
compsci 514: algorithms for data science

Andrew McGregor

Lecture 9

0



the frequent items data stream problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n

items x1, . . . , xn (with possible duplicates). Return any item at appears at

least n
k times.

• What is the maximum number of items that must be returned?

a) n b) k c ) n/k d) log n

• Trivial with O(n) space: Store the count for each item and return the

one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n items?

1



the frequent items data stream problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n

items x1, . . . , xn (with possible duplicates). Return any item at appears at

least n
k times.

• What is the maximum number of items that must be returned?

a) n b) k c ) n/k d) log n

• Trivial with O(n) space: Store the count for each item and return the

one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n items?

1



the frequent items data stream problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n

items x1, . . . , xn (with possible duplicates). Return any item at appears at

least n
k times.

• What is the maximum number of items that must be returned?

a) n b) k c ) n/k d) log n

• Trivial with O(n) space: Store the count for each item and return the

one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n items?

1



the frequent items data stream problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n

items x1, . . . , xn (with possible duplicates). Return any item at appears at

least n
k times.

• What is the maximum number of items that must be returned?

a) n b) k c ) n/k d) log n

• Trivial with O(n) space: Store the count for each item and return the

one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n items?

1



the frequent items data stream problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n

items x1, . . . , xn (with possible duplicates). Return any item at appears at

least n
k times.

• What is the maximum number of items that must be returned?

a) n b) k c ) n/k d) log n

• Trivial with O(n) space: Store the count for each item and return the

one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n items?

1



the frequent items data stream problem

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n

items x1, . . . , xn (with possible duplicates). Return any item at appears at

least n
k times.

• What is the maximum number of items that must be returned?

a) n b) k c ) n/k d) log n

• Trivial with O(n) space: Store the count for each item and return the

one that appears ≥ n/k times.

• Can we do it with less space? I.e., without storing all n items?

1



the frequent items problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos watched on

Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to detect DoS

attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency above some

threshold.

Generally want very fast detection, without having to scan through

database/logs. That is we want to maintain a running list of frequent

items that appear in a stream.

2



the frequent items problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos watched on

Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to detect DoS

attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency above some

threshold.

Generally want very fast detection, without having to scan through

database/logs. That is we want to maintain a running list of frequent

items that appear in a stream.

2



the frequent items problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos watched on

Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to detect DoS

attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency above some

threshold.

Generally want very fast detection, without having to scan through

database/logs. That is we want to maintain a running list of frequent

items that appear in a stream.

2



the frequent items problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos watched on

Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to detect DoS

attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency above some

threshold.

Generally want very fast detection, without having to scan through

database/logs. That is we want to maintain a running list of frequent

items that appear in a stream.

2



the frequent items problem

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos watched on

Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to detect DoS

attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency above some

threshold.

Generally want very fast detection, without having to scan through

database/logs. That is we want to maintain a running list of frequent

items that appear in a stream.

2



approximate frequent elements

Issue: No algorithm using o(n) space can output just the items with

frequency ≥ n/k. Hard to tell between an item with frequency n/k

(should be output) and n/k − 1 (should not be output).

(ε, k)-Frequent Items Problem: Consider a stream of n items

x1, . . . , xn. Return a set F of items, including all items that appear at

least n
k times and only items that appear at least (1− ε) · nk times.

• An example of relaxing to a ‘promise problem’: for items with

frequencies in [(1− ε) · nk ,
n
k ] no output guarantee.

3



approximate frequent elements

Issue: No algorithm using o(n) space can output just the items with

frequency ≥ n/k. Hard to tell between an item with frequency n/k

(should be output) and n/k − 1 (should not be output).

(ε, k)-Frequent Items Problem: Consider a stream of n items

x1, . . . , xn. Return a set F of items, including all items that appear at

least n
k times and only items that appear at least (1− ε) · nk times.

• An example of relaxing to a ‘promise problem’: for items with

frequencies in [(1− ε) · nk ,
n
k ] no output guarantee.

3



approximate frequent elements

Issue: No algorithm using o(n) space can output just the items with

frequency ≥ n/k. Hard to tell between an item with frequency n/k

(should be output) and n/k − 1 (should not be output).

