COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 9

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

L

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	x ₈	X ₉
5	12	3	3	4	5	5	10	3

L

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	x ₈	X ₉
5	12	3	3	4	5	5	10	3

- What is the maximum number of items that must be returned?

- a) n b) k c) n/k d) $\log n$

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n items x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

X ₁	X ₂	X ₃	X ₄	X ₅	x ₆	X ₇	x ₈	X ₉
5	12	3	3	4	5	5	10	3

- What is the maximum number of items that must be returned?

- a) n b) k c) n/k d) $\log n$

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of nitems x_1, \ldots, x_n (with possible duplicates). Return any item at appears at least $\frac{n}{k}$ times.

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉
5	12	3	3	4	5	5	10	3

- What is the maximum number of items that must be returned?

- a) n b) k c) n/k d) $\log n$
- Trivial with O(n) space: Store the count for each item and return the one that appears $\geq n/k$ times.
- Can we do it with less space? I.e., without storing all *n* items?

Applications of Frequent Items:

Applications of Frequent Items:

• Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- 'Iceberg queries' for all items in a database with frequency above some threshold.

Applications of Frequent Items:

- Finding top/viral items (i.e., products on Amazon, videos watched on Youtube, Google searches, etc.)
- Finding very frequent IP addresses sending requests (to detect DoS attacks/network anomalies).
- 'Iceberg queries' for all items in a database with frequency above some threshold.

Generally want very fast detection, without having to scan through database/logs. That is we want to maintain a running list of frequent items that appear in a stream.

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X _{n-n/k+1}		X _n
3	12	9	27	4	101	 3	""	3
						n/k-1 c	ccurre	ences

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

X ₁	X ₂	Х3	X ₄	X ₅	X ₆	X _{n-n/k+1}		x _n
3	12	9	27	4	101	 3	•••	3
						n/k-1 c	ccurre	ences

 (ϵ,k) -Frequent Items Problem: Consider a stream of n items x_1,\ldots,x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1-\epsilon)\cdot \frac{n}{k}$ times.

Issue: No algorithm using o(n) space can output just the items with frequency $\geq n/k$. Hard to tell between an item with frequency n/k (should be output) and n/k-1 (should not be output).

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X _{n-n/k+1}		X _n
3	12	9	27	4	101	 3		3
						n/k-1 c	ccurre	ences

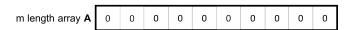
 (ϵ,k) -Frequent Items Problem: Consider a stream of n items x_1,\ldots,x_n . Return a set F of items, including all items that appear at least $\frac{n}{k}$ times and only items that appear at least $(1-\epsilon)\cdot\frac{n}{k}$ times.

• An example of relaxing to a 'promise problem': for items with frequencies in $[(1-\epsilon)\cdot \frac{n}{k},\frac{n}{k}]$ no output guarantee.

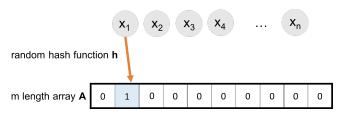
Today: Count-min sketch – a random hashing based method closely related to bloom filters.

Today: Count-min sketch – a random hashing based method closely related to bloom filters.

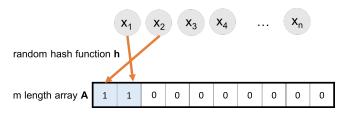
random hash function h



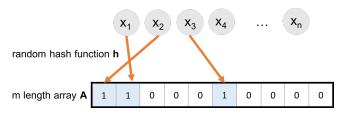
Today: Count-min sketch – a random hashing based method closely related to bloom filters.



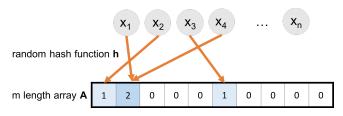
Today: Count-min sketch – a random hashing based method closely related to bloom filters.



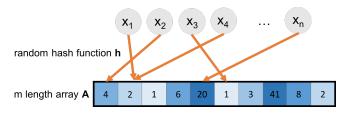
Today: Count-min sketch – a random hashing based method closely related to bloom filters.



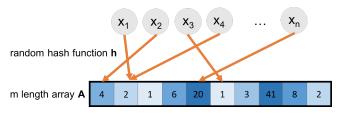
Today: Count-min sketch – a random hashing based method closely related to bloom filters.



