
CMPSCI 611: Advanced Algorithms
Lecture 4: Greedy Algorithms and Matroids

Andrew McGregor

Last Compiled: February 13, 2024

1/7

Greedy Algorithms Overview

“An algorithm that finds a solution by adding elements one by one,
where each element that is added is the best current choice without

regard to the future consequences of this choice.”

I Minimum Spanning Tree and Kruskal’s algorithm

I Matroids and Subset Systems

I Bipartite Matching and Intersections of Matroids

I Union-Find Data Structure

2/7

Greedy Algorithms Overview

“An algorithm that finds a solution by adding elements one by one,
where each element that is added is the best current choice without

regard to the future consequences of this choice.”

I Minimum Spanning Tree and Kruskal’s algorithm

I Matroids and Subset Systems

I Bipartite Matching and Intersections of Matroids

I Union-Find Data Structure

2/7

Minimum Spanning Tree and Kruskal’s Algorithm
Problem: Given an undirected, connected graph (V ,E) with edge
weights find the min-weight subset E ′ ⊂ E such that the graph (V ,E ′) is
acyclic and connected, i.e., a min-weight spanning tree (MST).

Throughout this class we’ll assume all edge weights are distinct although
everything generalizes to when some weights are the same.

Algorithm (Kruskal)

1. Sort edges by increasing weight

2. F = ∅
3. Until F is a spanning tree of G

3.1 Get the next edge e
3.2 If F + e is acyclic then F = F + e

The algorithm produces a tree because a) it never completes a cycle so
end result is acyclic and b) it is connected since for any cut, algorithm
adds at least the first edge it encounters across this cut.

3/7

Minimum Spanning Tree and Kruskal’s Algorithm
Problem: Given an undirected, connected graph (V ,E) with edge
weights find the min-weight subset E ′ ⊂ E such that the graph (V ,E ′) is
acyclic and connected, i.e., a min-weight spanning tree (MST).

Throughout this class we’ll assume all edge weights are distinct although
everything generalizes to when some weights are the same.

Algorithm (Kruskal)

1. Sort edges by increasing weight

2. F = ∅
3. Until F is a spanning tree of G

3.1 Get the next edge e
3.2 If F + e is acyclic then F = F + e

The algorithm produces a tree because a) it never completes a cycle so
end result is acyclic and b) it is connected since for any cut, algorithm
adds at least the first edge it encounters across this cut.

3/7

Minimum Spanning Tree and Kruskal’s Algorithm
Problem: Given an undirected, connected graph (V ,E) with edge
weights find the min-weight subset E ′ ⊂ E such that the graph (V ,E ′) is
acyclic and connected, i.e., a min-weight spanning tree (MST).

Throughout this class we’ll assume all edge weights are distinct although
everything generalizes to when some weights are the same.

Algorithm (Kruskal)

1. Sort edges by increasing weight

2. F = ∅
3. Until F is a spanning tree of G

3.1 Get the next edge e
3.2 If F + e is acyclic then F = F + e

The algorithm produces a tree because a) it never completes a cycle so
end result is acyclic and b) it is connected since for any cut, algorithm
adds at least the first edge it encounters across this cut.

3/7

Running Time of Kruskal’s Algorithm

Implementation: Maintain an array A with an entry for each v ∈ V that
indicates which connected component it belongs to.

I Initially A[i] = i for i = 1 to |V |.
I When edge (vi , vj) is processed:

I If A[i] 6= A[j], add (vi , vj) to F
I Replace array entries equal to max(A[i],A[j]) by min(A[i],A[j])

Running Time:

I Sorting: O(|E | log |E |)
I Checking if acyclic: |E | checks and each is O(1) time.

I Adding e to F : Updating array takes O(|V |) time and array is
updated exactly |V | − 1 times.

I Total running time O(|E | log |E |+ |V |2)

Will make this O(|E | log |E |) later via the union-find data structure

4/7

Running Time of Kruskal’s Algorithm

Implementation: Maintain an array A with an entry for each v ∈ V that
indicates which connected component it belongs to.

I Initially A[i] = i for i = 1 to |V |.

I When edge (vi , vj) is processed:
I If A[i] 6= A[j], add (vi , vj) to F
I Replace array entries equal to max(A[i],A[j]) by min(A[i],A[j])

Running Time:

I Sorting: O(|E | log |E |)
I Checking if acyclic: |E | checks and each is O(1) time.

I Adding e to F : Updating array takes O(|V |) time and array is
updated exactly |V | − 1 times.

