CMPSCI 611: Advanced Algorithms

Lecture 3: Fast Polynomial Multiplication

Andrew McGregor

Last Compiled: February 8, 2024

Slide Left Blank

Polynomial Multiplication

Problem: Suppose A(x) and B(x) are polynomials of degree n — 1:
A(x) =ao + a1x + x>+ ... +a, 1x"!

B(x) =bg + bix + b2X2 +...+ b,7,1x"_1

Compute C(x) = A(x)B(x). We'll assume n is a power of 2.

Polynomial Multiplication

Problem: Suppose A(x) and B(x) are polynomials of degree n — 1:

A(x) =ao + arx + ax’ 4+ .. +ap_1x"t
B(x) =bg + bix + b2X2 +...+ b,7,1x"_1
Compute C(x) = A(x)B(x). We'll assume n is a power of 2.

How long does naive algorithm take?

Polynomial Multiplication

Problem: Suppose A(x) and B(x) are polynomials of degree n — 1:

A(x) =ao + arx + ax’ 4+ .. +ap_1x"t
B(x) =bg + bix + b2X2 +...+ b,7,1x"_1
Compute C(x) = A(x)B(x). We'll assume n is a power of 2.

How long does naive algorithm take? O(n?)

Representation of Polynomials

Definition
The coefficient representation (CR) of a polynomial the vector of
coefficients. E.g., (1,3,—2,1) is the coefficient representation of

f(x) =1+3x—2x* +x°

Representation of Polynomials

Definition
The coefficient representation (CR) of a polynomial the vector of
coefficients. E.g., (1,3,—2,1) is the coefficient representation of

f(x) =1+3x—2x* +x°
Definition

The point-value representation (PVR) of a polynomial: for n distinct
points xg, ..., x,_1 the PVR of f is

{(XOa f(XO))> (X17 f(Xl))’ EERE) (Xn_la f(Xn—l))}
Eg., f(x) = {(0,1),(1,3),(2,7), (3,19)}.

Representation of Polynomials

Definition
The coefficient representation (CR) of a polynomial the vector of
coefficients. E.g., (1,3,—2,1) is the coefficient representation of

f(x) =1+3x—2x* +x°

Definition
The point-value representation (PVR) of a polynomial: for n distinct
points xg, ..., x,_1 the PVR of f is

{(XOa f(XO))> (X17 f(Xl))’ EERE) (Xn_la f(Xn—l))}

Eg. f(x) = {(0,1),(1,3),(2,7),(3,19)}.

Lemma
Specifying the value of a function at n distinct points uniquely specifies a
degree n — 1 polynomial that goes through those points.

Polynomial Arithmetic in Point-Value Representation

» First attempt: Let xg,...,x,_1 be distinct and suppose

A(x) ={(x0,¥0), (x1,%1), -+ s (Xn—1, Yn-1)}
B(x) ={(x0, 20), (x1,21), - -, (Xn—1, Z0—1)}

Polynomial Arithmetic in Point-Value Representation

» First attempt: Let xg,...,x,_1 be distinct and suppose

A(x) ={(x0,¥0), (x1,%1), -+ s (Xn—1, Yn-1)}
B(x) ={(x0, 20), (x1,21), - -, (Xn—1, Z0—1)}

» Then surely,

C(x) = {(x0,¥020), (x1,%121)s - - - s (Xn—1, Yn—1Zn—1) }

Polynomial Arithmetic in Point-Value Representation

» First attempt: Let xg,...,x,_1 be distinct and suppose

A(x) ={(x0,¥0), (x1,%1), -+ s (Xn—1, Yn-1)}
B(x) ={(x0, 20), (x1,21), - -, (Xn—1, Z0—1)}

» Then surely,
C(X) = {(XanOZO)a (X1,Y1Z1)7 s (Xn717}/n712n71)}

» Issue: While C(x;) = y;z;, C is a degree 2n — 2 polynomial and we
need 2n — 1 distinct points to specify it.