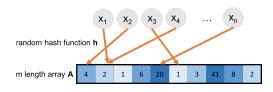
Today: Count-min sketch – a random hashing based method closely related to bloom filters.



Today: Count-min sketch – a random hashing based method closely related to bloom filters.



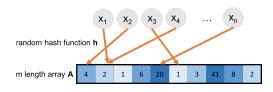
Will use $A[\mathbf{h}(x)]$ to estimate $f(x) = |\{i : x_i = x\}|$, the frequency of x in the stream.



Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[\mathbf{h}(x)] \ge f(x)$. Why?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.

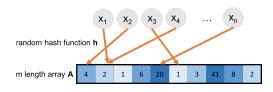


Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[\mathbf{h}(x)] \ge f(x)$. Why?

• $A[\mathbf{h}(x)]$ counts the number of occurrences of any y with $\mathbf{h}(y) = \mathbf{h}(x)$, including x itself.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.



Use $A[\mathbf{h}(x)]$ to estimate f(x).

Claim 1: We always have $A[\mathbf{h}(x)] \geq f(x)$. Why?

- $A[\mathbf{h}(x)]$ counts the number of occurrences of any y with $\mathbf{h}(y) = \mathbf{h}(x)$, including x itself.
- $A[\mathbf{h}(x)] = f(x) + \sum_{y \neq x: \mathbf{h}(y) = \mathbf{h}(x)} f(y)$.

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x : \mathbf{h}(y) = \mathbf{h}(x) \\ \text{error in frequency estimate}}} f(y) .$$

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x: \mathbf{h}(y) = \mathbf{h}(x) \\ \text{error in frequency estimate}}} f(y) .$$

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: \mathbf{h}(y)=\mathbf{h}(x)} f(y)\right] =$$

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x: \mathbf{h}(y) = \mathbf{h}(x) \\ \text{error in frequency estimate}}} f(y)$$
.

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: \mathbf{h}(y)=\mathbf{h}(x)} f(y)\right] = \sum_{y\neq x} \Pr(\mathbf{h}(y)=\mathbf{h}(x)) \cdot f(y)$$

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x: \mathbf{h}(y) = \mathbf{h}(x) \\ \text{error in frequency estimate}}} f(y) .$$

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: \mathbf{h}(y)=\mathbf{h}(x)} f(y)\right] = \sum_{y\neq x} \Pr(\mathbf{h}(y)=\mathbf{h}(x)) \cdot f(y)$$
$$\leq \sum_{y\neq x} \frac{1}{m} \cdot f(y)$$

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x: \mathbf{h}(y) = \mathbf{h}(x) \\ \text{error in frequency estimate}}} f(y) .$$

Expected Error:

$$\mathbb{E}\left[\sum_{y \neq x: \mathbf{h}(y) = \mathbf{h}(x)} f(y)\right] = \sum_{y \neq x} \Pr(\mathbf{h}(y) = \mathbf{h}(x)) \cdot f(y)$$
$$\leq \sum_{y \neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \leq \frac{n}{m}$$

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x: \mathbf{h}(y) = \mathbf{h}(x) \\ \text{error in frequency estimate}}} f(y) .$$

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: \mathbf{h}(y)=\mathbf{h}(x)} f(y)\right] = \sum_{y\neq x} \Pr(\mathbf{h}(y)=\mathbf{h}(x)) \cdot f(y)$$

$$\leq \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \leq \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x: \mathbf{h}(y) = \mathbf{h}(x) \\ \text{error in frequency estimate}}} f(y) .$$

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: \mathbf{h}(y)=\mathbf{h}(x)} f(y)\right] = \sum_{y\neq x} \Pr(\mathbf{h}(y)=\mathbf{h}(x)) \cdot f(y)$$

$$\leq \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \leq \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality:
$$\Pr\left[\sum_{y \neq x: h(y) = h(x)} f(y) \ge \frac{2n}{m}\right] \le \frac{1}{2}$$
.

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x: \mathbf{h}(y) = \mathbf{h}(x) \\ \text{error in frequency estimate}}} f(y) .$$

Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: \mathbf{h}(y)=\mathbf{h}(x)} f(y)\right] = \sum_{y\neq x} \Pr(\mathbf{h}(y)=\mathbf{h}(x)) \cdot f(y)$$
$$\leq \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \leq \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality: $\Pr\left[\sum_{y \neq x: h(y) = h(x)} f(y) \ge \frac{2n}{m}\right] \le \frac{1}{2}$.

