# CMPSCI 611: Advanced Algorithms <br> Lecture 3: Fast Polynomial Multiplication 

Andrew McGregor

Last Compiled: February 8, 2024

## Slide Left Blank

## Polynomial Multiplication

Problem: Suppose $A(x)$ and $B(x)$ are polynomials of degree $n-1$ :

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n-1} x^{n-1}
\end{aligned}
$$

Compute $C(x)=A(x) B(x)$. We'll assume $n$ is a power of 2 .

## Polynomial Multiplication

Problem: Suppose $A(x)$ and $B(x)$ are polynomials of degree $n-1$ :

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n-1} x^{n-1}
\end{aligned}
$$

Compute $C(x)=A(x) B(x)$. We'll assume $n$ is a power of 2 .
How long does naive algorithm take?

## Polynomial Multiplication

Problem: Suppose $A(x)$ and $B(x)$ are polynomials of degree $n-1$ :

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
& B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n-1} x^{n-1}
\end{aligned}
$$

Compute $C(x)=A(x) B(x)$. We'll assume $n$ is a power of 2 .
How long does naive algorithm take? $O\left(n^{2}\right)$

## Representation of Polynomials

Definition
The coefficient representation (CR) of a polynomial the vector of coefficients. E.g., (1, 3, -2, 1) is the coefficient representation of

$$
f(x)=1+3 x-2 x^{2}+x^{3}
$$

## Representation of Polynomials

## Definition

The coefficient representation (CR) of a polynomial the vector of coefficients. E.g., $(1,3,-2,1)$ is the coefficient representation of

$$
f(x)=1+3 x-2 x^{2}+x^{3}
$$

## Definition

The point-value representation (PVR) of a polynomial: for $n$ distinct points $x_{0}, \ldots, x_{n-1}$ the PVR of $f$ is

$$
\left\{\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n-1}, f\left(x_{n-1}\right)\right)\right\}
$$

E.g., $f(x) \equiv\{(0,1),(1,3),(2,7),(3,19)\}$.

## Representation of Polynomials

## Definition

The coefficient representation (CR) of a polynomial the vector of coefficients. E.g., (1,3, $-2,1$ ) is the coefficient representation of

$$
f(x)=1+3 x-2 x^{2}+x^{3}
$$

## Definition

The point-value representation (PVR) of a polynomial: for $n$ distinct points $x_{0}, \ldots, x_{n-1}$ the PVR of $f$ is

$$
\left\{\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n-1}, f\left(x_{n-1}\right)\right)\right\}
$$

E.g., $f(x) \equiv\{(0,1),(1,3),(2,7),(3,19)\}$.

Lemma
Specifying the value of a function at $n$ distinct points uniquely specifies a degree $n-1$ polynomial that goes through those points.

## Polynomial Arithmetic in Point-Value Representation

- First attempt: Let $x_{0}, \ldots, x_{n-1}$ be distinct and suppose

$$
\begin{aligned}
A(x) & \equiv\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\} \\
B(x) & \equiv\left\{\left(x_{0}, z_{0}\right),\left(x_{1}, z_{1}\right), \ldots,\left(x_{n-1}, z_{n-1}\right)\right\}
\end{aligned}
$$

## Polynomial Arithmetic in Point-Value Representation

- First attempt: Let $x_{0}, \ldots, x_{n-1}$ be distinct and suppose

$$
\begin{aligned}
& A(x) \equiv\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\} \\
& B(x) \equiv\left\{\left(x_{0}, z_{0}\right),\left(x_{1}, z_{1}\right), \ldots,\left(x_{n-1}, z_{n-1}\right)\right\}
\end{aligned}
$$

- Then surely,

$$
C(x) \equiv\left\{\left(x_{0}, y_{0} z_{0}\right),\left(x_{1}, y_{1} z_{1}\right), \ldots,\left(x_{n-1}, y_{n-1} z_{n-1}\right)\right\}
$$