Polynomial Arithmetic in Point-Value Representation

» First attempt: Let xg,...,x,_1 be distinct and suppose

A(x) ={(x0,¥0), (x1,%1), -+ s (Xn—1, Yn-1)}
B(x) ={(x0, 20), (x1,21), - -, (Xn—1, Z0—1)}

» Then surely,
C(X) = {(XanOZO)a (X1,Y1Z1)7 s (Xn717}/n712n71)}

» Issue: While C(x;) = y;z;, C is a degree 2n — 2 polynomial and we
need 2n — 1 distinct points to specify it.

> Fix: Assume A and B are specified on at least 2n — 1 distinct points.

Polynomial Arithmetic in Point-Value Representation

» First attempt: Let xg,...,x,_1 be distinct and suppose

A(x) ={(x0,¥0), (x1,%1), -+ s (Xn—1, Yn-1)}
B(x) ={(x0, 20), (x1,21), - -, (Xn—1, Z0—1)}

Then surely,

C(x) = {(x0, ¥020), (x1,¥121); - - -, (Xo—1, Yn—-1Zn-1) }
Issue: While C(x;) = yiz;, C is a degree 2n — 2 polynomial and we
need 2n — 1 distinct points to specify it.
Fix: Assume A and B are specified on at least 2n — 1 distinct points.

Can compute PVR of C is ©(n) time. But what about coefficient
representation?

Framework for Fast Polynomial Multiplication

> Input: Coefficient representation of A(x) and B(x)

Framework for Fast Polynomial Multiplication

> Input: Coefficient representation of A(x) and B(x)
» Step 1: Transform into PVR by evaluating on at least 2n — 1 points

Framework for Fast Polynomial Multiplication

> Input: Coefficient representation of A(x) and B(x)
» Step 1: Transform into PVR by evaluating on at least 2n — 1 points
» Step 2: Multiply polynomials to get C(x) in PVR

Framework for Fast Polynomial Multiplication

> Input: Coefficient representation of A(x) and B(x)

» Step 1: Transform into PVR by evaluating on at least 2n — 1 points
» Step 2: Multiply polynomials to get C(x) in PVR

» Step 3: Transform PVR of C(x) back into CR.

Framework for Fast Polynomial Multiplication

> Input: Coefficient representation of A(x) and B(x)

» Step 1: Transform into PVR by evaluating on at least 2n — 1 points
» Step 2: Multiply polynomials to get C(x) in PVR

» Step 3: Transform PVR of C(x) back into CR.

Naive implementation of step 1 takes

Framework for Fast Polynomial Multiplication

> Input: Coefficient representation of A(x) and B(x)

» Step 1: Transform into PVR by evaluating on at least 2n — 1 points
» Step 2: Multiply polynomials to get C(x) in PVR

» Step 3: Transform PVR of C(x) back into CR.

Naive implementation of step 1 takes O(n?) time.

Framework for Fast Polynomial Multiplication

> Input: Coefficient representation of A(x) and B(x)

» Step 1: Transform into PVR by evaluating on at least 2n — 1 points
» Step 2: Multiply polynomials to get C(x) in PVR

» Step 3: Transform PVR of C(x) back into CR.

Naive implementation of step 1 takes O(n?) time. We'll do steps 1 and 3
in O(nlog n) time.

Framework for Fast Polynomial Multiplication

> Input: Coefficient representation of A(x) and B(x)

» Step 1: Transform into PVR by evaluating on at least 2n — 1 points
» Step 2: Multiply polynomials to get C(x) in PVR

» Step 3: Transform PVR of C(x) back into CR.

Naive implementation of step 1 takes O(n?) time. We'll do steps 1 and 3
in O(nlog n) time.

Important: We can choose any distinct points for the PVR. Let's use the
complex roots of unity. ..

Complex Roots of Unity

Definition
The n-th roots of unity are the complex solutions to the equation x” =1,
ie.,

. 2mk 2mk
2””‘/”:COSL—i—isinL
n n

e

Let w, = 2™i/n.

Complex Roots of Unity

Definition
The n-th roots of unity are the complex solutions to the equation x” =1,
ie.,

. 2mk 2mk
2””‘/”:COSL—i—isinL
n n

e
Let w, = 2™i/n.

