
CMPSCI 611: Advanced Algorithms
Lecture 3: Fast Polynomial Multiplication

Andrew McGregor

Last Compiled: February 8, 2024

1/12



Slide Left Blank

2/12



Polynomial Multiplication

Problem: Suppose A(x) and B(x) are polynomials of degree n − 1:

A(x) =a0 + a1x + a2x
2 + . . .+ an−1x

n−1

B(x) =b0 + b1x + b2x
2 + . . .+ bn−1x

n−1

Compute C (x) = A(x)B(x). We’ll assume n is a power of 2.

How long does naive algorithm take? O(n2)

3/12



Polynomial Multiplication

Problem: Suppose A(x) and B(x) are polynomials of degree n − 1:

A(x) =a0 + a1x + a2x
2 + . . .+ an−1x

n−1

B(x) =b0 + b1x + b2x
2 + . . .+ bn−1x

n−1

Compute C (x) = A(x)B(x). We’ll assume n is a power of 2.

How long does naive algorithm take?

O(n2)

3/12



Polynomial Multiplication

Problem: Suppose A(x) and B(x) are polynomials of degree n − 1:

A(x) =a0 + a1x + a2x
2 + . . .+ an−1x

n−1

B(x) =b0 + b1x + b2x
2 + . . .+ bn−1x

n−1

Compute C (x) = A(x)B(x). We’ll assume n is a power of 2.

How long does naive algorithm take? O(n2)

3/12



Representation of Polynomials

Definition
The coefficient representation (CR) of a polynomial the vector of
coefficients. E.g., (1, 3,−2, 1) is the coefficient representation of

f (x) = 1 + 3x − 2x2 + x3

Definition
The point-value representation (PVR) of a polynomial: for n distinct
points x0, . . . , xn−1 the PVR of f is

{(x0, f (x0)), (x1, f (x1)), . . . , (xn−1, f (xn−1))}

E.g., f (x) ≡ {(0, 1), (1, 3), (2, 7), (3, 19)}.

Lemma
Specifying the value of a function at n distinct points uniquely specifies a
degree n − 1 polynomial that goes through those points.

4/12



Representation of Polynomials

Definition
The coefficient representation (CR) of a polynomial the vector of
coefficients. E.g., (1, 3,−2, 1) is the coefficient representation of

f (x) = 1 + 3x − 2x2 + x3

Definition
The point-value representation (PVR) of a polynomial: for n distinct
points x0, . . . , xn−1 the PVR of f is

{(x0, f (x0)), (x1, f (x1)), . . . , (xn−1, f (xn−1))}

E.g., f (x) ≡ {(0, 1), (1, 3), (2, 7), (3, 19)}.

Lemma
Specifying the value of a function at n distinct points uniquely specifies a
degree n − 1 polynomial that goes through those points.

4/12



Representation of Polynomials

Definition
The coefficient representation (CR) of a polynomial the vector of
coefficients. E.g., (1, 3,−2, 1) is the coefficient representation of

f (x) = 1 + 3x − 2x2 + x3

Definition
The point-value representation (PVR) of a polynomial: for n distinct
points x0, . . . , xn−1 the PVR of f is

{(x0, f (x0)), (x1, f (x1)), . . . , (xn−1, f (xn−1))}

E.g., f (x) ≡ {(0, 1), (1, 3), (2, 7), (3, 19)}.

Lemma
Specifying the value of a function at n distinct points uniquely specifies a
degree n − 1 polynomial that goes through those points.

4/12



Polynomial Arithmetic in Point-Value Representation

I First attempt: Let x0, . . . , xn−1 be distinct and suppose

A(x) ≡{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}
B(x) ≡{(x0, z0), (x1, z1), . . . , (xn−1, zn−1)}

I Then surely,

C (x) ≡ {(x0, y0z0), (x1, y1z1), . . . , (xn−1, yn−1zn−1)}

I Issue: While C (xi ) = yizi , C is a degree 2n − 2 polynomial and we
need 2n − 1 distinct points to specify it.

I Fix: Assume A and B are specified on at least 2n− 1 distinct points.

I Can compute PVR of C is Θ(n) time. But what about coefficient
representation?