## Polynomial Arithmetic in Point-Value Representation

- First attempt: Let $x_{0}, \ldots, x_{n-1}$ be distinct and suppose

$$
\begin{aligned}
& A(x) \equiv\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\} \\
& B(x) \equiv\left\{\left(x_{0}, z_{0}\right),\left(x_{1}, z_{1}\right), \ldots,\left(x_{n-1}, z_{n-1}\right)\right\}
\end{aligned}
$$

- Then surely,

$$
C(x) \equiv\left\{\left(x_{0}, y_{0} z_{0}\right),\left(x_{1}, y_{1} z_{1}\right), \ldots,\left(x_{n-1}, y_{n-1} z_{n-1}\right)\right\}
$$

- Issue: While $C\left(x_{i}\right)=y_{i} z_{i}, C$ is a degree $2 n-2$ polynomial and we need $2 n-1$ distinct points to specify it.


## Polynomial Arithmetic in Point-Value Representation

- First attempt: Let $x_{0}, \ldots, x_{n-1}$ be distinct and suppose

$$
\begin{aligned}
& A(x) \equiv\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\} \\
& B(x) \equiv\left\{\left(x_{0}, z_{0}\right),\left(x_{1}, z_{1}\right), \ldots,\left(x_{n-1}, z_{n-1}\right)\right\}
\end{aligned}
$$

- Then surely,

$$
C(x) \equiv\left\{\left(x_{0}, y_{0} z_{0}\right),\left(x_{1}, y_{1} z_{1}\right), \ldots,\left(x_{n-1}, y_{n-1} z_{n-1}\right)\right\}
$$

- Issue: While $C\left(x_{i}\right)=y_{i} z_{i}, C$ is a degree $2 n-2$ polynomial and we need $2 n-1$ distinct points to specify it.
- Fix: Assume $A$ and $B$ are specified on at least $2 n-1$ distinct points.


## Polynomial Arithmetic in Point-Value Representation

- First attempt: Let $x_{0}, \ldots, x_{n-1}$ be distinct and suppose

$$
\begin{aligned}
& A(x) \equiv\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\} \\
& B(x) \equiv\left\{\left(x_{0}, z_{0}\right),\left(x_{1}, z_{1}\right), \ldots,\left(x_{n-1}, z_{n-1}\right)\right\}
\end{aligned}
$$

- Then surely,

$$
C(x) \equiv\left\{\left(x_{0}, y_{0} z_{0}\right),\left(x_{1}, y_{1} z_{1}\right), \ldots,\left(x_{n-1}, y_{n-1} z_{n-1}\right)\right\}
$$

- Issue: While $C\left(x_{i}\right)=y_{i} z_{i}, C$ is a degree $2 n-2$ polynomial and we need $2 n-1$ distinct points to specify it.
- Fix: Assume $A$ and $B$ are specified on at least $2 n-1$ distinct points.
- Can compute PVR of $C$ is $\Theta(n)$ time. But what about coefficient representation?


## Framework for Fast Polynomial Multiplication

- Input: Coefficient representation of $A(x)$ and $B(x)$


## Framework for Fast Polynomial Multiplication

- Input: Coefficient representation of $A(x)$ and $B(x)$
- Step 1: Transform into PVR by evaluating on at least $2 n-1$ points


## Framework for Fast Polynomial Multiplication

- Input: Coefficient representation of $A(x)$ and $B(x)$
- Step 1: Transform into PVR by evaluating on at least $2 n-1$ points
- Step 2: Multiply polynomials to get $C(x)$ in PVR


## Framework for Fast Polynomial Multiplication

- Input: Coefficient representation of $A(x)$ and $B(x)$
- Step 1: Transform into PVR by evaluating on at least $2 n-1$ points
- Step 2: Multiply polynomials to get $C(x)$ in PVR
- Step 3: Transform PVR of $C(x)$ back into CR.


## Framework for Fast Polynomial Multiplication

- Input: Coefficient representation of $A(x)$ and $B(x)$
- Step 1: Transform into PVR by evaluating on at least $2 n-1$ points
- Step 2: Multiply polynomials to get $C(x)$ in PVR
- Step 3: Transform PVR of $C(x)$ back into CR.