Lemma (Halving Lemma)

The squares of the 2n-th roots of unity are two copies of the n-th roots
of unity:

(@)% (@ 2 = {wn e wn U {wn, o wp)

Complex Roots of Unity

Definition
The n-th roots of unity are the complex solutions to the equation x” =1,
ie.,

. 2mk 2mk
2””‘/”:cosi—i—isini
n n

e
Let w, = 2™i/n.

Lemma (Halving Lemma)

The squares of the 2n-th roots of unity are two copies of the n-th roots
of unity:

(@)% (@ 2 = {wn e wn U {wn, o wp)

Proof.

Follows since (w5,)? = e2r2mi/(2n) — er2mi/n — ,;r and (wht™? = wi. [

Divide and Conquer for Polynomial Evaluation

> Write degree n — 1 polynomial to be evaluated in terms of two
degree n/2 — 1 polynomials:

A(X) = 80+81X+32X2+...+an,1Xn_1

Divide and Conquer for Polynomial Evaluation

> Write degree n — 1 polynomial to be evaluated in terms of two
degree n/2 — 1 polynomials:

A(X) = 80+81X+32X2+...+an,1Xn_1

(a0 + x>+ ...+ a,,_gx"*z)
+X(31 + 573X2 + ...+ a,,_lx”72)

Divide and Conquer for Polynomial Evaluation

> Write degree n — 1 polynomial to be evaluated in terms of two
degree n/2 — 1 polynomials:

A(X) = 80+81X+32X2+...+an,1Xn_1

(a0 + x>+ ...+ a,,_gx"*z)
+X(31 + 573X2 + ...+ a,,_lx”72)
Aeven (XZ) + XAodd (X2)

Divide and Conquer for Polynomial Evaluation

> Write degree n — 1 polynomial to be evaluated in terms of two
degree n/2 — 1 polynomials:

A(X) = 80+81X+32X2+...+an,1Xn_1

= (a0 + x>+ ...+ a,,_gx"*z)
x(a1 + a3x® 4 ...+ a,_1x"2)
= Aeven (XZ) + XAodd (X2)
» To evaluate A at 2n-th roots of unity, we evaluate Aeven and Agqq at

x? for
0 1 2n—1
X € {wyp, Wap, .. Wiy}

Divide and Conquer for Polynomial Evaluation

> Write degree n — 1 polynomial to be evaluated in terms of two
degree n/2 — 1 polynomials:

A(X) = 80+81X+32X2+...+an,1Xn_1

= (a0 + x>+ ...+ a,,_gx"*z)
+X(31 + 573X2 + ...+ a,,_lx”72)
= Aeven (XZ) + XAodd (X2)

» To evaluate A at 2n-th roots of unity, we evaluate Aeven and Agqq at

x? for
0 1 2n—1
X € {wyp, Wap, .. Wiy}

» If T(n) is time to evaluate degree n — 1 poly at 2n-th roots of unity,

T(n) =2T(n/2) + ©(n)

Divide and Conquer for Polynomial Evaluation

> Write degree n — 1 polynomial to be evaluated in terms of two
degree n/2 — 1 polynomials:

A(X) = 80+81X+32X2+...+an,1Xn_1

= (a0 + x>+ ...+ a,,_gx"*z)
+X(31 + 573X2 + ...+ a,,_lx”72)
= Aeven (XZ) + XAodd (X2)

» To evaluate A at 2n-th roots of unity, we evaluate Aeven and Agqq at

x? for
0 1 2n—1
X € {wyp, Wap, .. Wiy}

» If T(n) is time to evaluate degree n — 1 poly at 2n-th roots of unity,
T(n) =2T(n/2) + ©(n)

» Use Master Theorem to conclude that T(n) = ©(nlog n).

Back to Framework. . .

> Input: Coefficient representation of A(x) and B(x)

» Step 1: Transform into PVR by evaluating at at least 2n — 1 points
» Step 2: Multiply polynomials to get C(x) in PVR

» Step 3: Transform PVR of C(x) back into CR.

