CMPSCI 611: Advanced Algorithms Lecture 3: Fast Polynomial Multiplication

Andrew McGregor

Last Compiled: February 8, 2024

Slide Left Blank

Polynomial Multiplication

Problem: Suppose A(x) and B(x) are polynomials of degree n - 1:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-1} x^{n-1}$$

Compute C(x) = A(x)B(x). We'll assume *n* is a power of 2.

Polynomial Multiplication

Problem: Suppose A(x) and B(x) are polynomials of degree n - 1:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-1} x^{n-1}$$

Compute C(x) = A(x)B(x). We'll assume *n* is a power of 2.

How long does naive algorithm take?

Polynomial Multiplication

Problem: Suppose A(x) and B(x) are polynomials of degree n-1:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-1} x^{n-1}$$

Compute C(x) = A(x)B(x). We'll assume *n* is a power of 2.

How long does naive algorithm take? $O(n^2)$

Representation of Polynomials

Definition

The *coefficient representation* (CR) of a polynomial the vector of coefficients. E.g., (1, 3, -2, 1) is the coefficient representation of

$$f(x) = 1 + 3x - 2x^2 + x^3$$

Representation of Polynomials

Definition

The coefficient representation (CR) of a polynomial the vector of coefficients. E.g., (1, 3, -2, 1) is the coefficient representation of

$$f(x) = 1 + 3x - 2x^2 + x^3$$

Definition

The *point-value representation* (PVR) of a polynomial: for *n* distinct points x_0, \ldots, x_{n-1} the PVR of *f* is

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_{n-1}, f(x_{n-1}))\}$$

E.g., $f(x) \equiv \{(0,1), (1,3), (2,7), (3,19)\}.$

Representation of Polynomials

Definition

The coefficient representation (CR) of a polynomial the vector of coefficients. E.g., (1, 3, -2, 1) is the coefficient representation of

$$f(x) = 1 + 3x - 2x^2 + x^3$$

Definition

The *point-value representation* (PVR) of a polynomial: for *n* distinct points x_0, \ldots, x_{n-1} the PVR of *f* is

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_{n-1}, f(x_{n-1}))\}$$

E.g., $f(x) \equiv \{(0,1), (1,3), (2,7), (3,19)\}.$

Lemma

Specifying the value of a function at n distinct points uniquely specifies a degree n - 1 polynomial that goes through those points.

First attempt: Let x_0, \ldots, x_{n-1} be distinct and suppose

$$A(x) \equiv \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$$

$$B(x) \equiv \{(x_0, z_0), (x_1, z_1), \dots, (x_{n-1}, z_{n-1})\}$$

First attempt: Let x_0, \ldots, x_{n-1} be distinct and suppose

$$A(x) \equiv \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$$

$$B(x) \equiv \{(x_0, z_0), (x_1, z_1), \dots, (x_{n-1}, z_{n-1})\}$$

Then surely,

$$C(x) \equiv \{(x_0, y_0 z_0), (x_1, y_1 z_1), \dots, (x_{n-1}, y_{n-1} z_{n-1})\}$$

First attempt: Let x_0, \ldots, x_{n-1} be distinct and suppose

$$A(x) \equiv \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$$

$$B(x) \equiv \{(x_0, z_0), (x_1, z_1), \dots, (x_{n-1}, z_{n-1})\}$$

Then surely,

$$C(x) \equiv \{(x_0, y_0 z_0), (x_1, y_1 z_1), \dots, (x_{n-1}, y_{n-1} z_{n-1})\}$$

▶ Issue: While $C(x_i) = y_i z_i$, C is a degree 2n - 2 polynomial and we need 2n - 1 distinct points to specify it.

First attempt: Let x_0, \ldots, x_{n-1} be distinct and suppose

$$A(x) \equiv \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$$

$$B(x) \equiv \{(x_0, z_0), (x_1, z_1), \dots, (x_{n-1}, z_{n-1})\}$$

Then surely,

$$C(x) \equiv \{(x_0, y_0 z_0), (x_1, y_1 z_1), \dots, (x_{n-1}, y_{n-1} z_{n-1})\}$$

- ▶ Issue: While $C(x_i) = y_i z_i$, C is a degree 2n 2 polynomial and we need 2n 1 distinct points to specify it.
- Fix: Assume A and B are specified on at least 2n 1 distinct points.

First attempt: Let x_0, \ldots, x_{n-1} be distinct and suppose

$$A(x) \equiv \{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$$

$$B(x) \equiv \{(x_0, z_0), (x_1, z_1), \dots, (x_{n-1}, z_{n-1})\}$$

Then surely,

$$C(x) \equiv \{(x_0, y_0 z_0), (x_1, y_1 z_1), \dots, (x_{n-1}, y_{n-1} z_{n-1})\}$$

- ▶ Issue: While $C(x_i) = y_i z_i$, C is a degree 2n 2 polynomial and we need 2n 1 distinct points to specify it.
- Fix: Assume A and B are specified on at least 2n 1 distinct points.
- Can compute PVR of C is Θ(n) time. But what about coefficient representation?