What property of **h** is required to show this bound? a) fully random b) pairwise independent c) 2-universal d) locality sensitive

$$A[\mathbf{h}(x)] = f(x) + \sum_{\substack{y \neq x: \mathbf{h}(y) = \mathbf{h}(x) \\ \text{error in frequency estimate}}} f(y) .$$

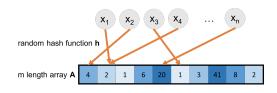
Expected Error:

$$\mathbb{E}\left[\sum_{y\neq x: \mathbf{h}(y)=\mathbf{h}(x)} f(y)\right] = \sum_{y\neq x} \Pr(\mathbf{h}(y)=\mathbf{h}(x)) \cdot f(y)$$
$$\leq \sum_{y\neq x} \frac{1}{m} \cdot f(y) = \frac{1}{m} \cdot (n - f(x)) \leq \frac{n}{m}$$

What is a bound on probability that the error is $\geq \frac{2n}{m}$?

Markov's inequality: $\Pr\left[\sum_{y \neq x: h(y) = h(x)} f(y) \ge \frac{2n}{m}\right] \le \frac{1}{2}$.

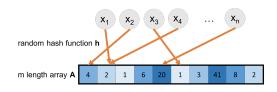
What property of **h** is required to show this bound? a) fully random b) pairwise independent c) 2-universal d) locality sensitive



Claim: For any x, with probability at least 1/2,

$$f(x) \leq A[\mathbf{h}(x)] \leq f(x) + \frac{2n}{m}.$$

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.

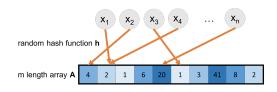


Claim: For any x, with probability at least 1/2,

$$f(x) \leq A[\mathbf{h}(x)] \leq f(x) + \frac{2n}{m}.$$

How can we improve the success probability?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.

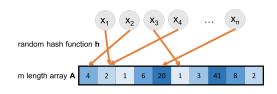


Claim: For any x, with probability at least 1/2,

$$f(x) \leq A[\mathbf{h}(x)] \leq f(x) + \frac{2n}{m}.$$

How can we improve the success probability?

f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.

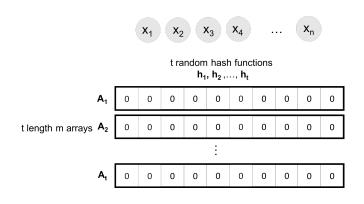


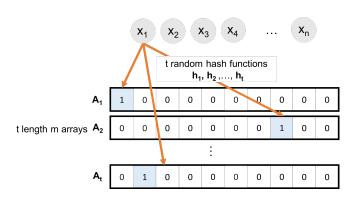
Claim: For any x, with probability at least 1/2,

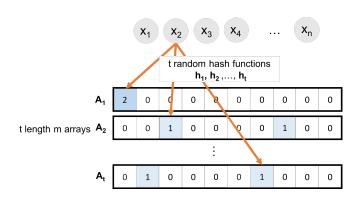
$$f(x) \leq A[\mathbf{h}(x)] \leq f(x) + \frac{2n}{m}.$$

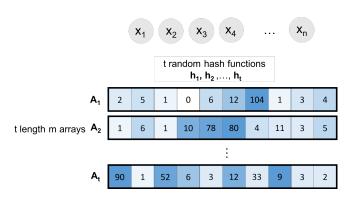
How can we improve the success probability? Repetition.

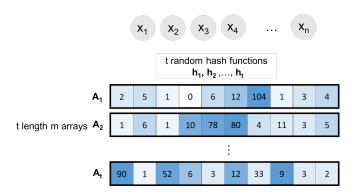
f(x): frequency of x in the stream (i.e., number of items equal to x). h: random hash function. m: size of Count-min sketch array.



