CMPSCI 611: Advanced Algorithms Lecture 2: More Divide and Conquer

Andrew McGregor

Last Compiled: February 13, 2024

Matrix Multiplication

Matrix Multiplication

Divide and Conquer Methodology

General Goal: Solve problem *P* on an instance *I* of "size" *n*.

- Divide & Conquer:
 - 1. Transform I into smaller instances I_1, \ldots, I_a each of "size" n/b
 - 2. Solve problem P on each of I_1, \ldots, I_a by recursion
 - 3. Combine the solutions to get a solution of I

Example (Merge Sort): To sort *n* numbers, divide into 2 sets of size $\frac{n}{2}$, sort each set, and merge.

Analyzing Divide and Conquer Algorithms

Let T(n) be running time of algorithm on instance of size n. Then

 $T(1) = \Theta(1), \quad T(n) \le aT(n/b) + O(n^{\alpha})$

where $O(n^{\alpha})$ is time to create the subproblems and combine solutions.

Theorem (Master Theorem) If a, b, α are constants,

$$T(n) = egin{cases} O(n^lpha) & ext{if } b^lpha > a \ O(n^{\log_b a}) & ext{if } b^lpha < a \ O(n^lpha \log n) & ext{if } b^lpha = a \end{cases}$$

Example (Merge Sort): a = b = 2 and α = 1. Therefore the running time is O(n log n).

Matrix Multiplication

First Attempt at Matrix Multiplication

Given two $n \times n$ matrices A and B, multiply them together to get C:

$$c_{ij} = \sum_{k \in [n]} a_{ik} b_{kj}$$

Naive algorithm works in $O(n^3)$ time. Try Divide and Conquer...

• Divide A and B into four $n/2 \times n/2$ sub-matrices:

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right) \qquad B = \left(\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right)$$

And note

$$C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} = \begin{pmatrix} P_1 + P_2 & P_3 + P_4 \\ P_5 + P_6 & P_7 + P_8 \end{pmatrix}$$

where $P_1 = A_{11}B_{11}$ and $P_2 = A_{12}B_{21}$ etc. Bad News: $T(n) = 8T(n/2) + \Theta(n^2)$ gives $T(n) = \Theta(n^3)$

Strassen's Algorithm: General Technique + Creativity

Along comes Volker Strassen in 1969...

Strassen's Algorithm

Break the problem into 7 sub-problems:

$$P_{1} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$P_{2} = (A_{21} + A_{22})(B_{11})$$

$$P_{3} = (A_{11})(B_{12} - B_{22})$$

$$P_{4} = (A_{22})(-B_{11} + B_{21})$$

$$P_{5} = (A_{11} + A_{12})(B_{22})$$

$$P_{6} = (-A_{11} + A_{21})(B_{11} + B_{12})$$

$$P_{7} = (A_{12} - A_{22})(B_{21} + B_{22})$$

Then

$$AB = \begin{pmatrix} P_1 + P_4 - P_5 + P_7 & P_3 + P_5 \\ P_2 + P_4 & P_1 - P_2 + P_3 + P_6 \end{pmatrix}$$

Good: $T(n) = 7T(\frac{n}{2}) + \Theta(n^2)$ gives $T(n) = \Theta(n^{2.81})$.

Improvements: $O(n^{2.376})$ by Coppersmith, Winograd 1990, $O(n^{2.3736})$ by Stothers 2010, $O(n^{2.3729})$ by Williams 2011, $O(n^{2.3728})$ by Le Gall 2014, ... $O(n^{2.371552})$ by Williams, Xu, Xu, and Zhou in 2024.

Matrix Multiplication

Finding Minimum Distance between Points on a Plane

Problem: Given *n* distinct points $p_1, \ldots, p_n \in \mathbb{R}^2$, find

minimum distance between any two points $= \min_{i \neq j} d(p_i, p_j)$

How long does naive algorithm take? $O(n^2)$

We'll do it in $O(n \log n)$ steps.

For simplicity, assume no two points have the same x or y coordinate.

Minimum Distance Algorithm

1. Divide points P with a vertical line into P_L and P_R where

$$|P_L| = |P_R| = n/2$$

2. Recursively find minimum distance within P_L and P_R :

$$\delta_L = \min_{\substack{p,q \in P_L: p \neq q}} d(p,q)$$
$$\delta_R = \min_{\substack{p,q \in P_R: p \neq q}} d(p,q)$$

3. Compute $\delta_M = \min_{p \in P_L, q \in P_R} d(p, q)$ and return $\min(\delta_L, \delta_R, \delta_M)$

Note: If Step 3 takes $O(n^2)$ time, we get

$$T(n) \leq 2T(n/2) + O(n^2) \Longrightarrow T(n) = O(n^2)$$

If we can do Step 3 in $\Theta(n)$ time, we get $T(n) = O(n \log n)$.

Making Step 3 Efficient

- ▶ Need to find min($\delta_L, \delta_R, \delta_M$) where $\delta_M = \min_{p \in P_L, q \in P_R} d(p, q)$
- Suppose that the dividing line is x = m and $\delta = \min(\delta_L, \delta_R)$
- Once we know δ , only need O(n) comparisons to find min (δ, δ_M)
 - 1. Only compare $p = (p_1, p_2)$ to $q = (q_1, q_2)$ if

$$p_2 \leq q_2 \leq p_2 + \delta$$
 and $m - \delta < p_1, q_1 < m + \delta$.

2. Claim: Each point only needs compared with \leq 6 other points.

Implementation details

- ▶ Need to identify which points to compare in O(n) time
- Assume points are sorted by y-coordinate. Ensure list is passed to each recursion sorted.
- Given sorted list, it's easy to find the relevant points to compare
 - 1. Remove points whose x-coordinate differs from m by more than δ .
 - 2. Scan through rest from bottom to top, compare each point with the next 6 points in the list.
- Can find dividing line that splits P_L and P_R in O(n) time.

Proof of Claim

- ▶ All points in to be compared with *p* lie in a $\delta \times \delta$ rectangle.
- Since each is at least δ away from the others, we can draw circles of radius r = δ/2 around each and these circles do not overlap.
- The area of the intersection of a circle and the box is at least $\pi r^2/4$.
- Since the total area of the rectangle is δ², the total number of points must be at most δ²/(πr²/4) = 16/π = 5.09...<6.</p>
- Better constants are possible but the exact constant isn't important.