I Total running time O(|E | log |E |+ |V |2)

Will make this O(|E | log |E |) later via the union-find data structure

4/7

Running Time of Kruskal’s Algorithm

Implementation: Maintain an array A with an entry for each v ∈ V that
indicates which connected component it belongs to.

I Initially A[i] = i for i = 1 to |V |.
I When edge (vi , vj) is processed:

I If A[i] 6= A[j], add (vi , vj) to F
I Replace array entries equal to max(A[i],A[j]) by min(A[i],A[j])

Running Time:

I Sorting: O(|E | log |E |)
I Checking if acyclic: |E | checks and each is O(1) time.

I Adding e to F : Updating array takes O(|V |) time and array is
updated exactly |V | − 1 times.

I Total running time O(|E | log |E |+ |V |2)

Will make this O(|E | log |E |) later via the union-find data structure

4/7

Running Time of Kruskal’s Algorithm

Implementation: Maintain an array A with an entry for each v ∈ V that
indicates which connected component it belongs to.

I Initially A[i] = i for i = 1 to |V |.
I When edge (vi , vj) is processed:

I If A[i] 6= A[j], add (vi , vj) to F
I Replace array entries equal to max(A[i],A[j]) by min(A[i],A[j])

Running Time:

I Sorting: O(|E | log |E |)

I Checking if acyclic: |E | checks and each is O(1) time.

I Adding e to F : Updating array takes O(|V |) time and array is
updated exactly |V | − 1 times.

I Total running time O(|E | log |E |+ |V |2)

Will make this O(|E | log |E |) later via the union-find data structure

4/7

Running Time of Kruskal’s Algorithm

Implementation: Maintain an array A with an entry for each v ∈ V that
indicates which connected component it belongs to.

I Initially A[i] = i for i = 1 to |V |.
I When edge (vi , vj) is processed:

I If A[i] 6= A[j], add (vi , vj) to F
I Replace array entries equal to max(A[i],A[j]) by min(A[i],A[j])

Running Time:

I Sorting: O(|E | log |E |)
I Checking if acyclic: |E | checks and each is O(1) time.

I Adding e to F : Updating array takes O(|V |) time and array is
updated exactly |V | − 1 times.

I Total running time O(|E | log |E |+ |V |2)

Will make this O(|E | log |E |) later via the union-find data structure

4/7

Running Time of Kruskal’s Algorithm

Implementation: Maintain an array A with an entry for each v ∈ V that
indicates which connected component it belongs to.

I Initially A[i] = i for i = 1 to |V |.
I When edge (vi , vj) is processed:

I If A[i] 6= A[j], add (vi , vj) to F
I Replace array entries equal to max(A[i],A[j]) by min(A[i],A[j])

Running Time:

I Sorting: O(|E | log |E |)
I Checking if acyclic: |E | checks and each is O(1) time.

I Adding e to F : Updating array takes O(|V |) time and array is
updated exactly |V | − 1 times.

I Total running time O(|E | log |E |+ |V |2)

Will make this O(|E | log |E |) later via the union-find data structure

4/7

Running Time of Kruskal’s Algorithm

Implementation: Maintain an array A with an entry for each v ∈ V that
indicates which connected component it belongs to.

I Initially A[i] = i for i = 1 to |V |.
I When edge (vi , vj) is processed:

I If A[i] 6= A[j], add (vi , vj) to F
I Replace array entries equal to max(A[i],A[j]) by min(A[i],A[j])

Running Time:

I Sorting: O(|E | log |E |)
I Checking if acyclic: |E | checks and each is O(1) time.

I Adding e to F : Updating array takes O(|V |) time and array is
updated exactly |V | − 1 times.

I Total running time O(|E | log |E |+ |V |2)

Will make this O(|E | log |E |) later via the union-find data structure

4/7

Proof of Correctness: Part 1

Cut Lemma: Let S ⊂ V and let e = (u, v) be the lightest edge such that
u ∈ S and v 6∈ S . The MST contains edge e.

Proof:

I Suppose there exists a minimum spanning tree T that doesn’t
include e. We’ll construct a different spanning tree T ′ such that
w(T ′) < w(T) and hence T can’t be the MST.

I Since T is a spanning tree, there’s a u v path P in T . Since the
path starts in S and ends up outside S , there must be an edge
e′ = (u′, v ′) on this path where u′ ∈ S , v ′ 6∈ S .