(ε, k)-Frequent Items Problem: Consider a stream of n items

x1, . . . , xn. Return a set F of items, including all items that appear at

least n
k times and only items that appear at least (1− ε) · nk times.

• An example of relaxing to a ‘promise problem’: for items with

frequencies in [(1− ε) · nk ,
n
k ] no output guarantee.

3



approximate frequent elements

Issue: No algorithm using o(n) space can output just the items with

frequency ≥ n/k. Hard to tell between an item with frequency n/k

(should be output) and n/k − 1 (should not be output).

(ε, k)-Frequent Items Problem: Consider a stream of n items

x1, . . . , xn. Return a set F of items, including all items that appear at

least n
k times and only items that appear at least (1− ε) · nk times.

• An example of relaxing to a ‘promise problem’: for items with

frequencies in [(1− ε) · nk ,
n
k ] no output guarantee.

3



frequent elements with count-min sketch

Today: Count-min sketch – a random hashing based method closely

related to bloom filters.

Will use A[h(x)] to estimate f (x) = |{i : xi = x}|, the frequency of x in

the stream.

4



frequent elements with count-min sketch

Today: Count-min sketch – a random hashing based method closely

related to bloom filters.

Will use A[h(x)] to estimate f (x) = |{i : xi = x}|, the frequency of x in

the stream.

4



frequent elements with count-min sketch

Today: Count-min sketch – a random hashing based method closely

related to bloom filters.

Will use A[h(x)] to estimate f (x) = |{i : xi = x}|, the frequency of x in

the stream.

4



frequent elements with count-min sketch

Today: Count-min sketch – a random hashing based method closely

related to bloom filters.

Will use A[h(x)] to estimate f (x) = |{i : xi = x}|, the frequency of x in

the stream.

4



frequent elements with count-min sketch

Today: Count-min sketch – a random hashing based method closely

related to bloom filters.

Will use A[h(x)] to estimate f (x) = |{i : xi = x}|, the frequency of x in

the stream.

4



frequent elements with count-min sketch

Today: Count-min sketch – a random hashing based method closely

related to bloom filters.

Will use A[h(x)] to estimate f (x) = |{i : xi = x}|, the frequency of x in

the stream.

4



frequent elements with count-min sketch

Today: Count-min sketch – a random hashing based method closely

related to bloom filters.

Will use A[h(x)] to estimate f (x) = |{i : xi = x}|, the frequency of x in

the stream.

4



frequent elements with count-min sketch

Today: Count-min sketch – a random hashing based method closely

related to bloom filters.

Will use A[h(x)] to estimate f (x) = |{i : xi = x}|, the frequency of x in

the stream.

4



count-min sketch accuracy

Use A[h(x)] to estimate f (x).

Claim 1: We always have A[h(x)] ≥ f (x). Why?

• A[h(x)] counts the number of occurrences of any y with h(y) = h(x),

including x itself.

• A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x) f (y).

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

5



count-min sketch accuracy

Use A[h(x)] to estimate f (x).

Claim 1: We always have A[h(x)] ≥ f (x). Why?

• A[h(x)] counts the number of occurrences of any y with h(y) = h(x),

including x itself.

• A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x) f (y).

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

5



count-min sketch accuracy

Use A[h(x)] to estimate f (x).

Claim 1: We always have A[h(x)] ≥ f (x). Why?

• A[h(x)] counts the number of occurrences of any y with h(y) = h(x),

including x itself.

• A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x) f (y).

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

5



count-min sketch accuracy

A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x)

f (y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y 6=x :h(y)=h(x)

f (y)

 =

∑
y 6=x

Pr(h(y) = h(x)) · f (y)

≤
∑
y 6=x

1

m
· f (y)

=
1

m
· (n − f (x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m
?

Markov’s inequality: Pr
[∑

y 6=x :h(y)=h(x) f (y) ≥
2n
m

]
≤ 1

2
.

What property of h is required to show this bound? a) fully random b)

pairwise independent c) 2-universal d) locality sensitive

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

6



count-min sketch accuracy

A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x)

f (y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y 6=x :h(y)=h(x)

f (y)

 =

∑
y 6=x

Pr(h(y) = h(x)) · f (y)

≤
∑
y 6=x

1

m
· f (y)

=
1

m
· (n − f (x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m
?

