
NAME:

CMPSCI 611
Advanced Algorithms

Midterm Exam Fall 2020 Draft Solutions

A. McGregor 8pm, 11/5/20 to 8pm, 11/6/20

DIRECTIONS:

• Honesty Policy: No communicating with anyone (ex-
cept the instructor and TAs via private posts on Piazza)
about the exam during the 24 hours the exam is open.
You are not allowed to use any resources except from
the slides and scribed notes linked in Moodle.

• You can either print the exam and handwrite your an-
swers on the pages or type the answers on separate
pages. It should be possible to answer each question
using a single page. Most parts of each question can
be answered in a few sentences. Remember that the
best answers are those that are clear and concise (and
of course correct).

• Once you are finished submit your solutions in Grade-
scope by 8pm Friday. If you are using a camera to
“scan” your answers, please take care to make the pic-
ture as legible as possible and remember to tag each
uploaded page with the question it relates to.

1 /10

2 /10

3 /10

4 /10

5 /10

Total /50

1

Question 1. For each of the following statements, indicate whether they are TRUE or FALSE by
circling the appropriate answer. No justification is required.

1. There is a polynomial time algorithm for finding the minimum weight spanning tree of
an edge-weighted graph.

Answer: TRUE

2. If E = {a, b, c} and I = {{}, {a}, {c}} then (E, I) is a matroid.

Answer: TRUE

3. If T (n) = 3T (n− 1) for n ≥ 2 and T (1) = 1 then T (n) = O(n3).

Answer: FALSE. T (n) = 3n−1 and this is not O(n3).

4. Let f(x) and g(x) are polynomials of degree at most d such that f(0) = g(0) but f(1) 6=
g(1). Then if we pick r ∈ {1, 2, . . . t} uniformly at random, Pr[f(r) = g(r)] ≤ (d− 1)/t.

Answer: TRUE. Since f(1) 6= g(1), we know f(x) − g(x) is a non-zero polynomial of
degree at most d. Hence, it has at most d roots, one of which is x = 0. Hence, at most
(d− 1) of the possible values for r are roots.

5. It is possible to sort n values with O(n log n) pairwise comparisons.

Answer: TRUE. For example, Merge-Sort only requires O(n log n) comparisons.

Question 2. Consider the following adjacency matrix

A =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


and let B = A2. For a matrix M , let M [i, j] denote the entry in the ith row and jth column.
For example, A[1, 1] = 0 and A[1, 2] = 1.

1. What is the diameter of the graph corresponding to A?

Answer: 3. The graph is a path with 3 edges.

2. What is the size of the minimum vertex cover of the graph corresponding to A?

Answer: 2.

3. What is the value of B[2, 4]?

Answer: 1. It is the dot product of the 2nd row of A with the 4th column of A.

For the rest of the question, we consider an arbitrary adjacency matrix C corresponding to a
graph G = (V,E) with n nodes and m edges.

4. Let G′ = (V,E′) be the graph where there is an edge between a pair of nodes iff there is
a path of length exactly two between those nodes in G. We don’t consider path of length
two that starts and ends at the same node in this definition. Explain how to compute
the adjacency matrix of G′ given C. You don’t need to explain how to square a matrix.

2

Answer: Compute C2. Note C2[i, j] is the number of length two paths between node
i and j. Hence, if D is the adjacency matrix of G′, D[i, j] = min(1, C2[i, j]) if all i 6= j
and D[i, i] = 0 for all i.

5. The trace of a matrix is the sum of the entries on the diagonal. What is the value of
trace of C2 in terms of n or m or some combination of both?

Answer: C2[i, i] =
∑

j C[i, j]C[j, i] = |{j : (i, j) ∈ E}| is the degree of node i. So the
trace is the sum of the degrees and this is 2m.

Question 3. A candidate wants to become president in a country with n states. Winning the
ith state gives the politician vi points. The candidate needs a total of at least k points in
order to become president. Let D[i, j] be the number of subsets S ⊆ {1, 2, . . . , i} such that∑

s∈S vs ≥ j. Then D[n, k] is the number of ways the candidate can win the election.

1. Design a dynamic programming algorithm to compute D[n, k] that runs in time polyno-
mial in k and n. Remember to prove correctness and analyze the running time.

Answer:

1. Let D[0, j]← 0 for all j ≥ 1

2. For i = 1 to n:

2.1. For j = 1 to k:

3.1. If vi < j then D[i, j]← D[i− 1, j] +D[i− 1, j − vi]
3.2. If vi ≥ j then D[i, j]← D[i− 1, j] + 2i−1

3. Return D[n, k]

Correctness follows because every S ⊆ [i] with
∑

s∈S vs ≥ j is either a subset of [i − 1]
with total at least j or includes i and a subset of [i− 1] with total at least j− vi. Hence,
D[i, j] is D[i − 1, j] + D[i − 1, j − vi] and note that if j − vj ≤ 0, then any of the 2i−1

subsets of [i− 1] has weight at least j − vi. The running time is O(nk).

2. Suppose the candidate does not want to campaign in any state that is not worth many
points. Design an algorithm that, given input v1, . . . , vn, k, t finds the largest value θ
such that there are at least t subsets S ⊆ {i ∈ [n] : vi ≥ θ} such that

∑
s∈S vs ≥ k. The

running time should be at most a factor O(log n) larger than the running time of the
algorithm in Part 1.