I Let T ′ = T − {e′}+ {e}. This is still spanning tree, since any path
in T that needed e′ can be routed via e instead. But since e was
the lightest edge between S and V \ S ,

w(T ′) = w(T)− w(e′) + w(e) < w(T)− w(e′) + w(e′) = w(T)

5/7

Proof of Correctness: Part 1

Cut Lemma: Let S ⊂ V and let e = (u, v) be the lightest edge such that
u ∈ S and v 6∈ S . The MST contains edge e.

Proof:

I Suppose there exists a minimum spanning tree T that doesn’t
include e. We’ll construct a different spanning tree T ′ such that
w(T ′) < w(T) and hence T can’t be the MST.

I Since T is a spanning tree, there’s a u v path P in T . Since the
path starts in S and ends up outside S , there must be an edge
e′ = (u′, v ′) on this path where u′ ∈ S , v ′ 6∈ S .

I Let T ′ = T − {e′}+ {e}. This is still spanning tree, since any path
in T that needed e′ can be routed via e instead. But since e was
the lightest edge between S and V \ S ,

w(T ′) = w(T)− w(e′) + w(e) < w(T)− w(e′) + w(e′) = w(T)

5/7

Proof of Correctness: Part 1

Cut Lemma: Let S ⊂ V and let e = (u, v) be the lightest edge such that
u ∈ S and v 6∈ S . The MST contains edge e.

Proof:

I Suppose there exists a minimum spanning tree T that doesn’t
include e. We’ll construct a different spanning tree T ′ such that
w(T ′) < w(T) and hence T can’t be the MST.

I Since T is a spanning tree, there’s a u v path P in T . Since the
path starts in S and ends up outside S , there must be an edge
e′ = (u′, v ′) on this path where u′ ∈ S , v ′ 6∈ S .

I Let T ′ = T − {e′}+ {e}. This is still spanning tree, since any path
in T that needed e′ can be routed via e instead. But since e was
the lightest edge between S and V \ S ,

w(T ′) = w(T)− w(e′) + w(e) < w(T)− w(e′) + w(e′) = w(T)

5/7

Proof of Correctness: Part 1

Cut Lemma: Let S ⊂ V and let e = (u, v) be the lightest edge such that
u ∈ S and v 6∈ S . The MST contains edge e.

Proof:

I Suppose there exists a minimum spanning tree T that doesn’t
include e. We’ll construct a different spanning tree T ′ such that
w(T ′) < w(T) and hence T can’t be the MST.

I Since T is a spanning tree, there’s a u v path P in T . Since the
path starts in S and ends up outside S , there must be an edge
e′ = (u′, v ′) on this path where u′ ∈ S , v ′ 6∈ S .

I Let T ′ = T − {e′}+ {e}. This is still spanning tree, since any path
in T that needed e′ can be routed via e instead. But since e was
the lightest edge between S and V \ S ,

w(T ′) = w(T)− w(e′) + w(e) < w(T)− w(e′) + w(e′) = w(T)

5/7

Proof of Correctness: Part 1

Cut Lemma: Let S ⊂ V and let e = (u, v) be the lightest edge such that
u ∈ S and v 6∈ S . The MST contains edge e.

Proof:

I Suppose there exists a minimum spanning tree T that doesn’t
include e. We’ll construct a different spanning tree T ′ such that
w(T ′) < w(T) and hence T can’t be the MST.

I Since T is a spanning tree, there’s a u v path P in T . Since the
path starts in S and ends up outside S , there must be an edge
e′ = (u′, v ′) on this path where u′ ∈ S , v ′ 6∈ S .

I Let T ′ = T − {e′}+ {e}. This is still spanning tree, since any path
in T that needed e′ can be routed via e instead. But since e was
the lightest edge between S and V \ S ,

w(T ′) = w(T)− w(e′) + w(e) < w(T)− w(e′) + w(e′) = w(T)

5/7

Proof of Correctness: Part 2

Kruskal’s Algorithm: Sort the edges by increasing weight and keep on
add the next edge that doesn’t complete a cycle.

Proof of Correctness:

I Suppose e = (u, v) is the next edge added.

I Let S be the set of nodes that can be reached from u before e was
added. Note that v 6∈ S since otherwise adding e would have
completed a cycle.

I No other edge between S and V \ S has been encountered before
since if it had it would have been added since it doesn’t complete a
cycle. Hence e is the lightest edge between S and V \ S . Therefore,
the cut lemma implies e must be in the MST.

6/7

Proof of Correctness: Part 2

Kruskal’s Algorithm: Sort the edges by increasing weight and keep on
add the next edge that doesn’t complete a cycle.

