability that $x$ and $y$ having matching signatures in repetition $i$.
$\operatorname{Pr}\left[M H_{i, 1}(x), \ldots, M H_{i, r}(x)=M H_{i, 1}(y), \ldots, M H_{i, r}(y)\right]=s^{r}$.
- Probability that $x$ and $y$ don't match in repetition $i: 1-s^{r}$.
- Probability that $x$ and $y$ don't match in all repetitions: $\left(1-s^{r}\right)^{t}$.
- Probability that $x$ and $y$ match in at least one repetition:


## BALANCING HIT RATE AND QUERY TIME

Consider searching for matches in $t$ hash tables, using MinHash signatures of length $r$. For $x$ and $y$ with Jaccard similarity $J(x, y)=s$ :

- Probability that a single hash matches.

$$
\operatorname{Pr}\left[M H_{i, j}(x)=M H_{i, j}(y)\right]=J(x, y)=s .
$$

- Probability that $x$ and $y$ having matching signatures in repetition $i$.
$\operatorname{Pr}\left[M H_{i, 1}(x), \ldots, M H_{i, r}(x)=M H_{i, 1}(y), \ldots, M H_{i, r}(y)\right]=s^{r}$.
- Probability that $x$ and $y$ don't match in repetition $i: 1-s^{r}$.
- Probability that $x$ and $y$ don't match in all repetitions: $\left(1-s^{r}\right)^{t}$.
- Probability that $x$ and $y$ match in at least one repetition:

Hit Probability: $1-\left(1-s^{r}\right)^{t}$.

## THE $s$-CURVE

Using $t$ repetitions each with a signature of $r$ MinHash values, the probability that $x$ and $y$ with Jaccard similarity $J(x, y)=s$ match in at least one repetition is: $1-\left(1-s^{r}\right)^{t}$.

## THE $s$-CURVE

Using $t$ repetitions each with a signature of $r$ MinHash values, the probability that $x$ and $y$ with Jaccard similarity $J(x, y)=s$ match in at least one repetition is: $1-\left(1-s^{r}\right)^{t}$.


## THE $s$-CURVE

Using $t$ repetitions each with a signature of $r$ MinHash values, the probability that $x$ and $y$ with Jaccard similarity $J(x, y)=s$ match in at least one repetition is: $1-\left(1-s^{r}\right)^{t}$.


## THE $s$-CURVE

Using $t$ repetitions each with a signature of $r$ MinHash values, the probability that $x$ and $y$ with Jaccard similarity $J(x, y)=s$ match in at least one repetition is: $1-\left(1-s^{r}\right)^{t}$.


## THE s-CURVE

Using $t$ repetitions each with a signature of $r$ MinHash values, the probability that $x$ and $y$ with Jaccard similarity $J(x, y)=s$ match in at least one repetition is: $1-\left(1-s^{r}\right)^{t}$.

$r$ and $t$ are tuned depending on application. 'Threshold' when hit probability is $1 / 2$ is $\approx(1 / t)^{1 / r}$. E.g., $\approx(1 / 30)^{1 / 5}=.51$ in this case.

## s-CURVE EXAMPLE

For example: Consider a database with $10,000,000$ audio clips. You are given a clip $x$ and want to find any $y$ in the database with $J(x, y) \geq .9$.

## s-CURVE EXAMPLE

For example: Consider a database with $10,000,000$ audio clips. You are given a clip $x$ and want to find any $y$ in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in[.7, .9]$.


## s-CURVE EXAMPLE

For example: Consider a database with $10,000,000$ audio clips. You are given a clip $x$ and want to find any $y$ in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in[.7, .9]$.

With signature length $r=25$ and repetitions $t=50$, hit probability for $J(x, y)=s$ is $1-\left(1-s^{25}\right)^{50}$.

## s-CURVE EXAMPLE

For example: Consider a database with 10,000, 000 audio clips. You are given a clip $x$ and want to find any $y$ in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in[.7, .9]$.

With signature length $r=25$ and repetitions $t=50$, hit probability for $J(x, y)=s$ is $1-\left(1-s^{25}\right)^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1-\left(1-.9^{25}\right)^{50} \approx .98$
- Hit probability for $J(x, y) \in[.7, .9]$ is $\leq 1-\left(1-.9^{25}\right)^{50} \approx .98$
- Hit probability for $J(x, y) \leq .7$ is $\leq 1-\left(1-.7^{25}\right)^{50} \approx .007$


## s-CURVE EXAMPLE

For example: Consider a database with $10,000,000$ audio clips. You are given a clip $x$ and want to find any $y$ in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in[.7, .9]$.

With signature length $r=25$ and repetitions $t=50$, hit probability for $J(x, y)=s$ is $1-\left(1-s^{25}\right)^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1-\left(1-.9^{25}\right)^{50} \approx .98$
- Hit probability for $J(x, y) \in[.7, .9]$ is $\leq 1-\left(1-.9^{25}\right)^{50} \approx .98$
- Hit probability for $J(x, y) \leq .7$ is $\leq 1-\left(1-.7^{25}\right)^{50} \approx .007$

Expected Number of Items Scanned: (proportional to query time)

$$
\leq 10+.98 * 10,000+.007 * 9,989,990 \approx 80,000
$$

## s-CURVE EXAMPLE

For example: Consider a database with 10,000, 000 audio clips. You are given a clip $x$ and want to find any $y$ in the database with $J(x, y) \geq .9$.

