NAME:	

CMPSCI 611 Advanced Algorithms Final Exam Fall 2012

A. McGregor 13 December 2012

DIRECTIONS:

- Do not turn over the page until you are told to do so.
- This is a *closed book exam*. No communicating with other students, or looking at notes, or using electronic devices. You may ask the professor to clarify the meaning of a question but do so in a way that causes minimal disruption.
- If you finish early, you may leave early but do so as quietly as possible. The exam script should be given to the professor.
- There are five questions. All carry the same number of points but some questions may be easier than others. Don't spend too long on a problem if you're stuck you may find that there are other easier questions.
- The front and back of the pages can be used for solutions. There is also a blank page at the end that can be used. If you are using these pages, clearly indicate which question you're answering.
- \bullet The exam will finish at 12:30 pm.
- Good luck!

1	/10
2	/10
3	/10
4	/10
5	/10
Total	/50

Question 1 (True or False): For each of the following statements, indicate whether the statement is true or false by circling the appropriate option. It is not necessary to show working.

- 1. Given an unweighted graph, it is possible to find the length of the shortest path between every pair of vertices in polynomial time.
 - TRUE
 - FALSE
- 2. For any satisfiable instance ϕ of 3-SAT with more than one clause, a random assignment of the variables will satisfy ϕ with probability at least 7/8.
 - TRUE
 - FALSE
- 3. If T(1) = 1 and T(n) = 2T(n/2) + n then $T(n) = \Theta(n \log n)$.
 - TRUE
 - FALSE
- 4. For any graph G = (V, E), if $V' \subset V$ is a vertex cover then $V \setminus V'$ is an independent set.
 - TRUE
 - FALSE
- 5. For any random variable X which is never negative, $\mathbb{P}[X < 10 \cdot \mathbb{E}[X]] \ge 9/10$.
 - TRUE
 - FALSE

Question 2 (Flows and Linear Programming):

1. What is the maximum s-t flow in the following network where labels on the edges indicate the capacities of the edges?

ANSWER: The size of the maximum flow is 7.

2. State the Max-Flow/Min-Cut theorem.

ANSWER: The size of the maximum flow equals the capacity of the minimum cut.

- 3. TRUE or FALSE: There exists a polynomial time algorithm for solving linear programs.
 - TRUE
 - FALSE

In the next two parts of the question, we consider the following linear program.

maximize
$$2x_1+x_2$$
 subject to
$$x_1+x_2\leq 3\ ,\ x_1\leq 2\ ,\ x_2\leq 2\ ,\ x_1,x_2\geq 0$$

4. Draw the feasible region for the linear program. What is the optimal value?

ANSWER: The optimal solution is 5 and occurs when $x_1 = 2$ and $x_2 = 1$.

5. Write the dual of the above linear program. What is the optimal value of the dual?

3

ANSWER: The dual is minimize $3y_1 + 2y_2 + 2y_3$ subject to $y_1 + y_2 \ge 2$, $y_1 + y_3 \ge 1$, $y_1 \ge 0$, $y_2 \ge 0$, and $y_3 \ge 0$. The optimal value if also 5.

- Question 3 (Matchings): Consider a complete bipartite graph $G = (L \cup R, E)$ with nodes $L = \{l_1, \ldots, l_n\}$, $R = \{r_1, \ldots, r_n\}$, and edges $E = \{(l_i, r_j) : i, j \in \{1, 2, \ldots, n\}\}$. Suppose each edge $e \in E$ has some weight $w_e \geq 0$. The minimum weight matching problem is to find a matching M with n edges such that $\sum_{e \in M} w_e$ is minimized.
 - 1. Prove that the minimum weight matching problem can be solved in polynomial time. You may use the fact that the maximum weight matching problem (i.e., find a matching that maximizes $\sum_{e \in M} w_e$) can be solved in polynomial time.

ANSWER: Define $w^* = \max w_e$ and let $w'_e = w^* - w_e$. Then the weight of a matching M with respect to w'_e equals $\sum_{e \in M} w'_e = nw^* - \sum_{e \in M} w_e$. Hence, finding the maximum matching with respect to the weights w'_e yields the minimum weight matching with respect to the weights w_e . Hence the minimum weight matching can be solved in polynomial time.

2. Suppose each node v has a weight w_v such that $w_{l_1} < w_{l_2} < \ldots < w_{l_n}$ and $w_{r_1} < w_{r_2} < \ldots < w_{r_n}$. If the weight of an edge e = (l, r) is defined as $w_e = |w_r - w_l|$, what is the weight of the minimum weight matching? Prove your answer is correct. **Hint**: What could you do if a matching contained edges (l_i, r_k) and (l_i, r_ℓ) for some i < j and $k > \ell$?

