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THE FREQUENT ITEMS DATA STREAM PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n
items x1, ..., x, (with possible duplicates). Return any item at appears at
least 7 times.

X, X, X5 X, X5 Xg X, Xg Xq
5 12 3 3 4 5 5 10 3

® What is the maximum number of items that must be returned?

a) n b) Kk «¢) n/k d) logn

® Trivial with O(n) space: Store the count for each item and return the
one that appears > n/k times.

® Can we do it with less space? l.e., without storing all n items?
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Applications of Frequent Items:

® Finding top/viral items (i.e., products on Amazon, videos watched on
Youtube, Google searches, etc.)

® Finding very frequent IP addresses sending requests (to detect DoS
attacks/network anomalies).

® ‘|ceberg queries’ for all items in a database with frequency above some
threshold.

Generally want very fast detection, without having to scan through
database/logs. That is we want to maintain a running list of frequent
items that appear in a stream.
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Issue: No algorithm using o(n) space can output just the items with
frequency > n/k. Hard to tell between an item with frequency n/k
(should be output) and n/k — 1 (should not be output).

Xy Xz X3 X X5 Xe Xn-n/k+1 X
3 12| 9 |27 | 4 |100] 7 3 s

n/k-1 occurrences

(¢, k)-Frequent Items Problem: Consider a stream of n items
X1,...,X%,. Return a set F of items, including all items that appear at

least 7 times and only items that appear at least (1 —¢€) - { times.

® An example of relaxing to a ‘promise problem': for items with
frequencies in [(1 —¢) - £, 7] no output guarantee.
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Today: Count-min sketch — a random hashing based method closely
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Today: Count-min sketch — a random hashing based method closely
related to bloom filters.

random hash function h

Will use Alh(x)] to estimate f(x) = |{i : x; = x}|, the frequency of x in

the stream.
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X; Xp Xz Xq e Xp

random hash function h

m length arrayAl 4 ‘ 2 1 6 1 3

Use Alh(x)] to estimate f(x).
Claim 1: We always have Alh(x)] > f(x). Why?

® Alh(x)] counts the number of occurrences of any y with h(y) = h(x),

including x itself.

* ARGl = F(x) + 22y sen(y)=hi) F(V)-

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash
function. m: size of Count-min sketch array.
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ARGl =f0)+ > ()

y#x:h(y)=h(x)

Expected Error: error in frequency estimate
E > = > Pr(h h(x)) - f(y)
y#x:h(y)=h(x) yAx
1 n
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What is a bound on probability that the error is > %?

Markov’s inequality: Pr [Z#X n(y)=h) F (V) = "] <i

What property of h is required to show this bound? a) fully random b)
pairwise independent c) 2-universal  d) locality sensitive

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash
function. m: size of Count-min sketch array.
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Claim: For any x, with probability at least 1/2,
f(x) < Ah(x)] < f(x) + —.
m

How can we improve the success probability? Repetition.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash
function. m: size of Count-min sketch array.
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t;'ar;dom hash functions
hy, hy,... by
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Xy Xo X3 Xg T &

. h

A1\2 5

L 1
tlength m arrays A \1 6 | 1 10- 4 11| 3 5
6 | 3 |12 33.3 2

Estimate f(x) with f(x) = min;erg Ailhi(x)]. (count-min sketch)

Why min instead of mean or median? The minimum estimate is always
the most accurate since they are all overestimates of the true frequency!
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Xy Xp X3 X4 R

t random hash functions
.. h
A,zs‘Ms 12 134|

tlength m arrays Az

Estimate f(x) by f(x) = minjcpg Ailhi(x)]

® For every x and i € [t], we know that for m = 28, with probability > 1/2:

€

F(x) < Alhi()] < F(x) + T

® What is Pr[f(x) < f(x) < f(x) + <]? 1-1/2"%
® To get a good estimate with probability > 1 — §, set t = log(1/0).
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COUNT-MIN SKETCH

Upshot: Count-min sketch lets us estimate the frequency of every item

in a stream up to error ¢ with probability > 1 — ¢ in O (log(1/9) - k/e)

space.

® Accurate enough to solve the (e, k)-Frequent elements problem: Can
distinguish between items with frequency 7 and those with frequency
<(1-¢€7f.

® How should we set § if we want a good estimate for all items at once,

with 99% probability? ¢ = 0.01/|U| ensures

Pr[there exists x € U with a bad estimate]

< Z Pr[estimate for x is bad] < Z0.0l/|U| =0.01
xeU xeU
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IDENTIFYING FREQUENT ELEMENTS

Count-min sketch gives an accurate frequency estimate for every item in
the stream. But how do we identify the frequent items without having to
look up the estimated frequency for x € U?

One approach:

® Maintain a set F while processing the stream:
® At step i
® Add ith stream element to F if it's estimated frequency is > i/k and it

isn't already in F.
® Remove any element from F whose estimated frequency is < i/k.

® Store at most k items at once and have all items with frequency
> n/k stored at the end of the stream.
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Questions on Frequent Elements?
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