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Jaccard Index: A similarity measure between two sets.

~ |ANB| _ # shared elements

J(A,B) = = .
(A.B) |AU B] # total elements

Want Fast Implementations For:

® Near Neighbor Search: Have a database of n sets and given a set A,
want to find if it has high Jaccard similarity to anything in the
database. Q(n) time with a linear scan.

® All-pairs Similarity Search: Have n different sets and want to find all
pairs with high Jaccard similarity. Q(n?) time if we check all pairs
explicitly.

Will speed up via randomized locality sensitive hashing.
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MINHASHING

Goal: Speed up Jaccard similarity search.

Strategy: Use random hashing to map each set to a very compressed
representation. Jaccard similarity can be estimated from these.

MinHash(A): [Andrei Broder, 1997 at Altavista]

® Let h: U — [0,1] be a random hash

function
®s:=1
® For xi,...,x4 €A "

® s := min(s, h(xx)) -|— —_— — =}
e Return s MinHash(A)

Identical to our distinct elements sketch!
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MINHASH

For two sets A and B, what is Pr(MinHash(A) = MinHash(B))?

® Since we are hashing into the continuous range [0, 1], we will never
have h(x) = h(y) for x # y (i.e., no spurious collisions)

® MH(A) = MH(B) iff an item in AN B has the minimum hash value in
both sets. Therefore,
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LOCALITY SENSITIVE HASHING

Upshot: MinHash reduces estimating the Jaccard similarity to checking
equality of a single number.

Pr(MinHash(A) = MinHash(B)) = J(A, B).

® An instance of locality sensitive hashing (LSH).

® A hash function where the collision probability is higher when two inputs are
more similar (can design different functions for different similarity metrics.)
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LSH FOR SIMILARITY SEARCH

How does locality sensitive hashing help for similarity search?

Locality Sensitive Hash Function

LYPY~~~=0000

® Near Neighbor Search: Given item x, compute h(x). Only search for
similar items in the h(x) bucket of the hash table.

® All-pairs Similarity Search: Scan through all buckets of the hash
table and look for similar pairs within each bucket.
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Goal: Given a document y, identify all documents x in a database with
Jaccard similarity (of their shingle sets) J(x,y) > 1/2.

Our Approach:

® (Create a hash table of size m, choose a random hash function
g : [0,1] — [m], and insert each item x into bucket g(MH(x)). Search
for items similar to y in bucket g(MH(y)).

® What is Pr[g(MH(z)) = g(MH(y))] assuming J(z,y) <1/3 and g is
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REDUCING FALSE NEGATIVES

With a simple use of MinHash, we miss a match x with J(x,y) = 1/2 with
probability 1/2. How can we reduce this false negative rate?

Repetition: Run MinHash t times independently, to produce hash values
MHy(x), ..., MH(x). Apply random hash function g to map all these values to
locations in t hash tables.

® To search for items similar to y, look at all items in bucket g(MH:(y)) of
the 1% table, bucket g(MHa(y)) of the 2™ table, etc.

® What is the probability that x with J(x,y) =1/2 is in at least one of these
buckets, assuming for simplicity g has no collisions?
1— (probability in no buckets) =1 — (%)t ~ .99 for t =7.

® What is the probability that x with J(x,y) = 1/4 is in at least one of these
buckets, assuming for simplicity g has no collisions?
1— (probability in no buckets) =1 — (%)t ~ .87 fort=T7.

Potential for a lot of false positives! Slows down search time.
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BALANCING HIT RATE AND QUERY TIME

We want to balance a small probability of false negatives (a high hit rate) with
a small probability of false positives (a small query time.)
Table 1

r hashes per band
|

MH,,,(x) MH, 5(x),..., MH, (x)

t repetitions
- MHj ;(x) MH; 5(x),..., MH3 (x)

Table t

MH, ;(x) MH, 5(x),..., MH, ,(x) \‘7{4,,4'/
— ),
3 L),

Create t hash tables. Each is indexed into not with a single MinHash value, but
with r values, appended together. A length r signature.
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Consider searching for matches in t hash tables, using MinHash signatures of

length r. For x and y with Jaccard similarity J(x,y) = s:

Probability that a single hash matches.
Pr[MH; j(x) = MH, j(y)] = J(x,y) = s.

Probability that x and y having matching signatures in repetition i.
Pr[MH;1(x), ..., MH; (x) = MH;1(y), ..., MH; (y)] = s".
Probability that x and y don’t match in repetition i: 1 — s".
Probability that x and y don't match in all repetitions: (1 —s")".

Probability that x and y match in at least one repetition:

Hit Probability: 1 — (1 —s")".
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THE s-CURVE

Using t repetitions each with a signature of r MinHash values, the probability
that x and y with Jaccard similarity J(x, y) = s match in at least one

repetition is: 1 — (1 —s")".

sk r=51=30

Hit Probability
o
2

0 0.2 0.4 0.6 0.8 1
Jaccard Similarity s

r and t are tuned depending on application. ‘Threshold’ when hit probability is
1/2is ~ (1/t)"/". E.g., ~ (1/30)*/® = .51 in this case.
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For example: Consider a database with 10,000,000 audio clips. You are given
a clip x and want to find any y in the database with J(x, y) > .9.

® There are 10 true matches in the database with J(x,y) > .9.
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GENERALIZING LOCALITY SENSITIVE HASHING

Repetition and s-curve tuning can be used for fast similarity search with other
similarity metrics:
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SIMHASH FOR COSINE SIMILARITY

SimHash Algorithm: LSH for cosine similarity.
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® Pr[SimHash(x) # SimHash(y)] = 9(123/)
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SIMHASH FOR COSINE SIMILARITY

What is Pr[SimHash(x) = SimHash(y)]?

SimHash(x) # SimHash(y) when the plane separates x from y.

'
X
SimHash(x) = 1
SimHash(y) = -1
y
v
® Pr[SimHash(x) # SimHash(y)] = g(lxs’é’)
® Pr[SimHash(x) = SimHash(y)] =1 — 9(1x8,0y) ~ cos ) for small 6.
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Questions on MinHash and Locality Sensitive Hashing?
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