5/12



Polynomial Arithmetic in Point-Value Representation

I First attempt: Let x0, . . . , xn−1 be distinct and suppose

A(x) ≡{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}
B(x) ≡{(x0, z0), (x1, z1), . . . , (xn−1, zn−1)}

I Then surely,

C (x) ≡ {(x0, y0z0), (x1, y1z1), . . . , (xn−1, yn−1zn−1)}

I Issue: While C (xi ) = yizi , C is a degree 2n − 2 polynomial and we
need 2n − 1 distinct points to specify it.

I Fix: Assume A and B are specified on at least 2n− 1 distinct points.

I Can compute PVR of C is Θ(n) time. But what about coefficient
representation?

5/12



Polynomial Arithmetic in Point-Value Representation

I First attempt: Let x0, . . . , xn−1 be distinct and suppose

A(x) ≡{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}
B(x) ≡{(x0, z0), (x1, z1), . . . , (xn−1, zn−1)}

I Then surely,

C (x) ≡ {(x0, y0z0), (x1, y1z1), . . . , (xn−1, yn−1zn−1)}

I Issue: While C (xi ) = yizi , C is a degree 2n − 2 polynomial and we
need 2n − 1 distinct points to specify it.

I Fix: Assume A and B are specified on at least 2n− 1 distinct points.

I Can compute PVR of C is Θ(n) time. But what about coefficient
representation?

5/12



Polynomial Arithmetic in Point-Value Representation

I First attempt: Let x0, . . . , xn−1 be distinct and suppose

A(x) ≡{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}
B(x) ≡{(x0, z0), (x1, z1), . . . , (xn−1, zn−1)}

I Then surely,

C (x) ≡ {(x0, y0z0), (x1, y1z1), . . . , (xn−1, yn−1zn−1)}

I Issue: While C (xi ) = yizi , C is a degree 2n − 2 polynomial and we
need 2n − 1 distinct points to specify it.

I Fix: Assume A and B are specified on at least 2n− 1 distinct points.

I Can compute PVR of C is Θ(n) time. But what about coefficient
representation?

5/12



Polynomial Arithmetic in Point-Value Representation

I First attempt: Let x0, . . . , xn−1 be distinct and suppose

A(x) ≡{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}
B(x) ≡{(x0, z0), (x1, z1), . . . , (xn−1, zn−1)}

I Then surely,

C (x) ≡ {(x0, y0z0), (x1, y1z1), . . . , (xn−1, yn−1zn−1)}

I Issue: While C (xi ) = yizi , C is a degree 2n − 2 polynomial and we
need 2n − 1 distinct points to specify it.

I Fix: Assume A and B are specified on at least 2n− 1 distinct points.

I Can compute PVR of C is Θ(n) time. But what about coefficient
representation?

5/12



Framework for Fast Polynomial Multiplication

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating on at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

Naive implementation of step 1 takes O(n2) time. We’ll do steps 1 and 3
in O(n log n) time.

Important: We can choose any distinct points for the PVR. Let’s use the
complex roots of unity. . .

6/12



Framework for Fast Polynomial Multiplication

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating on at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

Naive implementation of step 1 takes O(n2) time. We’ll do steps 1 and 3
in O(n log n) time.

Important: We can choose any distinct points for the PVR. Let’s use the
complex roots of unity. . .

6/12



Framework for Fast Polynomial Multiplication

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating on at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

Naive implementation of step 1 takes O(n2) time. We’ll do steps 1 and 3
in O(n log n) time.

Important: We can choose any distinct points for the PVR. Let’s use the
complex roots of unity. . .

6/12



Framework for Fast Polynomial Multiplication

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating on at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

Naive implementation of step 1 takes O(n2) time. We’ll do steps 1 and 3
in O(n log n) time.

Important: We can choose any distinct points for the PVR. Let’s use the
complex roots of unity. . .

6/12



Framework for Fast Polynomial Multiplication

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating on at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

Naive implementation of step 1 takes

O(n2) time. We’ll do steps 1 and 3
in O(n log n) time.

Important: We can choose any distinct points for the PVR. Let’s use the
complex roots of unity. . .

6/12



Framework for Fast Polynomial Multiplication

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating on at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

Naive implementation of step 1 takes O(n2) time.

We’ll do steps 1 and 3
in O(n log n) time.