ANSWER: The weight of the minimum cost matching is $\sum_{i \in [n]} |w_{r_i} - w_{l_i}|$, i.e., each node l_i is paired with r_i . In any other matching there exists a pair of "crossing" edges (l_i, r_k) and (l_j, r_ℓ) for some i < j and $k > \ell$. Replacing these edges by the edges (l_i, r_ℓ) and (l_j, r_k) reduces the weight and hence there can be no crossing edges. This follows because

$$|w_{l_i} - w_{r_\ell}| + |w_{l_j} - w_{r_k}| \ge \max(w_{l_i}, w_{r_\ell}, w_{l_j}, w_{r_k}) - \min(w_{l_i}, w_{r_\ell}, w_{l_j}, w_{r_k})$$

whereas

$$|w_{l_i} - w_{r_\ell}| + |w_{l_j} - w_{r_k}| \le \max(w_{l_i}, w_{r_\ell}, w_{l_j}, w_{r_k}) - \min(w_{l_i}, w_{r_\ell}, w_{l_j}, w_{r_k})$$
.

- Question 4 (Verifying Matrix Multiplication): In this question we will design a randomized algorithm for checking matrix multiplication. You may use the following result without proof: If $Q(x_1, \ldots, x_n)$ is a non-zero polynomial with degree at most d and if r_1, \ldots, r_n are chosen randomly from $\{0, 1, 2, \ldots, s-1\}$, then $\mathbb{P}[Q(r_1, \ldots, r_n) = 0] \leq d/s$.
 - 1. Give an example of Q with n=1, d=2, s=3 such that the above inequality is tight.

```
ANSWER: Q(x) = x(x-1).
```

- 2. Your friend claims that when you multiply two $n \times n$ matrices A and B, the resulting matrix is C. To check her answer, you randomly choose r_1, \ldots, r_n such that each r_i is equally likely to be 0 or 1 and all r_i are independent. This defines vector $r = (r_1, r_2, \ldots, r_n)^T$.
 - (a) If $AB \neq C$, prove that $\mathbb{P}[ABr \neq Cr] \geq 1/2$.

ANSWER: Let D = AB - C. If $AB \neq C$ then D has some non-zero row say (d_1, d_2, \ldots, d_n) . But then $Q(x_1, \ldots, x_n) = \sum_{i=1}^n d_i x_i$ is a non-zero polynomial of degree 1. Hence, $\mathbb{P}[Q(r_1, \ldots, r_n) \neq 0] \geq 1/2$. If $Q(r_1, \ldots, r_n) \neq 0$ then Dr has a non-zero entry and hence $ABr \neq Cr$.

(b) Give upper and lower bounds on the smallest time to compute ABr?

ANSWER: We need to read every entry of A and B so we need at least $\Omega(n^2)$ time. We can find v = Br in $O(n^2)$ arithmetic operations and then find Av in an additional $O(n^2)$ arithmetic operations.

3. Design and prove the correctness of an efficient randomized algorithm that, given input A, B, C and a positive parameter $\delta < 1/2$, will output "same" if AB = C and will output "different" with probability at least $1 - \delta$ if $AB \neq C$. The more efficient your algorithm, the more marks you receive. You may assume the results in Part 2.

ANSWER: Consider running the algorithm in Part 2 $\log \delta^{-1}$ times with independent values of r. If the algorithm ever observes an r with $ABr \neq Cr$ then output "different". If not return "same". Note that if AB = C then ABr always equals Cr. But if $AB \neq C$, then we know $ABr \neq Cr$ with probability at least 1/2. Hence the probability that $ABr \neq Cr$ for one of the $\log \delta^{-1}$ choices of r is at least $1 - (1/2)^{\log \delta^{-1}} = 1 - \delta$.

- Question 5 (Coloring Graphs): A t-coloring of a graph G = (V, E) is a labeling $f : V \to \{1, 2, ..., t\}$ of the vertices such that if $(u, v) \in E$ then $f(u) \neq f(v)$, i.e., adjacent nodes receive different labels. We say a graph G is t-colorable if there exists a t-coloring for G.
 - 1. Design a polynomial time algorithm that determines whether a graph is 2-colorable. Prove the approximation ratio. **Hint:** Consider performing a breadth first search.

ANSWER: It suffices to check whether each connected component of the graph is 2-colorable since a graph is 2-colorable iff each connected component is 2-colorable. Let v be an arbitrary node in a connected component and let L_i be the set of nodes in this connected component that are a distance i from v. The sets L_i can be found using a BFS from v and define $L_0 = \{v\}$. Suppose there is a 2-coloring and let f(v) = 1. Then, all nodes in L_1 must have color 2 (because each is adjacent to v), all nodes in L_2 must have color 1 (because each is adjacent to a node in L_1 with color 2) etc. So nodes in L_i must have color 1 if i is even and color 2 if i is odd. Hence the connected component is 2-colorable iff there doesn't edge between nodes in L_i and L_j where i and j are both even or both odd.

2. Let D be a maximum degree of a graph. Design a polynomial time algorithm that (D+1)/3 approximates the minimum value of t such that the graph is t-colorable. Prove the approximation ratio.

ANSWER: If the graph is 1-colorable (i.e., there are no edges) or 2-colorable we can determine this find the exact value of t. Otherwise we may assume t is at least 3. Consider coloring nodes in an arbitrary order where the color chosen for node v is the minimum value in $\{1, 2, \ldots, D+1\}$ that is not already used to color a neighbor. Since there are at most D neighbors of each node, there is always a color that can be used. Hence we color the graph using D+1 colors when we know the optimum values is at least 3. This gives the required approximation ratio.