CMPSCI 611: Advanced Algorithms
 Lecture 5: Greedy Algorithms and Matroids

Andrew McGregor

Subset Systems

Definition
A subset system $S=(E, \mathcal{I})$ is a finite set E with a collection \mathcal{I} of subsets E such that:

$$
\text { if } A \in \mathcal{I} \text { and } B \subset A \text { then } B \in \mathcal{I}
$$

i.e., " \mathcal{I} is closed under inclusion"

Subset Systems

Definition

A subset system $S=(E, \mathcal{I})$ is a finite set E with a collection \mathcal{I} of subsets E such that:

$$
\text { if } A \in \mathcal{I} \text { and } B \subset A \text { then } B \in \mathcal{I}
$$

i.e., "I is closed under inclusion"

Example

1. $E=\left\{e_{1}, e_{2}, e_{3}\right\}, \mathcal{I}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\{ \}\right\}$

Subset Systems

Definition

A subset system $S=(E, \mathcal{I})$ is a finite set E with a collection \mathcal{I} of subsets E such that:

$$
\text { if } A \in \mathcal{I} \text { and } B \subset A \text { then } B \in \mathcal{I}
$$

i.e., "I is closed under inclusion"

Example

1. $E=\left\{e_{1}, e_{2}, e_{3}\right\}, \mathcal{I}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\{ \}\right\}$
2. E is the edges of a graph and \mathcal{I} is the acyclic subsets of edges

Subset Systems

Definition

A subset system $S=(E, \mathcal{I})$ is a finite set E with a collection \mathcal{I} of subsets E such that:

$$
\text { if } A \in \mathcal{I} \text { and } B \subset A \text { then } B \in \mathcal{I}
$$

i.e., "I is closed under inclusion"

Example

1. $E=\left\{e_{1}, e_{2}, e_{3}\right\}, \mathcal{I}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\{ \}\right\}$
2. E is the edges of a graph and \mathcal{I} is the acyclic subsets of edges
3. E is the edges of a graph and \mathcal{I} are the matchings, i.e., subsets of edges such that no two edges share a vertex

Generic Problem and Greedy Algorithms

Problem Given a subset system $S=(E, \mathcal{I})$ and weight function
$w: E \rightarrow \mathbb{R}^{+}$, find $A \in \mathcal{I}$ such that $w(A)=\sum_{e \in A} w(e)$ is maximized.

Generic Problem and Greedy Algorithms

Problem Given a subset system $S=(E, \mathcal{I})$ and weight function
$w: E \rightarrow \mathbb{R}^{+}$, find $A \in \mathcal{I}$ such that $w(A)=\sum_{e \in A} w(e)$ is maximized.

Algorithm (Greedy)

1. $A=\emptyset$
2. Sort elements of E by non-increasing weight
3. For each $e \in E$: If $A+e \in \mathcal{I}$ then $A \leftarrow A+e$

Generic Problem and Greedy Algorithms

Problem Given a subset system $S=(E, \mathcal{I})$ and weight function
$w: E \rightarrow \mathbb{R}^{+}$, find $A \in \mathcal{I}$ such that $w(A)=\sum_{e \in A} w(e)$ is maximized.
Algorithm (Greedy)

1. $A=\emptyset$
2. Sort elements of E by non-increasing weight
3. For each $e \in E$: If $A+e \in \mathcal{I}$ then $A \leftarrow A+e$

For what subset systems does this give optimal results?

Generic Problem and Greedy Algorithms

Problem Given a subset system $S=(E, \mathcal{I})$ and weight function
$w: E \rightarrow \mathbb{R}^{+}$, find $A \in \mathcal{I}$ such that $w(A)=\sum_{e \in A} w(e)$ is maximized.
Algorithm (Greedy)

1. $A=\emptyset$
2. Sort elements of E by non-increasing weight
3. For each $e \in E$: If $A+e \in \mathcal{I}$ then $A \leftarrow A+e$

For what subset systems does this give optimal results?
Terminology: Solution $A \in \mathcal{I}$ is a maximum if $w(A) \geq w\left(A^{\prime}\right)$ for all other $A^{\prime} \in \mathcal{I}$.

Generic Problem and Greedy Algorithms

Problem Given a subset system $S=(E, \mathcal{I})$ and weight function
$w: E \rightarrow \mathbb{R}^{+}$, find $A \in \mathcal{I}$ such that $w(A)=\sum_{e \in A} w(e)$ is maximized.
Algorithm (Greedy)

1. $A=\emptyset$
2. Sort elements of E by non-increasing weight
3. For each $e \in E$: If $A+e \in \mathcal{I}$ then $A \leftarrow A+e$

For what subset systems does this give optimal results?
Terminology: Solution $A \in \mathcal{I}$ is a maximum if $w(A) \geq w\left(A^{\prime}\right)$ for all other $A^{\prime} \in \mathcal{I}$. Solution $A \in \mathcal{I}$ is maximal if there doesn't exist $e \in E-A$ such that $A+e \in \mathcal{I}$.