• Input: Coefficient representation of A(x) and B(x)

• Input: Coefficient representation of A(x) and B(x)

Step 1: Transform into PVR by evaluating on at least 2n - 1 points

- Input: Coefficient representation of A(x) and B(x)
- Step 1: Transform into PVR by evaluating on at least 2n 1 points
- Step 2: Multiply polynomials to get C(x) in PVR

- Input: Coefficient representation of A(x) and B(x)
- Step 1: Transform into PVR by evaluating on at least 2n 1 points
- Step 2: Multiply polynomials to get C(x) in PVR
- Step 3: Transform PVR of C(x) back into CR.

- Input: Coefficient representation of A(x) and B(x)
- Step 1: Transform into PVR by evaluating on at least 2n 1 points
- Step 2: Multiply polynomials to get C(x) in PVR
- Step 3: Transform PVR of C(x) back into CR.

Naive implementation of step 1 takes

- Input: Coefficient representation of A(x) and B(x)
- Step 1: Transform into PVR by evaluating on at least 2n 1 points
- Step 2: Multiply polynomials to get C(x) in PVR
- Step 3: Transform PVR of C(x) back into CR.

Naive implementation of step 1 takes $O(n^2)$ time.

- Input: Coefficient representation of A(x) and B(x)
- Step 1: Transform into PVR by evaluating on at least 2n 1 points
- Step 2: Multiply polynomials to get C(x) in PVR
- Step 3: Transform PVR of C(x) back into CR.

Naive implementation of step 1 takes $O(n^2)$ time. We'll do steps 1 and 3 in $O(n \log n)$ time.

- Input: Coefficient representation of A(x) and B(x)
- Step 1: Transform into PVR by evaluating on at least 2n 1 points
- Step 2: Multiply polynomials to get C(x) in PVR
- Step 3: Transform PVR of C(x) back into CR.

Naive implementation of step 1 takes $O(n^2)$ time. We'll do steps 1 and 3 in $O(n \log n)$ time.

Important: We can choose any distinct points for the PVR. Let's use the complex roots of unity...

Complex Roots of Unity

Definition

The *n*-th roots of unity are the complex solutions to the equation $x^n = 1$, i.e.,

$$e^{2\pi ik/n} = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}$$
 $k = 0, ..., n-1.$

Let $\omega_n = e^{2\pi i/n}$.

Complex Roots of Unity

Definition

The *n*-th roots of unity are the complex solutions to the equation $x^n = 1$, i.e.,

$$e^{2\pi ik/n} = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}$$
 $k = 0, ..., n-1.$

Let $\omega_n = e^{2\pi i/n}$.

Lemma (Halving Lemma)

The squares of the 2n-th roots of unity are two copies of the n-th roots of unity:

$$\{(\omega_{2n}^{0})^{2},\ldots,(\omega_{2n}^{2n-1})^{2}\}=\{\omega_{n}^{0},\ldots,\omega_{n}^{n-1}\}\cup\{\omega_{n}^{0},\ldots,\omega_{n}^{n-1}\}$$

Complex Roots of Unity

Definition

The *n*-th roots of unity are the complex solutions to the equation $x^n = 1$, i.e.,

$$e^{2\pi ik/n} = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}$$
 $k = 0, ..., n-1$

Let $\omega_n = e^{2\pi i/n}$.

Lemma (Halving Lemma)

The squares of the 2n-th roots of unity are two copies of the n-th roots of unity:

$$\{(\omega_{2n}^{0})^{2},\ldots,(\omega_{2n}^{2n-1})^{2}\}=\{\omega_{n}^{0},\ldots,\omega_{n}^{n-1}\}\cup\{\omega_{n}^{0},\ldots,\omega_{n}^{n-1}\}$$

Proof.