Markov’s inequality: Pr
[∑

y 6=x :h(y)=h(x) f (y) ≥
2n
m

]
≤ 1

2
.

What property of h is required to show this bound? a) fully random b)

pairwise independent c) 2-universal d) locality sensitive

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

6



count-min sketch accuracy

A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x)

f (y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y 6=x :h(y)=h(x)

f (y)

 =
∑
y 6=x

Pr(h(y) = h(x)) · f (y)

≤
∑
y 6=x

1

m
· f (y)

=
1

m
· (n − f (x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m
?

Markov’s inequality: Pr
[∑

y 6=x :h(y)=h(x) f (y) ≥
2n
m

]
≤ 1

2
.

What property of h is required to show this bound? a) fully random b)

pairwise independent c) 2-universal d) locality sensitive

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

6



count-min sketch accuracy

A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x)

f (y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y 6=x :h(y)=h(x)

f (y)

 =
∑
y 6=x

Pr(h(y) = h(x)) · f (y)

≤
∑
y 6=x

1

m
· f (y)

=
1

m
· (n − f (x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m
?

Markov’s inequality: Pr
[∑

y 6=x :h(y)=h(x) f (y) ≥
2n
m

]
≤ 1

2
.

What property of h is required to show this bound? a) fully random b)

pairwise independent c) 2-universal d) locality sensitive

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

6



count-min sketch accuracy

A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x)

f (y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y 6=x :h(y)=h(x)

f (y)

 =
∑
y 6=x

Pr(h(y) = h(x)) · f (y)

≤
∑
y 6=x

1

m
· f (y) = 1

m
· (n − f (x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m
?

Markov’s inequality: Pr
[∑

y 6=x :h(y)=h(x) f (y) ≥
2n
m

]
≤ 1

2
.

What property of h is required to show this bound? a) fully random b)

pairwise independent c) 2-universal d) locality sensitive

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

6



count-min sketch accuracy

A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x)

f (y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y 6=x :h(y)=h(x)

f (y)

 =
∑
y 6=x

Pr(h(y) = h(x)) · f (y)

≤
∑
y 6=x

1

m
· f (y) = 1

m
· (n − f (x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m
?

Markov’s inequality: Pr
[∑

y 6=x :h(y)=h(x) f (y) ≥
2n
m

]
≤ 1

2
.

What property of h is required to show this bound? a) fully random b)

pairwise independent c) 2-universal d) locality sensitive

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

6



count-min sketch accuracy

A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x)

f (y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y 6=x :h(y)=h(x)

f (y)

 =
∑
y 6=x

Pr(h(y) = h(x)) · f (y)

≤
∑
y 6=x

1

m
· f (y) = 1

m
· (n − f (x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m
?

Markov’s inequality: Pr
[∑

y 6=x :h(y)=h(x) f (y) ≥
2n
m

]
≤ 1

2
.

What property of h is required to show this bound? a) fully random b)

pairwise independent c) 2-universal d) locality sensitive

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

6



count-min sketch accuracy

A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x)

f (y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y 6=x :h(y)=h(x)

f (y)

 =
∑
y 6=x

Pr(h(y) = h(x)) · f (y)

≤
∑
y 6=x

1

m
· f (y) = 1

m
· (n − f (x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m
?

Markov’s inequality: Pr
[∑

y 6=x :h(y)=h(x) f (y) ≥
2n
m

]
≤ 1

2
.

What property of h is required to show this bound? a) fully random b)

pairwise independent c) 2-universal d) locality sensitive

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

6



count-min sketch accuracy

A[h(x)] = f (x) +
∑

y 6=x :h(y)=h(x)

f (y)

︸ ︷︷ ︸
error in frequency estimate

.

Expected Error:

E

 ∑
y 6=x :h(y)=h(x)

f (y)

 =
∑
y 6=x

Pr(h(y) = h(x)) · f (y)

≤
∑
y 6=x

1

m
· f (y) = 1

m
· (n − f (x)) ≤ n

m

What is a bound on probability that the error is ≥ 2n
m
?

Markov’s inequality: Pr
[∑

y 6=x :h(y)=h(x) f (y) ≥
2n
m

]
≤ 1

2
.