Naive implementation of step 1 takes

## Framework for Fast Polynomial Multiplication

- Input: Coefficient representation of $A(x)$ and $B(x)$
- Step 1: Transform into PVR by evaluating on at least $2 n-1$ points
- Step 2: Multiply polynomials to get $C(x)$ in PVR
- Step 3: Transform PVR of $C(x)$ back into CR.

Naive implementation of step 1 takes $O\left(n^{2}\right)$ time.

## Framework for Fast Polynomial Multiplication

- Input: Coefficient representation of $A(x)$ and $B(x)$
- Step 1: Transform into PVR by evaluating on at least $2 n-1$ points
- Step 2: Multiply polynomials to get $C(x)$ in PVR
- Step 3: Transform PVR of $C(x)$ back into CR.

Naive implementation of step 1 takes $O\left(n^{2}\right)$ time. We'll do steps 1 and 3 in $O(n \log n)$ time.

## Framework for Fast Polynomial Multiplication

- Input: Coefficient representation of $A(x)$ and $B(x)$
- Step 1: Transform into PVR by evaluating on at least $2 n-1$ points
- Step 2: Multiply polynomials to get $C(x)$ in PVR
- Step 3: Transform PVR of $C(x)$ back into CR.

Naive implementation of step 1 takes $O\left(n^{2}\right)$ time. We'll do steps 1 and 3 in $O(n \log n)$ time.

Important: We can choose any distinct points for the PVR. Let's use the complex roots of unity...

## Complex Roots of Unity

## Definition

The $n$-th roots of unity are the complex solutions to the equation $x^{n}=1$, i.e.,

$$
e^{2 \pi i k / n}=\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n} \quad k=0, \ldots, n-1 .
$$

Let $\omega_{n}=e^{2 \pi i / n}$.

## Complex Roots of Unity

## Definition

The $n$-th roots of unity are the complex solutions to the equation $x^{n}=1$, i.e.,

$$
e^{2 \pi i k / n}=\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n} \quad k=0, \ldots, n-1 .
$$

Let $\omega_{n}=e^{2 \pi i / n}$.

## Lemma (Halving Lemma)

The squares of the $2 n$-th roots of unity are two copies of the $n$-th roots of unity:

$$
\left\{\left(\omega_{2 n}^{0}\right)^{2}, \ldots,\left(\omega_{2 n}^{2 n-1}\right)^{2}\right\}=\left\{\omega_{n}^{0}, \ldots, \omega_{n}^{n-1}\right\} \cup\left\{\omega_{n}^{0}, \ldots, \omega_{n}^{n-1}\right\}
$$

## Complex Roots of Unity

## Definition

The $n$-th roots of unity are the complex solutions to the equation $x^{n}=1$, i.e.,

$$
e^{2 \pi i k / n}=\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n} \quad k=0, \ldots, n-1 .
$$

Let $\omega_{n}=e^{2 \pi i / n}$.

## Lemma (Halving Lemma)

The squares of the $2 n$-th roots of unity are two copies of the n-th roots of unity:

$$
\left\{\left(\omega_{2 n}^{0}\right)^{2}, \ldots,\left(\omega_{2 n}^{2 n-1}\right)^{2}\right\}=\left\{\omega_{n}^{0}, \ldots, \omega_{n}^{n-1}\right\} \cup\left\{\omega_{n}^{0}, \ldots, \omega_{n}^{n-1}\right\}
$$

Proof.
Follows since $\left(\omega_{2 n}^{r}\right)^{2}=e^{2 r \cdot 2 \pi i /(2 n)}=e^{r \cdot 2 \pi i / n}=\omega_{n}^{r}$ and $\left(\omega_{2 n}^{r+n}\right)^{2}=\omega_{n}^{r}$.