Proof of Correctness:

I Suppose e = (u, v) is the next edge added.

I Let S be the set of nodes that can be reached from u before e was
added. Note that v 6∈ S since otherwise adding e would have
completed a cycle.

I No other edge between S and V \ S has been encountered before
since if it had it would have been added since it doesn’t complete a
cycle. Hence e is the lightest edge between S and V \ S . Therefore,
the cut lemma implies e must be in the MST.

6/7

Proof of Correctness: Part 2

Kruskal’s Algorithm: Sort the edges by increasing weight and keep on
add the next edge that doesn’t complete a cycle.

Proof of Correctness:

I Suppose e = (u, v) is the next edge added.

I Let S be the set of nodes that can be reached from u before e was
added. Note that v 6∈ S since otherwise adding e would have
completed a cycle.

I No other edge between S and V \ S has been encountered before
since if it had it would have been added since it doesn’t complete a
cycle. Hence e is the lightest edge between S and V \ S . Therefore,
the cut lemma implies e must be in the MST.

6/7

Proof of Correctness: Part 2

Kruskal’s Algorithm: Sort the edges by increasing weight and keep on
add the next edge that doesn’t complete a cycle.

Proof of Correctness:

I Suppose e = (u, v) is the next edge added.

I Let S be the set of nodes that can be reached from u before e was
added. Note that v 6∈ S since otherwise adding e would have
completed a cycle.

I No other edge between S and V \ S has been encountered before
since if it had it would have been added since it doesn’t complete a
cycle. Hence e is the lightest edge between S and V \ S . Therefore,
the cut lemma implies e must be in the MST.

6/7

A Different Greedy Algorithm: Prim’s Algorithm

Prim’s Algorithm:

I Sort the edges by increasing weight.

I Let S = {s}.
I While S 6= V : Add next edge (u, v) where u ∈ S , v 6∈ S and add v

to S .

Proof of Correctness:

I Let S be the set of nodes in the tree constructed so far.

I The next edge added to the tree is the lightest edge between S and
V \ S . Hence, the cut lemma implies e must be in the MST.

7/7

A Different Greedy Algorithm: Prim’s Algorithm

Prim’s Algorithm:

I Sort the edges by increasing weight.

I Let S = {s}.
I While S 6= V : Add next edge (u, v) where u ∈ S , v 6∈ S and add v

to S .

Proof of Correctness:

I Let S be the set of nodes in the tree constructed so far.

I The next edge added to the tree is the lightest edge between S and
V \ S . Hence, the cut lemma implies e must be in the MST.

7/7

A Different Greedy Algorithm: Prim’s Algorithm

Prim’s Algorithm:

I Sort the edges by increasing weight.

I Let S = {s}.

I While S 6= V : Add next edge (u, v) where u ∈ S , v 6∈ S and add v
to S .

Proof of Correctness:

I Let S be the set of nodes in the tree constructed so far.

I The next edge added to the tree is the lightest edge between S and
V \ S . Hence, the cut lemma implies e must be in the MST.

7/7

A Different Greedy Algorithm: Prim’s Algorithm

Prim’s Algorithm:

I Sort the edges by increasing weight.

I Let S = {s}.
I While S 6= V : Add next edge (u, v) where u ∈ S , v 6∈ S and add v

to S .

Proof of Correctness:

I Let S be the set of nodes in the tree constructed so far.

I The next edge added to the tree is the lightest edge between S and
V \ S . Hence, the cut lemma implies e must be in the MST.

7/7

A Different Greedy Algorithm: Prim’s Algorithm

Prim’s Algorithm:

I Sort the edges by increasing weight.

I Let S = {s}.
I While S 6= V : Add next edge (u, v) where u ∈ S , v 6∈ S and add v

to S .

Proof of Correctness:

I Let S be the set of nodes in the tree constructed so far.

I The next edge added to the tree is the lightest edge between S and
V \ S . Hence, the cut lemma implies e must be in the MST.

7/7

A Different Greedy Algorithm: Prim’s Algorithm

Prim’s Algorithm:

I Sort the edges by increasing weight.

I Let S = {s}.
I While S 6= V : Add next edge (u, v) where u ∈ S , v 6∈ S and add v

to S .

Proof of Correctness:

I Let S be the set of nodes in the tree constructed so far.

I The next edge added to the tree is the lightest edge between S and
V \ S . Hence, the cut lemma implies e must be in the MST.

7/7