Back to Framework. . .

> Input: Coefficient representation of A(x) and B(x)

» Step 1: Transform into PVR by evaluating at at least 2n — 1 points
» Step 2: Multiply polynomials to get C(x) in PVR

» Step 3: Transform PVR of C(x) back into CR.

We now know:
1. Step 1 can be done in O(nlog n) time.
2. Step 2 can be done in O(n) time.

Back to Framework. . .

> Input: Coefficient representation of A(x) and B(x)

» Step 1: Transform into PVR by evaluating at at least 2n — 1 points
» Step 2: Multiply polynomials to get C(x) in PVR

» Step 3: Transform PVR of C(x) back into CR.

We now know:
1. Step 1 can be done in O(nlog n) time.
2. Step 2 can be done in O(n) time.

It turns out that Step 3 is almost identical to Step 1!

Polynomial Evaluation and Interpolation
Step 1 Revisited: Transform (ag, a1, ...,a,—1) to

{(Wg,”)/o), (w%nay1)7 ey (W§g717)/2n—1)}

where y; =

Polynomial Evaluation and Interpolation
Step 1 Revisited: Transform (ag, a1, ...,a,—1) to

{(wgn7y0)a (w%nay1)7 ey (ngild/zn—l)}

where y; = A(wb,). In other words, we need to evaluate:

do Yo
ai Y1
V, - ap Y2

azp—1
where a; =0 fori > n—1 and

1 1

3 2n—1
w2n e (.(}2,1

6 2(2n—1)
wzn . OJzn

w§’(72.n—1) . wéin—ll)(2n—l)

Polynomial Evaluation and Interpolation
Step 3 as inverse of Step 1: Need to transform

{(wgnv)/O)’ (w%myl)v) (W§Z_17}/2n_1)}

into (30, dly ...y 32,,,1) where Yi = A(w’2n)

Polynomial Evaluation and Interpolation
Step 3 as inverse of Step 1: Need to transform

{(wgnv)/O)’ (w%myl)v) (W§Z_17}/2n_1)}

into (g, ai, - - -, aan_1) where y; = A(w,). In other words, we need

ao
ai
a

Polynomial Evaluation and Interpolation
Step 3 as inverse of Step 1: Need to transform

{(wgnv)/O)’ (w%myl)v) (W§g_17}/2n_1)}

into (g, ai, - - -, aan_1) where y; = A(w,). In other words, we need

ao
ai

a — \/n*1 .

axp—1 Y2n—1
The inverse of V,, is just V,, with w,, replaced by w;nl

1

- 2n7.1 2n—1
n - w2n(N)

Solving Step 3 Outline

Solving Step 3 Outline

» Need to compute:

where A(X) =+ yx+... .+ yoa_1x31

Solving Step 3 Outline

» Need to compute:

where A(X) =+ yx+... .+ yoa_1x31

> Rewrite A(x) = Acven(x?) + xAoaa(x?)

Solving Step 3 Outline

» Need to compute:

Ak
ak:% fork=0,...,2n—1
n

where A(X) =+ yx+... .+ yoa_1x31
> Rewrite A(x) = Acyen(x2) + xAgqa(x?)

» To evaluate A on

0o , -1 —(2n—1)
{w2n>w2n y ooy Wop }

it suffices to evaluate Agven and Agqq On

{whwtw, 7Y

. . -1
because Halving Lemma also applies to ws,, .

Solving Step 3 Outline

» Need to compute:

Ak
ak:% fork=0,...,2n—1
n

where A(X) =+ yx+... .+ yoa_1x31
> Rewrite A(x) = Acyen(x2) + xAgqa(x?)

» To evaluate A on

0o , -1 —(2n—1)
{w2n7w2n y ooy Wop }

it suffices to evaluate Aeven and Aodd on
0, -1 —(n—1
{wl‘ﬂwn 7"'7wn (n)}
because Halving Lemma also applies to w{nl.
» Step 3 can also be done in O(nlog n) steps.

Slide Left Blank