## Divide and Conquer for Polynomial Evaluation

- Write degree $n-1$ polynomial to be evaluated in terms of two degree $n / 2-1$ polynomials:

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
$$

## Divide and Conquer for Polynomial Evaluation

- Write degree $n-1$ polynomial to be evaluated in terms of two degree $n / 2-1$ polynomials:

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
= & \left(a_{0}+a_{2} x^{2}+\ldots+a_{n-2} x^{n-2}\right) \\
& \quad+x\left(a_{1}+a_{3} x^{2}+\ldots+a_{n-1} x^{n-2}\right)
\end{aligned}
$$

## Divide and Conquer for Polynomial Evaluation

- Write degree $n-1$ polynomial to be evaluated in terms of two degree $n / 2-1$ polynomials:

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
= & \left(a_{0}+a_{2} x^{2}+\ldots+a_{n-2} x^{n-2}\right) \\
& \quad+x\left(a_{1}+a_{3} x^{2}+\ldots+a_{n-1} x^{n-2}\right) \\
= & A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

## Divide and Conquer for Polynomial Evaluation

- Write degree $n-1$ polynomial to be evaluated in terms of two degree $n / 2-1$ polynomials:

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
= & \left(a_{0}+a_{2} x^{2}+\ldots+a_{n-2} x^{n-2}\right) \\
& \quad+x\left(a_{1}+a_{3} x^{2}+\ldots+a_{n-1} x^{n-2}\right) \\
= & A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

- To evaluate $A$ at $2 n$-th roots of unity, we evaluate $A_{\text {even }}$ and $A_{\text {odd }}$ at $x^{2}$ for

$$
x \in\left\{\omega_{2 n}^{0}, \omega_{2 n}^{1}, \ldots, \omega_{2 n}^{2 n-1}\right\}
$$

## Divide and Conquer for Polynomial Evaluation

- Write degree $n-1$ polynomial to be evaluated in terms of two degree $n / 2-1$ polynomials:

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
= & \left(a_{0}+a_{2} x^{2}+\ldots+a_{n-2} x^{n-2}\right) \\
& \quad+x\left(a_{1}+a_{3} x^{2}+\ldots+a_{n-1} x^{n-2}\right) \\
= & A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

- To evaluate $A$ at $2 n$-th roots of unity, we evaluate $A_{\text {even }}$ and $A_{\text {odd }}$ at $x^{2}$ for

$$
x \in\left\{\omega_{2 n}^{0}, \omega_{2 n}^{1}, \ldots, \omega_{2 n}^{2 n-1}\right\}
$$

- If $T(n)$ is time to evaluate degree $n-1$ poly at $2 n$-th roots of unity,

$$
T(1)=\Theta(1) \quad \text { and } \quad T(n)=2 T(n / 2)+\Theta(n)
$$

## Divide and Conquer for Polynomial Evaluation

- Write degree $n-1$ polynomial to be evaluated in terms of two degree $n / 2-1$ polynomials:

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
= & \left(a_{0}+a_{2} x^{2}+\ldots+a_{n-2} x^{n-2}\right) \\
& \quad+x\left(a_{1}+a_{3} x^{2}+\ldots+a_{n-1} x^{n-2}\right) \\
= & A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

- To evaluate $A$ at $2 n$-th roots of unity, we evaluate $A_{\text {even }}$ and $A_{\text {odd }}$ at $x^{2}$ for

$$
x \in\left\{\omega_{2 n}^{0}, \omega_{2 n}^{1}, \ldots, \omega_{2 n}^{2 n-1}\right\}
$$

- If $T(n)$ is time to evaluate degree $n-1$ poly at $2 n$-th roots of unity,

$$
T(1)=\Theta(1) \quad \text { and } \quad T(n)=2 T(n / 2)+\Theta(n)
$$

- Use Master Theorem to conclude that $T(n)=\Theta(n \log n)$.


## Back to Framework. . .

- Input: Coefficient representation of $A(x)$ and $B(x)$
- Step 1: Transform into PVR by evaluating at at least $2 n-1$ points
- Step 2: Multiply polynomials to get $C(x)$ in PVR
- Step 3: Transform PVR of $C(x)$ back into CR.


## Back to Framework. . .

- Input: Coefficient representation of $A(x)$ and $B(x)$
- Step 1: Transform into PVR by evaluating at at least $2 n-1$ points
- Step 2: Multiply polynomials to get $C(x)$ in PVR
- Step 3: Transform PVR of $C(x)$ back into CR.