Important: We can choose any distinct points for the PVR. Let’s use the
complex roots of unity. . .

6/12



Framework for Fast Polynomial Multiplication

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating on at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

Naive implementation of step 1 takes O(n2) time. We’ll do steps 1 and 3
in O(n log n) time.

Important: We can choose any distinct points for the PVR. Let’s use the
complex roots of unity. . .

6/12



Framework for Fast Polynomial Multiplication

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating on at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

Naive implementation of step 1 takes O(n2) time. We’ll do steps 1 and 3
in O(n log n) time.

Important: We can choose any distinct points for the PVR. Let’s use the
complex roots of unity. . .

6/12



Complex Roots of Unity

Definition
The n-th roots of unity are the complex solutions to the equation xn = 1,
i.e.,

e2πik/n = cos
2πk

n
+ i sin

2πk

n
k = 0, . . . , n − 1.

Let ωn = e2πi/n.

Lemma (Halving Lemma)
The squares of the 2n-th roots of unity are two copies of the n-th roots
of unity:

{(ω0
2n)2, . . . , (ω2n−1

2n )2} = {ω0
n, . . . , ω

n−1
n } ∪ {ω0

n, . . . , ω
n−1
n }

Proof.
Follows since (ωr

2n)2 = e2r ·2πi/(2n) = er ·2πi/n = ωr
n and (ωr+n

2n )2 = ωr
n.

7/12



Complex Roots of Unity

Definition
The n-th roots of unity are the complex solutions to the equation xn = 1,
i.e.,

e2πik/n = cos
2πk

n
+ i sin

2πk

n
k = 0, . . . , n − 1.

Let ωn = e2πi/n.

Lemma (Halving Lemma)
The squares of the 2n-th roots of unity are two copies of the n-th roots
of unity:

{(ω0
2n)2, . . . , (ω2n−1

2n )2} = {ω0
n, . . . , ω

n−1
n } ∪ {ω0

n, . . . , ω
n−1
n }

Proof.
Follows since (ωr

2n)2 = e2r ·2πi/(2n) = er ·2πi/n = ωr
n and (ωr+n

2n )2 = ωr
n.

7/12



Complex Roots of Unity

Definition
The n-th roots of unity are the complex solutions to the equation xn = 1,
i.e.,

e2πik/n = cos
2πk

n
+ i sin

2πk

n
k = 0, . . . , n − 1.

Let ωn = e2πi/n.

Lemma (Halving Lemma)
The squares of the 2n-th roots of unity are two copies of the n-th roots
of unity:

{(ω0
2n)2, . . . , (ω2n−1

2n )2} = {ω0
n, . . . , ω

n−1
n } ∪ {ω0

n, . . . , ω
n−1
n }

Proof.
Follows since (ωr

2n)2 = e2r ·2πi/(2n) = er ·2πi/n = ωr
n and (ωr+n

2n )2 = ωr
n.

7/12



Divide and Conquer for Polynomial Evaluation

I Write degree n − 1 polynomial to be evaluated in terms of two
degree n/2− 1 polynomials:

A(x) = a0 + a1x + a2x
2 + . . .+ an−1x

n−1

= (a0 + a2x
2 + . . .+ an−2x

n−2)

+x(a1 + a3x
2 + . . .+ an−1x

n−2)

= Aeven(x2) + xAodd(x2)

I To evaluate A at 2n-th roots of unity, we evaluate Aeven and Aodd at
x2 for

x ∈ {ω0
2n, ω

1
2n, . . . , ω

2n−1
2n }

I If T (n) is time to evaluate degree n − 1 poly at 2n-th roots of unity,

T (1) = Θ(1) and T (n) = 2T (n/2) + Θ(n)

I Use Master Theorem to conclude that T (n) = Θ(n log n).

8/12



Divide and Conquer for Polynomial Evaluation

I Write degree n − 1 polynomial to be evaluated in terms of two
degree n/2− 1 polynomials:

A(x) = a0 + a1x + a2x
2 + . . .+ an−1x

n−1

= (a0 + a2x
2 + . . .+ an−2x

n−2)

+x(a1 + a3x
2 + . . .+ an−1x

n−2)

= Aeven(x2) + xAodd(x2)

I To evaluate A at 2n-th roots of unity, we evaluate Aeven and Aodd at
x2 for

x ∈ {ω0
2n, ω

1
2n, . . . , ω

2n−1
2n }

I If T (n) is time to evaluate degree n − 1 poly at 2n-th roots of unity,

T (1) = Θ(1) and T (n) = 2T (n/2) + Θ(n)

I Use Master Theorem to conclude that T (n) = Θ(n log n).