Follows since $(\omega_{2n}^r)^2 = e^{2r \cdot 2\pi i/(2n)} = e^{r \cdot 2\pi i/n} = \omega_n^r$ and $(\omega_{2n}^{r+n})^2 = \omega_n^r$. \Box

Write degree n - 1 polynomial to be evaluated in terms of two degree n/2 - 1 polynomials:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1}$$

Write degree n - 1 polynomial to be evaluated in terms of two degree n/2 - 1 polynomials:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

= $(a_0 + a_2 x^2 + \dots + a_{n-2} x^{n-2})$
 $+ x(a_1 + a_3 x^2 + \dots + a_{n-1} x^{n-2})$

Write degree n - 1 polynomial to be evaluated in terms of two degree n/2 - 1 polynomials:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

= $(a_0 + a_2 x^2 + \dots + a_{n-2} x^{n-2})$
 $+ x(a_1 + a_3 x^2 + \dots + a_{n-1} x^{n-2})$
= $A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$

Write degree n - 1 polynomial to be evaluated in terms of two degree n/2 - 1 polynomials:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

= $(a_0 + a_2 x^2 + \dots + a_{n-2} x^{n-2})$
 $+ x(a_1 + a_3 x^2 + \dots + a_{n-1} x^{n-2})$
= $A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$

To evaluate A at 2n-th roots of unity, we evaluate A_{even} and A_{odd} at x² for

$$x \in \{\omega_{2n}^0, \omega_{2n}^1, \dots, \omega_{2n}^{2n-1}\}$$

Write degree n - 1 polynomial to be evaluated in terms of two degree n/2 - 1 polynomials:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

= $(a_0 + a_2 x^2 + \dots + a_{n-2} x^{n-2})$
 $+ x(a_1 + a_3 x^2 + \dots + a_{n-1} x^{n-2})$
= $A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$

To evaluate A at 2n-th roots of unity, we evaluate A_{even} and A_{odd} at x² for

$$x \in \{\omega_{2n}^0, \omega_{2n}^1, \dots, \omega_{2n}^{2n-1}\}$$

▶ If T(n) is time to evaluate degree n-1 poly at 2n-th roots of unity,

$$T(1) = \Theta(1)$$
 and $T(n) = 2T(n/2) + \Theta(n)$

Write degree n - 1 polynomial to be evaluated in terms of two degree n/2 - 1 polynomials:

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

= $(a_0 + a_2 x^2 + \dots + a_{n-2} x^{n-2})$
 $+ x(a_1 + a_3 x^2 + \dots + a_{n-1} x^{n-2})$
= $A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$

To evaluate A at 2n-th roots of unity, we evaluate A_{even} and A_{odd} at x² for

$$x \in \{\omega_{2n}^0, \omega_{2n}^1, \dots, \omega_{2n}^{2n-1}\}$$

▶ If T(n) is time to evaluate degree n-1 poly at 2n-th roots of unity,

$$\mathcal{T}(1) = \Theta(1)$$
 and $\mathcal{T}(n) = 2\mathcal{T}(n/2) + \Theta(n)$

• Use Master Theorem to conclude that $T(n) = \Theta(n \log n)$.

Back to Framework...

- Input: Coefficient representation of A(x) and B(x)
- Step 1: Transform into PVR by evaluating at at least 2n 1 points
- Step 2: Multiply polynomials to get C(x) in PVR
- Step 3: Transform PVR of C(x) back into CR.

Back to Framework...

- Input: Coefficient representation of A(x) and B(x)
- Step 1: Transform into PVR by evaluating at at least 2n 1 points
- Step 2: Multiply polynomials to get C(x) in PVR
- Step 3: Transform PVR of C(x) back into CR.

We now know:

- 1. Step 1 can be done in $O(n \log n)$ time.
- 2. Step 2 can be done in O(n) time.

Back to Framework...

- Input: Coefficient representation of A(x) and B(x)
- Step 1: Transform into PVR by evaluating at at least 2n 1 points
- Step 2: Multiply polynomials to get C(x) in PVR
- Step 3: Transform PVR of C(x) back into CR.

We now know:

- 1. Step 1 can be done in $O(n \log n)$ time.
- 2. Step 2 can be done in O(n) time.

It turns out that Step 3 is almost identical to Step 1!

Polynomial Evaluation and Interpolation

Step 1 Revisited: Transform $(a_0, a_1, \ldots, a_{n-1})$ to

 $\{(\omega_{2n}^0, y_0), (\omega_{2n}^1, y_1), \dots, (\omega_{2n}^{2n-1}, y_{2n-1})\}$

where $y_i = A(\omega_{2n}^i)$.