We now know:

1. Step 1 can be done in $O(n \log n)$ time.
2. Step 2 can be done in $O(n)$ time.

## Back to Framework. . .

- Input: Coefficient representation of $A(x)$ and $B(x)$
- Step 1: Transform into PVR by evaluating at at least $2 n-1$ points
- Step 2: Multiply polynomials to get $C(x)$ in PVR
- Step 3: Transform PVR of $C(x)$ back into CR.

We now know:

1. Step 1 can be done in $O(n \log n)$ time.
2. Step 2 can be done in $O(n)$ time.

It turns out that Step 3 is almost identical to Step 1!

## Polynomial Evaluation and Interpolation

Step 1 Revisited: Transform $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ to

$$
\left\{\left(\omega_{2 n}^{0}, y_{0}\right),\left(\omega_{2 n}^{1}, y_{1}\right), \ldots,\left(\omega_{2 n}^{2 n-1}, y_{2 n-1}\right)\right\}
$$

where $y_{i}=A\left(\omega_{2 n}^{i}\right)$.

## Polynomial Evaluation and Interpolation

Step 1 Revisited: Transform $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ to

$$
\left\{\left(\omega_{2 n}^{0}, y_{0}\right),\left(\omega_{2 n}^{1}, y_{1}\right), \ldots,\left(\omega_{2 n}^{2 n-1}, y_{2 n-1}\right)\right\}
$$

where $y_{i}=A\left(\omega_{2 n}^{i}\right)$. In other words, we need to evaluate:

$$
V_{n} \cdot\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{2 n-1}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{2 n-1}
\end{array}\right)
$$

where $a_{i}=0$ for $i \geq n-1$ and

$$
V_{n}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{2 n} & \omega_{2 n}^{2} & \omega_{2 n}^{3} & \cdots & \omega_{2 n}^{2 n-1} \\
1 & \omega_{2 n}^{2} & \omega_{2 n}^{4} & \omega_{2 n}^{6} & \cdots & \omega_{2 n}^{2(2 n-1)} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & \omega_{2 n}^{2 n-1} & \omega_{2 n}^{2(2 n-1)} & \omega_{2 n}^{3(2 n-1)} & \cdots & \omega_{2 n}^{(2 n-1)(2 n-1)}
\end{array}\right)
$$

## Polynomial Evaluation and Interpolation

Step 3 as inverse of Step 1: Need to transform

$$
\left\{\left(\omega_{2 n}^{0}, y_{0}\right),\left(\omega_{2 n}^{1}, y_{1}\right), \ldots,\left(\omega_{2 n}^{2 n-1}, y_{2 n-1}\right)\right\}
$$

into $\left(a_{0}, a_{1}, \ldots, a_{2 n-1}\right)$ where $y_{i}=A\left(\omega_{2 n}^{i}\right)$.

## Polynomial Evaluation and Interpolation

Step 3 as inverse of Step 1: Need to transform

$$
\left\{\left(\omega_{2 n}^{0}, y_{0}\right),\left(\omega_{2 n}^{1}, y_{1}\right), \ldots,\left(\omega_{2 n}^{2 n-1}, y_{2 n-1}\right)\right\}
$$

into $\left(a_{0}, a_{1}, \ldots, a_{2 n-1}\right)$ where $y_{i}=A\left(\omega_{2 n}^{i}\right)$. In other words, we need

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{2 n-1}
\end{array}\right)=V_{n}^{-1} \cdot\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{2 n-1}
\end{array}\right)
$$

## Polynomial Evaluation and Interpolation

Step 3 as inverse of Step 1: Need to transform

$$
\left\{\left(\omega_{2 n}^{0}, y_{0}\right),\left(\omega_{2 n}^{1}, y_{1}\right), \ldots,\left(\omega_{2 n}^{2 n-1}, y_{2 n-1}\right)\right\}
$$

into $\left(a_{0}, a_{1}, \ldots, a_{2 n-1}\right)$ where $y_{i}=A\left(\omega_{2 n}^{i}\right)$. In other words, we need

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{2 n-1}
\end{array}\right)=V_{n}^{-1} \cdot\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{2 n-1}
\end{array}\right)
$$

