CMPSCI 611: Advanced Algorithms
 Lecture 2: More Divide and Conquer

Andrew McGregor

Outline

Divide and Conquer Template

Matrix Multiplication

Closest Pair of Points in a Plane

Outline

Divide and Conquer Template

Matrix Multiplication

Closest Pair of Points in a Plane

Divide and Conquer Methodology

- General Goal: Solve problem P on an instance I of "size" n.
- Divide \& Conquer:

1. Transform I into smaller instances I_{1}, \ldots, l_{a} each of "size" n / b
2. Solve problem P on each of I_{1}, \ldots, l_{a} by recursion
3. Combine the solutions to get a solution of I

- Example (Merge Sort): To sort n numbers, divide into 2 sets of size $\frac{n}{2}$, sort each set, and merge.

Analyzing Divide and Conquer Algorithms

Let $T(n)$ be running time of algorithm on instance of size n. Then

$$
T(1)=\Theta(1), \quad T(n) \leq a T(n / b)+O\left(n^{\alpha}\right)
$$

where $O\left(n^{\alpha}\right)$ is time to create the subproblems and combine solutions.

Theorem (Master Theorem)
If a, b, α are constants,

$$
T(n)= \begin{cases}O\left(n^{\alpha}\right) & \text { if } b^{\alpha}>a \\ O\left(n^{\log _{b} a}\right) & \text { if } b^{\alpha}<a \\ O\left(n^{\alpha} \log n\right) & \text { if } b^{\alpha}=a\end{cases}
$$

- Example (Merge Sort): $a=b=2$ and $\alpha=1$. Therefore the running time is $O(n \log n)$.

Outline

Divide and Conquer Template

Matrix Multiplication

Closest Pair of Points in a Plane

First Attempt at Matrix Multiplication

Given two $n \times n$ matrices A and B, multiply them together to get C :

$$
c_{i j}=\sum_{k \in[n]} a_{i k} b_{k j}
$$

Naive algorithm works in $O\left(n^{3}\right)$ time. Try Divide and Conquer. . .

- Divide A and B into four $n / 2 \times n / 2$ sub-matrices:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

- And note

$$
C=\left(\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right)=\left(\begin{array}{ll}
P_{1}+P_{2} & P_{3}+P_{4} \\
P_{5}+P_{6} & P_{7}+P_{8}
\end{array}\right)
$$

where $P_{1}=A_{11} B_{11}$ and $P_{2}=A_{12} B_{21}$ etc.

- Bad News: $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$ gives $T(n)=\Theta\left(n^{3}\right)$

Strassen's Algorithm: General Technique + Creativity

- Along comes Volker Strassen in 1969...

Strassen's Algorithm

Break the problem into 7 sub-problems:

$$
\begin{aligned}
& P_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& P_{2}=\left(A_{21}+A_{22}\right)\left(B_{11}\right) \\
& P_{3}=\left(A_{11}\right)\left(B_{12}-B_{22}\right) \\
& P_{4}=\left(A_{22}\right)\left(-B_{11}+B_{21}\right) \\
& P_{5}=\left(A_{11}+A_{12}\right)\left(B_{22}\right) \\
& P_{6}=\left(-A_{11}+A_{21}\right)\left(B_{11}+B_{12}\right) \\
& P_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)
\end{aligned}
$$

Then

$$
A B=\left(\begin{array}{cc}
P_{1}+P_{4}-P_{5}+P_{7} & P_{3}+P_{5} \\
P_{2}+P_{4} & P_{1}-P_{2}+P_{3}+P_{6}
\end{array}\right)
$$

Good: $T(n)=7 T\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right)$ gives $T(n)=\Theta\left(n^{2.81}\right)$.
Improvements: $O\left(n^{2.376}\right)$ by Coppersmith, Winograd 1990, $O\left(n^{2.3736}\right)$ by Stothers 2010, $O\left(n^{2.3729}\right)$ by Williams 2011, $O\left(n^{2.3728}\right)$ by Le Gall 2014, $\ldots O\left(n^{2.371552}\right)$ by Williams, Xu, Xu, and Zhou in 2024.

Outline

Divide and Conquer Template

Matrix Multiplication

Closest Pair of Points in a Plane

Finding Minimum Distance between Points on a Plane

Problem: Given n distinct points $p_{1}, \ldots, p_{n} \in \mathbb{R}^{2}$, find minimum distance between any two points $=\min _{i \neq j} d\left(p_{i}, p_{j}\right)$

How long does naive algorithm take? $O\left(n^{2}\right)$
We'll do it in $O(n \log n)$ steps.
For simplicity, assume no two points have the same x or y coordinate.

Minimum Distance Algorithm

1. Divide points P with a vertical line into P_{L} and P_{R} where

$$
\left|P_{L}\right|=\left|P_{R}\right|=n / 2
$$

2. Recursively find minimum distance within P_{L} and P_{R} :

$$
\begin{aligned}
& \delta_{L}=\min _{p, q \in P_{L}: p \neq q} d(p, q) \\
& \delta_{R}=\min _{p, q \in P_{R}: p \neq q} d(p, q)
\end{aligned}
$$

3. Compute $\delta_{M}=\min _{p \in P_{L}, q \in P_{R}} d(p, q)$ and return

$$
\min \left(\delta_{L}, \delta_{R}, \delta_{M}\right)
$$

Note: If Step 3 takes $O\left(n^{2}\right)$ time, we get

$$
T(n) \leq 2 T(n / 2)+O\left(n^{2}\right) \Longrightarrow T(n)=O\left(n^{2}\right)
$$

If we can do Step 3 in $\Theta(n)$ time, we get $T(n)=O(n \log n)$.

Making Step 3 Efficient

- Need to find $\min \left(\delta_{L}, \delta_{R}, \delta_{M}\right)$ where $\delta_{M}=\min _{p \in P_{L}, q \in P_{R}} d(p, q)$
- Suppose that the dividing line is $x=m$ and $\delta=\min \left(\delta_{L}, \delta_{R}\right)$
- Once we know δ, only need $O(n)$ comparisons to find $\min \left(\delta, \delta_{M}\right)$

1. Only compare $p=\left(p_{1}, p_{2}\right)$ to $q=\left(q_{1}, q_{2}\right)$ if

$$
p_{2} \leq q_{2} \leq p_{2}+\delta \quad \text { and } \quad m-\delta<p_{1}, q_{1}<m+\delta
$$

2. Claim: Each point only needs compared with ≤ 6 other points.

Implementation details

- Need to identify which points to compare in $O(n)$ time
- Assume points are sorted by y-coordinate. Ensure list is passed to each recursion sorted.
- Given sorted list, it's easy to find the relevant points to compare

1. Remove points whose x-coordinate differs from m by more than δ.
2. Scan through rest from bottom to top, compare each point with the next 6 points in the list.

- Can find dividing line that splits P_{L} and P_{R} in $O(n)$ time.

Proof of Claim

- All points in to be compared with p lie in a $\delta \times \delta$ rectangle.
- Since each is at least δ away from the others, we can draw circles of radius $r=\delta / 2$ around each and these circles do not overlap.
- The area of the intersection of a circle and the box is at least $\pi r^{2} / 4$.
- Since the total area of the rectangle is δ^{2}, the total number of points must be at most $\delta^{2} /\left(\pi r^{2} / 4\right)=16 / \pi=5.09 \ldots<6$.
- Better constants are possible but the exact constant isn't important.