Answer: Let Dθ be the value returned by the algorithm in Part 1 when all elements
whose value is strictly less than θ are removed. Note that Dθ is monotonically decreasing
as θ increases. Therefore, we can binary search for the largest vi such that Dvi ≥ t. To
do this, we first sort the vi. Total running time is O(n log n+ nk log n) = O(nk log n).

3. Design an algorithm using O(n log n) time that computes the largest θ such that there
exists at least one subset S ⊆ {i ∈ [n] : vi ≥ θ} such that

∑
s∈S vs ≥ k.

Answer: In O(n log n) time, we can sort the values such that v1 ≥ v2 ≥ . . . ≥ vn. In
O(n) time, we can compute the minimum i such that v1 + v2 + . . .+ vi ≥ k. Note that
S = {1, 2, . . . , i} is valid subset with θ = vi. This is the max possible θ since any other
valid subset S would include a state j with vj ≤ vi.

Question 4. Consider a graph consisting of a cycle of length n and one extra node that is connected
to one node in the cycle. Call this graph Gn. For example, G6 looks like this

3

1. Assuming n is even, what are the following values as a function of n?

Size of min cut in Gn = 1 Size of max cut in Gn = n+ 1

2. Consider Karger’s algorithm: 1) Pick a random edge, contract this edge, and repeat
until only two nodes remain. 2) Let X be the number of edges between the final two
nodes. What is the exact value of Pr[X = 1] when the algorithm is run on graph Gn?

Answer: The only way for X = 1 is if each random edge is from the cycle rather than
the edge sticking out from the cycle. Hence, Pr[X = 1] = n

n+1×
n−1
n ×

n−2
n−1×. . .×

2
3 = 2

n+1 .

3. Suppose you instead pick a random subset S of nodes where each node is included in
S independently with probability 1/2. Let Y be the number of edges that have exactly
one endpoint in S. What is the exact value of Pr[Y = 1] when the algorithm is run on
graph Gn?

Answer: The only way for Y = 1 is if S is the set of nodes in cycle or the single node
not in the cycle. Hence, Pr[Y = 1] = 1/2n+1 + 1/2n+1 = 1/2n.

4. Is Y (see above) distributed according to a binomial distribution? Explain your answer.

Answer: No. Y takes values in {0, . . . , n+1} and E[Y] = (n+1)/2. So if Y is binomial
it has parameters n + 1 and p = 1/2. But if Y is binomial with these parameters then
Pr[Y = 1] = (n+ 1)/2n+1 and this isn’t equal to 1/2n as computed above.

5. Given an arbitrary graph, pick bn/
√
mc random nodes without replacement where m is

the number of edges. What is the expected number of edges where both endpoints are
picked? Prove that every graph includes an independent set of size at least bn/

√
mc.

Answer: Let k = bn/
√
mc. The probability both endpoints of edge are picked is

k(k−1)
n(n−1) < (k/n)2 ≤ 1/m where the strict inequality assumed m > 1. By linearity of

expected the expected number of edges where both endpoints are picked is < m×1/m =
1. Since the expectation is strictly less than 1, there must exist a subset where the
number of such edges is 0. This is an independent set of the required size.

Question 5. Given a graph and a subset of nodes U , define γ(U) to be the average degree of the
nodes in U if we only consider edges which have both endpoints in U . Let γ∗ = maxU γ(U).

Consider transforming a graph G with nodes {v1, . . . , vn} and edges {e1, . . . , em} into a net-
work flow instance H as follows. The nodes of H are {s, e1, . . . , em, v1, . . . , vn, t}. There is an
edge with capacity 2 from s to ei for each i ∈ [m]. There is an edge with capacity c from vi
to t for each i ∈ [n]. Lastly, for all i ∈ [m], j ∈ [n] there is an edge with capacity 2 from ei to
vj if vj was an endpoint of the edge ei in G. For example,

4

v2

v1 v3

v4
e1 e2

e3
e4

G is…

e4

e3

e2

e1 v1

v2

v3

v4

s t

2
2 2

2

2

2

2
2

2

2

2

2

c

c

c

c

H is…

1. In the graph G above, if U = {v3, v4} what are the following values:

γ(U) = 1 γ∗ = 2

2. In the network flow instance H above:

What is max s-t flow if c = 0? 0 What is max s-t flow if c =∞? 8

3. For an arbitrary graph G with m edges, prove that if c < γ∗ then the corresponding
network has max s-t flow of size < 2m.

Answer: Consider U ⊆ {v1, . . . , vn} and E(U) = {ei : both end points of ei in U}.
Then γ(U) = 2|E(U)|/|U |. If there is a flow of size 2m, there must be 2|E(U)| units of
flow entering the nodes in U . Hence, the flow out of U is at least 2|E(U)|. Hence, we
need c|U | ≥ 2|E(U)|, i.e., c ≥ γ(U). Since this is true for all U , we need c ≥ γ∗.

4. If c ≥ γ∗ it can be shown that there always exists an s-t flow of size 2m. You do not
need to show this but may assume it is true. Describe and prove the correctness of an
algorithm for computing γ∗. You may use algorithms analyzed in class as sub-routines.

Answer: We need to find the minimum value of c such that there is an s-t flow of at
least 2m. For any value of c, we can find the max flow using the Ford-Fulkerson with
Edmonds-Karp heuristic in O((n + m + 2)(3m + n)2) = O((n + m)3) time since there
are n + m + 2 nodes and 3m + n edges in H. To find the minimum value of c we can
either try all O(mn) possible values of c or, more efficiently do a binary search over c.
The total running time is O((n+m)3 log n).

5