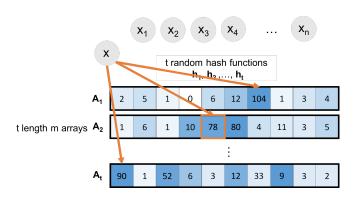




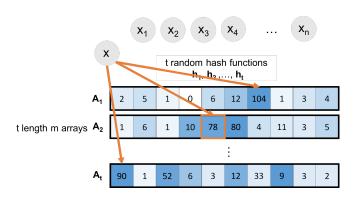




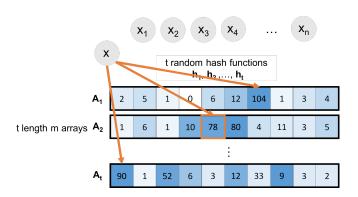
Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)



Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)

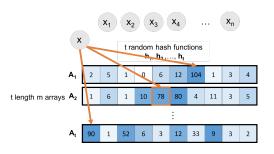


Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch) Why min instead of mean or median?

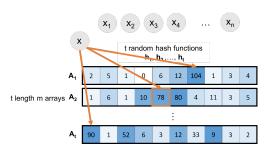


Estimate f(x) with $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$. (count-min sketch)

Why min instead of mean or median? The minimum estimate is always the most accurate since they are all overestimates of the true frequency!



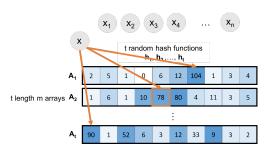
Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$



Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

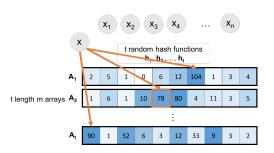
• For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$:

$$f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$$



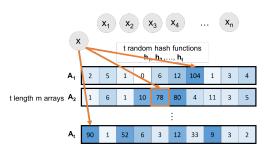
Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

- For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$
- What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$?



Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

- For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$
- What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$? $1 1/2^t$.



Estimate f(x) by $\tilde{f}(x) = \min_{i \in [t]} A_i[\mathbf{h}_i(x)]$

- For every x and $i \in [t]$, we know that for $m = \frac{2k}{\epsilon}$, with probability $\geq 1/2$: $f(x) \leq A_i[\mathbf{h}_i(x)] \leq f(x) + \frac{\epsilon n}{k}.$
- What is $\Pr[f(x) \le \tilde{f}(x) \le f(x) + \frac{\epsilon n}{k}]$? $1 1/2^t$.
- To get a good estimate with probability $\geq 1 \delta$, set $t = \log(1/\delta)$.

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1-\delta$ in $O\left(\log(1/\delta)\cdot k/\epsilon\right)$ space.

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1 - \delta$ in $O\left(\log(1/\delta) \cdot k/\epsilon\right)$ space.

• Accurate enough to solve the (ϵ,k) -Frequent elements problem: Can distinguish between items with frequency $\frac{n}{k}$ and those with frequency $<(1-\epsilon)\frac{n}{k}$.

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1-\delta$ in $O\left(\log(1/\delta)\cdot k/\epsilon\right)$ space.

- Accurate enough to solve the (ϵ, k) -Frequent elements problem: Can distinguish between items with frequency $\frac{n}{k}$ and those with frequency $<(1-\epsilon)\frac{n}{k}$.
- How should we set δ if we want a good estimate for all items at once, with 99% probability?

Upshot: Count-min sketch lets us estimate the frequency of every item in a stream up to error $\frac{\epsilon n}{k}$ with probability $\geq 1-\delta$ in $O\left(\log(1/\delta)\cdot k/\epsilon\right)$ space.

- Accurate enough to solve the (ϵ, k) -Frequent elements problem: Can distinguish between items with frequency $\frac{n}{k}$ and those with frequency $<(1-\epsilon)\frac{n}{k}$.
- How should we set δ if we want a good estimate for all items at once, with 99% probability? $\delta=0.01/|U|$ ensures

 $Pr[there exists x \in U \text{ with a bad estimate}]$

$$\leq \sum_{x \in U} \Pr[\text{estimate for } x \text{ is bad}] \leq \sum_{x \in U} 0.01/|U| = 0.01$$

IDENTIFYING FREQUENT ELEMENTS

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to look up the estimated frequency for $x \in U$?

IDENTIFYING FREQUENT ELEMENTS

Count-min sketch gives an accurate frequency estimate for every item in the stream. But how do we identify the frequent items without having to look up the estimated frequency for $x \in U$?

One approach:

- Maintain a set F while processing the stream:
- At step *i*:
 - Add ith stream element to F if it's estimated frequency is ≥ i/k and it isn't already in F.
 - Remove any element from F whose estimated frequency is < i/k.
- Store at most k items at once and have all items with frequency $\geq n/k$ stored at the end of the stream.

Questions on Frequent Elements?