What property of h is required to show this bound? a) fully random b)

pairwise independent c) 2-universal d) locality sensitive

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

6



count-min sketch accuracy

Claim: For any x , with probability at least 1/2,

f (x) ≤ A[h(x)] ≤ f (x) +
2n

m
.

How can we improve the success probability?

Repetition.

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

7



count-min sketch accuracy

Claim: For any x , with probability at least 1/2,

f (x) ≤ A[h(x)] ≤ f (x) +
2n

m
.

How can we improve the success probability?

Repetition.

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

7



count-min sketch accuracy

Claim: For any x , with probability at least 1/2,

f (x) ≤ A[h(x)] ≤ f (x) +
2n

m
.

How can we improve the success probability?

Repetition.

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

7



count-min sketch accuracy

Claim: For any x , with probability at least 1/2,

f (x) ≤ A[h(x)] ≤ f (x) +
2n

m
.

How can we improve the success probability? Repetition.

f (x): frequency of x in the stream (i.e., number of items equal to x). h: random hash

function. m: size of Count-min sketch array.

7



count-min sketch accuracy

Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)]. (count-min sketch)

Why min instead of mean or median?

The minimum estimate is always

the most accurate since they are all overestimates of the true frequency!

8



count-min sketch accuracy

Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)]. (count-min sketch)

Why min instead of mean or median?

The minimum estimate is always

the most accurate since they are all overestimates of the true frequency!

8



count-min sketch accuracy

Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)]. (count-min sketch)

Why min instead of mean or median?

The minimum estimate is always

the most accurate since they are all overestimates of the true frequency!

8



count-min sketch accuracy

Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)]. (count-min sketch)

Why min instead of mean or median?

The minimum estimate is always

the most accurate since they are all overestimates of the true frequency!

8



count-min sketch accuracy

Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)]. (count-min sketch)

Why min instead of mean or median?

The minimum estimate is always

the most accurate since they are all overestimates of the true frequency!

8



count-min sketch accuracy

Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)]. (count-min sketch)

Why min instead of mean or median?

The minimum estimate is always

the most accurate since they are all overestimates of the true frequency!

8



count-min sketch accuracy

Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)]. (count-min sketch)

Why min instead of mean or median?

The minimum estimate is always

the most accurate since they are all overestimates of the true frequency!

8



count-min sketch accuracy

Estimate f (x) with f̃ (x) = mini∈[t] Ai [hi (x)]. (count-min sketch)

Why min instead of mean or median? The minimum estimate is always

the most accurate since they are all overestimates of the true frequency!

8



count-min sketch analysis

Estimate f (x) by f̃ (x) = mini∈[t] Ai [hi (x)]

• For every x and i ∈ [t], we know that for m = 2k
ε
, with probability ≥ 1/2:

f (x) ≤ Ai [hi (x)] ≤ f (x) +
εn

k
.

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + εn
k
]?

1− 1/2t .

• To get a good estimate with probability ≥ 1− δ, set t = log(1/δ).

9



count-min sketch analysis

Estimate f (x) by f̃ (x) = mini∈[t] Ai [hi (x)]

• For every x and i ∈ [t], we know that for m = 2k
ε
, with probability ≥ 1/2:

f (x) ≤ Ai [hi (x)] ≤ f (x) +
εn

k
.

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + εn
k
]?

1− 1/2t .

• To get a good estimate with probability ≥ 1− δ, set t = log(1/δ).

9



count-min sketch analysis

Estimate f (x) by f̃ (x) = mini∈[t] Ai [hi (x)]

• For every x and i ∈ [t], we know that for m = 2k
ε
, with probability ≥ 1/2:

f (x) ≤ Ai [hi (x)] ≤ f (x) +
εn

k
.

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + εn
k
]?

1− 1/2t .

• To get a good estimate with probability ≥ 1− δ, set t = log(1/δ).

9



count-min sketch analysis

Estimate f (x) by f̃ (x) = mini∈[t] Ai [hi (x)]

• For every x and i ∈ [t], we know that for m = 2k
ε
, with probability ≥ 1/2:

f (x) ≤ Ai [hi (x)] ≤ f (x) +
εn

k
.

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + εn
k
]? 1− 1/2t .