8/12



Divide and Conquer for Polynomial Evaluation

I Write degree n − 1 polynomial to be evaluated in terms of two
degree n/2− 1 polynomials:

A(x) = a0 + a1x + a2x
2 + . . .+ an−1x

n−1

= (a0 + a2x
2 + . . .+ an−2x

n−2)

+x(a1 + a3x
2 + . . .+ an−1x

n−2)

= Aeven(x2) + xAodd(x2)

I To evaluate A at 2n-th roots of unity, we evaluate Aeven and Aodd at
x2 for

x ∈ {ω0
2n, ω

1
2n, . . . , ω

2n−1
2n }

I If T (n) is time to evaluate degree n − 1 poly at 2n-th roots of unity,

T (1) = Θ(1) and T (n) = 2T (n/2) + Θ(n)

I Use Master Theorem to conclude that T (n) = Θ(n log n).

8/12



Divide and Conquer for Polynomial Evaluation

I Write degree n − 1 polynomial to be evaluated in terms of two
degree n/2− 1 polynomials:

A(x) = a0 + a1x + a2x
2 + . . .+ an−1x

n−1

= (a0 + a2x
2 + . . .+ an−2x

n−2)

+x(a1 + a3x
2 + . . .+ an−1x

n−2)

= Aeven(x2) + xAodd(x2)

I To evaluate A at 2n-th roots of unity, we evaluate Aeven and Aodd at
x2 for

x ∈ {ω0
2n, ω

1
2n, . . . , ω

2n−1
2n }

I If T (n) is time to evaluate degree n − 1 poly at 2n-th roots of unity,

T (1) = Θ(1) and T (n) = 2T (n/2) + Θ(n)

I Use Master Theorem to conclude that T (n) = Θ(n log n).

8/12



Divide and Conquer for Polynomial Evaluation

I Write degree n − 1 polynomial to be evaluated in terms of two
degree n/2− 1 polynomials:

A(x) = a0 + a1x + a2x
2 + . . .+ an−1x

n−1

= (a0 + a2x
2 + . . .+ an−2x

n−2)

+x(a1 + a3x
2 + . . .+ an−1x

n−2)

= Aeven(x2) + xAodd(x2)

I To evaluate A at 2n-th roots of unity, we evaluate Aeven and Aodd at
x2 for

x ∈ {ω0
2n, ω

1
2n, . . . , ω

2n−1
2n }

I If T (n) is time to evaluate degree n − 1 poly at 2n-th roots of unity,

T (1) = Θ(1) and T (n) = 2T (n/2) + Θ(n)

I Use Master Theorem to conclude that T (n) = Θ(n log n).

8/12



Divide and Conquer for Polynomial Evaluation

I Write degree n − 1 polynomial to be evaluated in terms of two
degree n/2− 1 polynomials:

A(x) = a0 + a1x + a2x
2 + . . .+ an−1x

n−1

= (a0 + a2x
2 + . . .+ an−2x

n−2)

+x(a1 + a3x
2 + . . .+ an−1x

n−2)

= Aeven(x2) + xAodd(x2)

I To evaluate A at 2n-th roots of unity, we evaluate Aeven and Aodd at
x2 for

x ∈ {ω0
2n, ω

1
2n, . . . , ω

2n−1
2n }

I If T (n) is time to evaluate degree n − 1 poly at 2n-th roots of unity,

T (1) = Θ(1) and T (n) = 2T (n/2) + Θ(n)

I Use Master Theorem to conclude that T (n) = Θ(n log n).

8/12



Back to Framework. . .

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating at at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

We now know:

1. Step 1 can be done in O(n log n) time.

2. Step 2 can be done in O(n) time.

It turns out that Step 3 is almost identical to Step 1!

9/12



Back to Framework. . .

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating at at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

We now know:

1. Step 1 can be done in O(n log n) time.

2. Step 2 can be done in O(n) time.

It turns out that Step 3 is almost identical to Step 1!