Polynomial Evaluation and Interpolation

Step 1 Revisited: Transform $(a_0, a_1, \ldots, a_{n-1})$ to

$$\{(\omega_{2n}^0, y_0), (\omega_{2n}^1, y_1), \dots, (\omega_{2n}^{2n-1}, y_{2n-1})\}$$

where $y_i = A(\omega_{2n}^i)$. In other words, we need to evaluate:

where $a_i = 0$ for $i \ge n - 1$ and

$$V_n = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_{2n} & \omega_{2n}^2 & \omega_{2n}^3 & \dots & \omega_{2n}^{2n-1} \\ 1 & \omega_{2n}^2 & \omega_{2n}^4 & \omega_{2n}^6 & \dots & \omega_{2n}^{2(2n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_{2n}^{2n-1} & \omega_{2n}^{2(2n-1)} & \omega_{2n}^{3(2n-1)} & \dots & \omega_{2n}^{(2n-1)(2n-1)} \end{pmatrix}$$

Polynomial Evaluation and Interpolation Step 3 as inverse of Step 1: Need to transform

 $\{(\omega_{2n}^0, y_0), (\omega_{2n}^1, y_1), \dots, (\omega_{2n}^{2n-1}, y_{2n-1})\}$

into $(a_0, a_1, ..., a_{2n-1})$ where $y_i = A(\omega_{2n}^i)$.

Polynomial Evaluation and Interpolation

Step 3 as inverse of Step 1: Need to transform

$$\{(\omega_{2n}^0, y_0), (\omega_{2n}^1, y_1), \dots, (\omega_{2n}^{2n-1}, y_{2n-1})\}$$

into $(a_0, a_1, \ldots, a_{2n-1})$ where $y_i = A(\omega_{2n}^i)$. In other words, we need

$$\begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{2n-1} \end{pmatrix} = V_{n}^{-1} \cdot \begin{pmatrix} y_{0} \\ y_{1} \\ y_{2} \\ \vdots \\ y_{2n-1} \end{pmatrix}$$

Polynomial Evaluation and Interpolation

Step 3 as inverse of Step 1: Need to transform

$$\{(\omega_{2n}^0, y_0), (\omega_{2n}^1, y_1), \dots, (\omega_{2n}^{2n-1}, y_{2n-1})\}$$

into $(a_0, a_1, \ldots, a_{2n-1})$ where $y_i = A(\omega_{2n}^i)$. In other words, we need

$$\begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{2n-1} \end{pmatrix} = V_{n}^{-1} \cdot \begin{pmatrix} y_{0} \\ y_{1} \\ y_{2} \\ \vdots \\ y_{2n-1} \end{pmatrix}$$

The inverse of V_n is just V_n with ω_{2n} replaced by ω_{2n}^{-1}

$$V_n^{-1} = \frac{1}{2n} \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & \omega_{2n}^{-1} & \omega_{2n}^{-2} & \omega_{2n}^{-3} & \dots & \omega_{2n}^{-(2n-1)} \\ 1 & \omega_{2n}^{-2} & \omega_{2n}^{-4} & \omega_{2n}^{-6} & \dots & \omega_{2n}^{-2(2n-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega_{2n}^{-(2n-1)} & \omega_{2n}^{-2(2n-1)} & \omega_{2n}^{-3(2n-1)} & \dots & \omega_{2n}^{-(2n-1)(2n-1)} \end{pmatrix}$$

Need to compute:

$$a_k = rac{\hat{A}(\omega_{2n}^{-k})}{2n}$$
 for $k=0,\ldots,2n-1$

where $\hat{A}(x) = y_0 + y_1 x + \ldots + y_{2n-1} x^{2n-1}$

Need to compute:

$$a_k = rac{\hat{A}(\omega_{2n}^{-k})}{2n} \quad ext{for} \ k = 0, \dots, 2n-1$$

where $\hat{A}(x) = y_0 + y_1 x + ... + y_{2n-1} x^{2n-1}$ Rewrite $\hat{A}(x) = \hat{A}_{even}(x^2) + x \hat{A}_{odd}(x^2)$

Need to compute:

$$a_k = rac{\hat{A}(\omega_{2n}^{-k})}{2n} \quad ext{for} \ k = 0, \dots, 2n-1$$

$$\{\omega_{2n}^{0}, \omega_{2n}^{-1}, \dots, \omega_{2n}^{-(2n-1)}\}$$

it suffices to evaluate $\hat{A}_{\rm even}$ and $\hat{A}_{\rm odd}$ on

$$\{\omega_n^0, \omega_n^{-1}, \ldots, \omega_n^{-(n-1)}\}\$$

because Halving Lemma also applies to ω_{2n}^{-1} .

Need to compute:

$$a_k = rac{\hat{A}(\omega_{2n}^{-k})}{2n} \quad ext{for} \ k = 0, \dots, 2n-1$$

$$\{\omega_{2n}^0, \omega_{2n}^{-1}, \dots, \omega_{2n}^{-(2n-1)}\}$$

it suffices to evaluate $\hat{A}_{\rm even}$ and $\hat{A}_{\rm odd}$ on

$$\{\omega_n^0, \omega_n^{-1}, \ldots, \omega_n^{-(n-1)}\}\$$

because Halving Lemma also applies to ω_{2n}^{-1} .

Step 3 can also be done in O(n log n) steps.

Slide Left Blank