The inverse of $V_{n}$ is just $V_{n}$ with $\omega_{2 n}$ replaced by $\omega_{2 n}^{-1}$

$$
V_{n}^{-1}=\frac{1}{2 n}\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{2 n}^{-1} & \omega_{2 n}^{-2} & \omega_{2 n}^{-3} & \cdots & \omega_{2 n}^{-(2 n-1)} \\
1 & \omega_{2 n}^{-2} & \omega_{2 n}^{-4} & \omega_{2 n}^{-6} & \cdots & \omega_{2 n}^{-2(2 n-1)} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & \omega_{2 n}^{-(2 n-1)} & \omega_{2 n}^{-2(2 n-1)} & \omega_{2 n}^{-3(2 n-1)} & \cdots & \omega_{2 n}^{-(2 n-1)(2 n-1)}
\end{array}\right)
$$

Solving Step 3 Outline

## Solving Step 3 Outline

- Need to compute:

$$
a_{k}=\frac{\hat{A}\left(\omega_{2 n}^{-k}\right)}{2 n} \quad \text { for } k=0, \ldots, 2 n-1
$$

where $\hat{A}(x)=y_{0}+y_{1} x+\ldots+y_{2 n-1} x^{2 n-1}$

## Solving Step 3 Outline

- Need to compute:

$$
a_{k}=\frac{\hat{A}\left(\omega_{2 n}^{-k}\right)}{2 n} \quad \text { for } k=0, \ldots, 2 n-1
$$

where $\hat{A}(x)=y_{0}+y_{1} x+\ldots+y_{2 n-1} x^{2 n-1}$

- Rewrite $\hat{A}(x)=\hat{A}_{\text {even }}\left(x^{2}\right)+x \hat{A}_{\text {odd }}\left(x^{2}\right)$


## Solving Step 3 Outline

- Need to compute:

$$
a_{k}=\frac{\hat{A}\left(\omega_{2 n}^{-k}\right)}{2 n} \quad \text { for } k=0, \ldots, 2 n-1
$$

where $\hat{A}(x)=y_{0}+y_{1} x+\ldots+y_{2 n-1} x^{2 n-1}$

- Rewrite $\hat{A}(x)=\hat{A}_{\text {even }}\left(x^{2}\right)+x \hat{A}_{\text {odd }}\left(x^{2}\right)$
- To evaluate $\hat{A}$ on

$$
\left\{\omega_{2 n}^{0}, \omega_{2 n}^{-1}, \ldots, \omega_{2 n}^{-(2 n-1)}\right\}
$$

it suffices to evaluate $\hat{A}_{\text {even }}$ and $\hat{A}_{\text {odd }}$ on

$$
\left\{\omega_{n}^{0}, \omega_{n}^{-1}, \ldots, \omega_{n}^{-(n-1)}\right\}
$$

because Halving Lemma also applies to $\omega_{2 n}^{-1}$.

## Solving Step 3 Outline

- Need to compute:

$$
a_{k}=\frac{\hat{A}\left(\omega_{2 n}^{-k}\right)}{2 n} \quad \text { for } k=0, \ldots, 2 n-1
$$

where $\hat{A}(x)=y_{0}+y_{1} x+\ldots+y_{2 n-1} x^{2 n-1}$

- Rewrite $\hat{A}(x)=\hat{A}_{\text {even }}\left(x^{2}\right)+x \hat{A}_{\text {odd }}\left(x^{2}\right)$
- To evaluate $\hat{A}$ on

$$
\left\{\omega_{2 n}^{0}, \omega_{2 n}^{-1}, \ldots, \omega_{2 n}^{-(2 n-1)}\right\}
$$

it suffices to evaluate $\hat{A}_{\text {even }}$ and $\hat{A}_{\text {odd }}$ on

$$
\left\{\omega_{n}^{0}, \omega_{n}^{-1}, \ldots, \omega_{n}^{-(n-1)}\right\}
$$

because Halving Lemma also applies to $\omega_{2 n}^{-1}$.

- Step 3 can also be done in $O(n \log n)$ steps.


## Slide Left Blank