9/12



Back to Framework. . .

I Input: Coefficient representation of A(x) and B(x)

I Step 1: Transform into PVR by evaluating at at least 2n − 1 points

I Step 2: Multiply polynomials to get C (x) in PVR

I Step 3: Transform PVR of C (x) back into CR.

We now know:

1. Step 1 can be done in O(n log n) time.

2. Step 2 can be done in O(n) time.

It turns out that Step 3 is almost identical to Step 1!

9/12



Polynomial Evaluation and Interpolation
Step 1 Revisited: Transform (a0, a1, . . . , an−1) to

{(ω0
2n, y0), (ω1

2n, y1), . . . , (ω2n−1
2n , y2n−1)}

where yi = A(ωi
2n).

In other words, we need to evaluate:

Vn ·


a0
a1
a2
...

a2n−1

 =


y0
y1
y2
...

y2n−1


where ai = 0 for i ≥ n − 1 and

Vn =


1 1 1 1 . . . 1
1 ω2n ω2

2n ω3
2n . . . ω2n−1

2n

1 ω2
2n ω4

2n ω6
2n . . . ω

2(2n−1)
2n

...
...

...
...

...

1 ω2n−1
2n ω

2(2n−1)
2n ω

3(2n−1)
2n . . . ω

(2n−1)(2n−1)
2n



10/12



Polynomial Evaluation and Interpolation
Step 1 Revisited: Transform (a0, a1, . . . , an−1) to

{(ω0
2n, y0), (ω1

2n, y1), . . . , (ω2n−1
2n , y2n−1)}

where yi = A(ωi
2n). In other words, we need to evaluate:

Vn ·


a0
a1
a2
...

a2n−1

 =


y0
y1
y2
...

y2n−1


where ai = 0 for i ≥ n − 1 and

Vn =


1 1 1 1 . . . 1
1 ω2n ω2

2n ω3
2n . . . ω2n−1

2n

1 ω2
2n ω4

2n ω6
2n . . . ω

2(2n−1)
2n

...
...

...
...

...

1 ω2n−1
2n ω

2(2n−1)
2n ω

3(2n−1)
2n . . . ω

(2n−1)(2n−1)
2n


10/12



Polynomial Evaluation and Interpolation
Step 3 as inverse of Step 1: Need to transform

{(ω0
2n, y0), (ω1

2n, y1), . . . , (ω2n−1
2n , y2n−1)}

into (a0, a1, . . . , a2n−1) where yi = A(ωi
2n).

In other words, we need
a0
a1
a2
...

a2n−1

 = V−1
n ·


y0
y1
y2
...

y2n−1


The inverse of Vn is just Vn with ω2n replaced by ω−1

2n

V−1
n =

1

2n


1 1 1 1 . . . 1

1 ω−1
2n ω−2

2n ω−3
2n . . . ω

−(2n−1)
2n

1 ω−2
2n ω−4

2n ω−6
2n . . . ω

−2(2n−1)
2n

...
...

...
...

...

1 ω
−(2n−1)
2n ω

−2(2n−1)
2n ω

−3(2n−1)
2n . . . ω

−(2n−1)(2n−1)
2n



11/12



Polynomial Evaluation and Interpolation
Step 3 as inverse of Step 1: Need to transform

{(ω0
2n, y0), (ω1

2n, y1), . . . , (ω2n−1
2n , y2n−1)}

into (a0, a1, . . . , a2n−1) where yi = A(ωi
2n). In other words, we need

a0
a1
a2
...

a2n−1

 = V−1
n ·


y0
y1
y2
...

y2n−1



The inverse of Vn is just Vn with ω2n replaced by ω−1
2n

V−1
n =

1

2n


1 1 1 1 . . . 1

1 ω−1
2n ω−2

2n ω−3
2n . . . ω

−(2n−1)
2n

1 ω−2
2n ω−4

2n ω−6
2n . . . ω

−2(2n−1)
2n

...
...

...
...

...