• To get a good estimate with probability ≥ 1− δ, set t = log(1/δ).

9



count-min sketch analysis

Estimate f (x) by f̃ (x) = mini∈[t] Ai [hi (x)]

• For every x and i ∈ [t], we know that for m = 2k
ε
, with probability ≥ 1/2:

f (x) ≤ Ai [hi (x)] ≤ f (x) +
εn

k
.

• What is Pr[f (x) ≤ f̃ (x) ≤ f (x) + εn
k
]? 1− 1/2t .

• To get a good estimate with probability ≥ 1− δ, set t = log(1/δ).

9



count-min sketch

Upshot: Count-min sketch lets us estimate the frequency of every item

in a stream up to error εn
k with probability ≥ 1− δ in O (log(1/δ) · k/ε)

space.

• Accurate enough to solve the (ε, k)-Frequent elements problem: Can

distinguish between items with frequency n
k and those with frequency

< (1− ε) n
k .

• How should we set δ if we want a good estimate for all items at once,

with 99% probability? δ = 0.01/|U| ensures

Pr[there exists x ∈ U with a bad estimate]

≤
∑
x∈U

Pr[estimate for x is bad] ≤
∑
x∈U

0.01/|U| = 0.01

10



count-min sketch

Upshot: Count-min sketch lets us estimate the frequency of every item

in a stream up to error εn
k with probability ≥ 1− δ in O (log(1/δ) · k/ε)

space.

• Accurate enough to solve the (ε, k)-Frequent elements problem: Can

distinguish between items with frequency n
k and those with frequency

< (1− ε) n
k .

• How should we set δ if we want a good estimate for all items at once,

with 99% probability? δ = 0.01/|U| ensures

Pr[there exists x ∈ U with a bad estimate]

≤
∑
x∈U

Pr[estimate for x is bad] ≤
∑
x∈U

0.01/|U| = 0.01

10



count-min sketch

Upshot: Count-min sketch lets us estimate the frequency of every item

in a stream up to error εn
k with probability ≥ 1− δ in O (log(1/δ) · k/ε)

space.

• Accurate enough to solve the (ε, k)-Frequent elements problem: Can

distinguish between items with frequency n
k and those with frequency

< (1− ε) n
k .

• How should we set δ if we want a good estimate for all items at once,

with 99% probability?

δ = 0.01/|U| ensures

Pr[there exists x ∈ U with a bad estimate]

≤
∑
x∈U

Pr[estimate for x is bad] ≤
∑
x∈U

0.01/|U| = 0.01

10



count-min sketch

Upshot: Count-min sketch lets us estimate the frequency of every item

in a stream up to error εn
k with probability ≥ 1− δ in O (log(1/δ) · k/ε)

space.

• Accurate enough to solve the (ε, k)-Frequent elements problem: Can

distinguish between items with frequency n
k and those with frequency

< (1− ε) n
k .

• How should we set δ if we want a good estimate for all items at once,

with 99% probability? δ = 0.01/|U| ensures

Pr[there exists x ∈ U with a bad estimate]

≤
∑
x∈U

Pr[estimate for x is bad] ≤
∑
x∈U

0.01/|U| = 0.01

10



identifying frequent elements

Count-min sketch gives an accurate frequency estimate for every item in

the stream. But how do we identify the frequent items without having to

look up the estimated frequency for x ∈ U?

One approach:

• Maintain a set F while processing the stream:

• At step i :

• Add ith stream element to F if it’s estimated frequency is ≥ i/k and it

isn’t already in F .
• Remove any element from F whose estimated frequency is < i/k.

• Store at most k items at once and have all items with frequency

≥ n/k stored at the end of the stream.

11



identifying frequent elements

Count-min sketch gives an accurate frequency estimate for every item in

the stream. But how do we identify the frequent items without having to

look up the estimated frequency for x ∈ U?

One approach:

• Maintain a set F while processing the stream:

• At step i :

• Add ith stream element to F if it’s estimated frequency is ≥ i/k and it

isn’t already in F .
• Remove any element from F whose estimated frequency is < i/k.

• Store at most k items at once and have all items with frequency

≥ n/k stored at the end of the stream.

11



Questions on Frequent Elements?

12