- There are 10 true matches in the database with $J(x, y) \geq .9$.
- There are 10,000 near matches with $J(x, y) \in[.7, .9]$.

With signature length $r=25$ and repetitions $t=50$, hit probability for $J(x, y)=s$ is $1-\left(1-s^{25}\right)^{50}$.

- Hit probability for $J(x, y) \geq .9$ is $\geq 1-\left(1-.9^{25}\right)^{50} \approx .98$
- Hit probability for $J(x, y) \in[.7, .9]$ is $\leq 1-\left(1-.9^{25}\right)^{50} \approx .98$
- Hit probability for $J(x, y) \leq .7$ is $\leq 1-\left(1-.7^{25}\right)^{50} \approx .007$

Expected Number of Items Scanned: (proportional to query time)

$$
\leq 10+.98 * 10,000+.007 * 9,989,990 \approx 80,000 \ll 10,000,000
$$

## GENERALIZING LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for fast similarity search with other similarity metrics:

## GENERALIZING LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for fast similarity search with other similarity metrics:

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.


## GENERALIZING LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for fast similarity search with other similarity metrics:

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.


## GENERALIZING LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for fast similarity search with other similarity metrics:

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.



## GENERALIZING LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for fast similarity search with other similarity metrics:

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.


Cosine Similarity: $\cos (\theta(x, y))$

## GENERALIZING LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for fast similarity search with other similarity metrics:

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.


Cosine Similarity: $\cos (\theta(x, y))$

- $\cos (\theta(x, y))=1$ when $\theta(x, y)=0^{\circ}$ and $\cos (\theta(x, y))=0$ when $\theta(x, y)=90^{\circ}$, and $\cos (\theta(x, y))=-1$ when $\theta(x, y)=180^{\circ}$


## GENERALIZING LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for fast similarity search with other similarity metrics:

- LSH schemes exist for many similarity/distance measures: hamming distance, cosine similarity, etc.


Cosine Similarity: $\cos (\theta(x, y))=\frac{\langle x, y\rangle}{\|x\|_{2} \cdot\|y\|_{2}}$.

- $\cos (\theta(x, y))=1$ when $\theta(x, y)=0^{\circ}$ and $\cos (\theta(x, y))=0$ when $\theta(x, y)=90^{\circ}$, and $\cos (\theta(x, y))=-1$ when $\theta(x, y)=180^{\circ}$


## SIMHASH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.

## SIMHASH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.


## SIMHASH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.


## SIMHASH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.


## SIMHASH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.

$\operatorname{SimHash}(x)=\operatorname{sign}(\langle x, t\rangle)$ for a random vector $t$.

## SIMHASH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.

$\operatorname{SimHash}(x)=\operatorname{sign}(\langle x, t\rangle)$ for a random vector $t$. What is $\operatorname{Pr}[\operatorname{SimHash}(x)=\operatorname{SimHash}(y)]$ ?

## SIMHASH FOR COSINE SIMILARITY

What is $\operatorname{Pr}[\operatorname{SimHash}(x)=\operatorname{SimHash}(y)]$ ?

## SIMHASH FOR COSINE SIMILARITY

What is $\operatorname{Pr}[\operatorname{SimHash}(x)=\operatorname{SimHash}(y)]$ ?
$\operatorname{SimHash}(x) \neq \operatorname{SimHash}(y)$ when the plane separates $x$ from $y$.


## SIMHASH FOR COSINE SIMILARITY

What is $\operatorname{Pr}[\operatorname{SimHash}(x)=\operatorname{SimHash}(y)]$ ?
$\operatorname{SimHash}(x) \neq \operatorname{SimHash}(y)$ when the plane separates $x$ from $y$.


## SIMHASH FOR COSINE SIMILARITY

What is $\operatorname{Pr}[\operatorname{SimHash}(x)=\operatorname{SimHash}(y)]$ ?
$\operatorname{SimHash}(x) \neq \operatorname{SimHash}(y)$ when the plane separates $x$ from $y$.


- $\operatorname{Pr}[\operatorname{SimHash}(x) \neq \operatorname{SimHash}(y)]=\frac{\theta(x, y)}{180}$


## SIMHASH FOR COSINE SIMILARITY

What is $\operatorname{Pr}[\operatorname{SimHash}(x)=\operatorname{SimHash}(y)]$ ?
$\operatorname{SimHash}(x) \neq \operatorname{SimHash}(y)$ when the plane separates $x$ from $y$.


- $\operatorname{Pr}[\operatorname{SimHash}(x) \neq \operatorname{SimHash}(y)]=\frac{\theta(x, y)}{180}$
- $\operatorname{Pr}[\operatorname{SimHash}(x)=\operatorname{SimHash}(y)]=1-\frac{\theta(x, y)}{180} \approx \cos \theta$ for small $\theta$.

Questions on MinHash and Locality Sensitive Hashing?