1 ω
−(2n−1)
2n ω

−2(2n−1)
2n ω

−3(2n−1)
2n . . . ω

−(2n−1)(2n−1)
2n



11/12



Polynomial Evaluation and Interpolation
Step 3 as inverse of Step 1: Need to transform

{(ω0
2n, y0), (ω1

2n, y1), . . . , (ω2n−1
2n , y2n−1)}

into (a0, a1, . . . , a2n−1) where yi = A(ωi
2n). In other words, we need

a0
a1
a2
...

a2n−1

 = V−1
n ·


y0
y1
y2
...

y2n−1


The inverse of Vn is just Vn with ω2n replaced by ω−1

2n

V−1
n =

1

2n


1 1 1 1 . . . 1

1 ω−1
2n ω−2

2n ω−3
2n . . . ω

−(2n−1)
2n

1 ω−2
2n ω−4

2n ω−6
2n . . . ω

−2(2n−1)
2n

...
...

...
...

...

1 ω
−(2n−1)
2n ω

−2(2n−1)
2n ω

−3(2n−1)
2n . . . ω

−(2n−1)(2n−1)
2n


11/12



Solving Step 3 Outline

I Need to compute:

ak =
Â(ω−k

2n )

2n
for k = 0, . . . , 2n − 1

where Â(x) = y0 + y1x + . . .+ y2n−1x
2n−1

I Rewrite Â(x) = Âeven(x2) + xÂodd(x2)

I To evaluate Â on

{ω0
2n, ω

−1
2n , . . . , ω

−(2n−1)
2n }

it suffices to evaluate Âeven and Âodd on

{ω0
n, ω

−1
n , . . . , ω−(n−1)

n }

because Halving Lemma also applies to ω−1
2n .

I Step 3 can also be done in O(n log n) steps.

12/12



Solving Step 3 Outline

I Need to compute:

ak =
Â(ω−k

2n )

2n
for k = 0, . . . , 2n − 1

where Â(x) = y0 + y1x + . . .+ y2n−1x
2n−1

I Rewrite Â(x) = Âeven(x2) + xÂodd(x2)

I To evaluate Â on

{ω0
2n, ω

−1
2n , . . . , ω

−(2n−1)
2n }

it suffices to evaluate Âeven and Âodd on

{ω0
n, ω

−1
n , . . . , ω−(n−1)

n }

because Halving Lemma also applies to ω−1
2n .

I Step 3 can also be done in O(n log n) steps.

12/12



Solving Step 3 Outline

I Need to compute:

ak =
Â(ω−k

2n )

2n
for k = 0, . . . , 2n − 1

where Â(x) = y0 + y1x + . . .+ y2n−1x
2n−1

I Rewrite Â(x) = Âeven(x2) + xÂodd(x2)

I To evaluate Â on

{ω0
2n, ω

−1
2n , . . . , ω

−(2n−1)
2n }

it suffices to evaluate Âeven and Âodd on

{ω0
n, ω

−1
n , . . . , ω−(n−1)

n }

because Halving Lemma also applies to ω−1
2n .

I Step 3 can also be done in O(n log n) steps.

12/12



Solving Step 3 Outline

I Need to compute:

ak =
Â(ω−k

2n )

2n
for k = 0, . . . , 2n − 1

where Â(x) = y0 + y1x + . . .+ y2n−1x
2n−1

I Rewrite Â(x) = Âeven(x2) + xÂodd(x2)

I To evaluate Â on

{ω0
2n, ω

−1
2n , . . . , ω

−(2n−1)
2n }

it suffices to evaluate Âeven and Âodd on

{ω0
n, ω

−1
n , . . . , ω−(n−1)

n }

because Halving Lemma also applies to ω−1
2n .

I Step 3 can also be done in O(n log n) steps.

12/12



Solving Step 3 Outline

I Need to compute:

ak =
Â(ω−k

2n )

2n
for k = 0, . . . , 2n − 1

where Â(x) = y0 + y1x + . . .+ y2n−1x
2n−1

I Rewrite Â(x) = Âeven(x2) + xÂodd(x2)

I To evaluate Â on

{ω0
2n, ω

−1
2n , . . . , ω

−(2n−1)
2n }

it suffices to evaluate Âeven and Âodd on

{ω0
n, ω

−1
n , . . . , ω−(n−1)

n }

because Halving Lemma also applies to ω−1
2n .

I Step 3 can also be done in O(n log n) steps.

12/12



Slide Left Blank

13/12


