
CMPSCI 611 FALL ’09: MIDTERM SOLUTIONS

Answer 1. (1) 22 (2) 37 (3) The residual graph is:

v1 v2

v3 v4

ts

3

17

5

3

3

19 1

2

13 7

89

11

1
19

(4) Nodes in p are s, v3, v4, v2, v1, t and new flow is:

v1 v2

v3 v4

ts

5/5

20/18

17/17

100/12

20/20

3/3 20/14

2/2

1/1
5/2

(5) Max-Flow Min-Cut Theorem says that for any flow network and flow f , f is a maximum
flow iff there exists an s− t cut (A,B) with |f | = C(A,B). Since the new flow has size 23
and the cut ({s, v1, v2, v3, v4}, {t}) has capacity 23, the new flow is a maximum flow.

Answer 2. (1) FALSE (2) FALSE (3) FALSE (4) TRUE
(1) By the cardinality theorem, it is sufficient to show that for all A ⊆ E, if i, i′ ∈ I are maximal

subsets of A then |i| = |i′|. For a given A, let k be the number of connected components of
G = (V,A). But any maximal subset of A has exactly |V | − k edges.

(2) Let I = {E′ ⊂ E : (V,E′) is an acyclic graph}. We know that (E, I) is a matroid from the
last part of the question. Hence the greedy algorithm finds i ∈ I of maximum weight with
respect to any positive weight function. Note that a maximum weight i is a spanning tree
because i is acyclic and G is connected. Consider a new weight function w′e = lnwe and
note that w′e > 0 because we > 1 and that for any i ∈ I, w′(i) =

∑
e∈iw

′
e = ln(

∏
e∈iwe).

Running a greedy algorithm with weights w′e returns an i ∈ I with ln(
∏

e∈iwe) maximized.
Since ln is a strictly increasing function, this i also maximizes

∏
e∈iwe.

Answer 3. (1) 10 (2) [0, 6,∞, 4, 11, 9]
(3) Run Dijkstra on G to find δG(v∗, v) for all v ∈ V . Reverse the orientation of every edge

to create graph G′ = (V,E′) and run Dijkstra to find δG′(v∗, u) for all u ∈ V . Note
that δG′(v∗, u) = δG(u, v∗). Since the shortest path from u to v in G via v∗ consists
of the shortest path from u to v∗ followed by the shortest path from v∗ to v we return
δG(u, v∗) + δG(v∗, v) as the length of the shortest path from u to v in G via v∗. Running
time is 2D(n,m) +O(n2) +O(m) = O(n2).

Answer 4. (1) 2,10000,1,1
1

(2) For 1 ≤ i < j ≤ n and j − i + 1 even define Si,j to be the maximum value that Alice
can guarantee if it’s her turn to pick and the remaining sequence is si, . . . , sj . Before
the game starts Alice precomputes the O(n2) values of Si,j as follows. First compute
Si,i+1 = max{vi, vi+1} for 1 ≤ i ≤ n − 1. Then, for k = 4, 6, . . . n and 1 ≤ i ≤ n + 1 − k,
compute

Si,i+k−1 = max(vi + min(Si+2,i+k−1, Si+1,i+k−2), vi+k−1 + min(Si+1,i+k−2, Si,i+k−3)) .

The above equation follows because Alice’s guaranteed score is the value she picks (either
vi or vi+k−1) plus the value she can guarantee subsequently no matter what card Bob picks
next. Note that this computation takes O(n2) time. While playing, when Alice has to pick
from the cards si, . . . , sj , she picks si if

vi + min(Si+2,j , Si+1,j−1) ≥ vj + min(Si+1,j−1, Si,j−2)

and sj otherwise. This decision takes O(1) time given the precomputed information.

Answer 5. (1)

H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 and H2v =


3
−1
−1

3


(2) For any length n = 2k vector v = [v1, . . . , vn]T , let t(v) = [v1, . . . , vn/2]T and b(v) =

[vn/2+1, . . . , vn]T and note that

Hkv =
(
Hk−1t(v) +Hk−1b(v)
Hk−1t(v)−Hk−1b(v)

)
Hence the following divide and conquer algorithm can be used to compute Hkv:
If k=0: Return v
Compute t=H_{k-1} t(v)
Compute b=H_{k-1} b(v)
Return the vector w=[t+b, t-b]^T

The running time satisfies T (n) = 2T (n/2) +O(n) and hence T (n) = O(n log n).

Answer 6. Let Ai and Bi denote the i-th entries of A and B. Let Ai,j = AiAi+1 . . . Aj and
Bi,j = BiBi+1 . . . Bj . Consider the following algorithm:

MEDIAN(n,A,B):
(1) If n = 1: return min(A1, B1)
(2) If An/2 < Bn/2: return MEDIAN(n/2, An/2+1,n, B1,n/2)
(3) If An/2 > Bn/2: return MEDIAN(n/2, A1,n/2, Bn/2+1,n)

Correctness: Clearly if n = 1 then the smallest element from A1 ∪B1 is min(A1, B1). Otherwise if
An/2 < Bn/2 then we know that each element in A1,n/2 is smaller than the n-th element of A∪B and
that each element in Bn/2+1,n is larger than the n-th element of A ∪B. Hence the n/2-th smallest
element of An/2+1,n ∪B1,n/2 is the n-th smallest element of A ∪B. Similarly, if An/2 > Bn/2 then
the n/2-th smallest element of A1,n/2 ∪Bn/2+1,n is the n-th smallest element of A ∪B.

Running Time: At each recursion, the total number of elements being considered decreases by a
factor of 2. Hence, the depth of the recursion is only log2 n and at each stage the running time is
O(1). Hence, total running time is O(log n).

2