Examples

Example

Let $E=\left\{e_{1}, e_{2}, e_{3}\right\}, \mathcal{I}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\{ \}\right\}$, and $w\left(e_{1}\right)=3, w\left(e_{2}\right)=1$, and $w\left(e_{3}\right)=4$. The greedy algorithm returns

Examples

Example

Let $E=\left\{e_{1}, e_{2}, e_{3}\right\}, \mathcal{I}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\{ \}\right\}$, and $w\left(e_{1}\right)=3, w\left(e_{2}\right)=1$, and $w\left(e_{3}\right)=4$. The greedy algorithm returns

$$
\left\{e_{2}, e_{3}\right\}
$$

and this is optimal.

Examples

Example

Let $E=\left\{e_{1}, e_{2}, e_{3}\right\}, \mathcal{I}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\{ \}\right\}$, and $w\left(e_{1}\right)=3, w\left(e_{2}\right)=1$, and $w\left(e_{3}\right)=4$. The greedy algorithm returns

$$
\left\{e_{2}, e_{3}\right\}
$$

and this is optimal.

Example (Maximum Weight Forest)

E is the edges of a graph and \mathcal{I} is the acyclic subsets of edges. This is essentially the same as the MST and greedy does work.

Examples

Example

Let $E=\left\{e_{1}, e_{2}, e_{3}\right\}, \mathcal{I}=\left\{\left\{e_{1}, e_{2}\right\},\left\{e_{2}, e_{3}\right\},\left\{e_{1}\right\},\left\{e_{2}\right\},\left\{e_{3}\right\},\{ \}\right\}$, and $w\left(e_{1}\right)=3, w\left(e_{2}\right)=1$, and $w\left(e_{3}\right)=4$. The greedy algorithm returns

$$
\left\{e_{2}, e_{3}\right\}
$$

and this is optimal.

Example (Maximum Weight Forest)

E is the edges of a graph and \mathcal{I} is the acyclic subsets of edges. This is essentially the same as the MST and greedy does work.

Example (Maximum Weight Matching)
E is the edges of a graph and \mathcal{I} are the matchings. Greedy does not work.

Matroid Definition and Theorem

Definition
Subset system (E, \mathcal{I}) has the exchange property if

$$
\forall A, B \in \mathcal{I}:(|A|<|B|) \Longrightarrow(\exists e \in B-A \text { such that } A+e \in \mathcal{I})
$$

Matroid Definition and Theorem

Definition
Subset system (E, \mathcal{I}) has the exchange property if

$$
\forall A, B \in \mathcal{I}:(|A|<|B|) \Longrightarrow(\exists e \in B-A \text { such that } A+e \in \mathcal{I})
$$

Definition
A matroid is a subset system $M=(E, \mathcal{I})$ with the exchange property

Matroid Definition and Theorem

Definition
Subset system (E, \mathcal{I}) has the exchange property if

$$
\forall A, B \in \mathcal{I}:(|A|<|B|) \Longrightarrow(\exists e \in B-A \text { such that } A+e \in \mathcal{I})
$$

Definition

A matroid is a subset system $M=(E, \mathcal{I})$ with the exchange property
Theorem
Given a subset system (E, \mathcal{I}), the following statements are equivalent:

1. Greedy algorithm returns optimal solution for any weight function.
2. The subset system obeys the exchange property, i.e., it's a matroid.

Matroid implies Greedy Algorithm is Optimal

- Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let greedy solution: $A=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$
optimal solution: $B=\left\{f_{1}, f_{2}, \ldots, f_{k^{\prime}}\right\}$ where $w(B)>w(A)$

Matroid implies Greedy Algorithm is Optimal

- Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let greedy solution: $A=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$
optimal solution: $B=\left\{f_{1}, f_{2}, \ldots, f_{k^{\prime}}\right\}$ where $w(B)>w(A)$
- Can deduce $k=k^{\prime}$

Matroid implies Greedy Algorithm is Optimal

- Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let
greedy solution: $A=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$
optimal solution: $B=\left\{f_{1}, f_{2}, \ldots, f_{k^{\prime}}\right\}$ where $w(B)>w(A)$
- Can deduce $k=k^{\prime}$ by the exchange property. (Both solutions are maximal and if $k \neq k^{\prime}$ then the exchange property would imply an element from the larger set could be added to the smaller set).

Matroid implies Greedy Algorithm is Optimal

- Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let
greedy solution: $A=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$
optimal solution: $B=\left\{f_{1}, f_{2}, \ldots, f_{k^{\prime}}\right\}$ where $w(B)>w(A)$
- Can deduce $k=k^{\prime}$ by the exchange property. (Both solutions are maximal and if $k \neq k^{\prime}$ then the exchange property would imply an element from the larger set could be added to the smaller set).
- Can assume by reordering

$$
\begin{array}{r}
w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \ldots \geq w\left(e_{k}\right) \\
w\left(f_{1}\right) \geq w\left(f_{2}\right) \geq \ldots \geq w\left(f_{k}\right)
\end{array}
$$

Matroid implies Greedy Algorithm is Optimal

- Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let

$$
\text { greedy solution: } \quad A=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}
$$

optimal solution: $B=\left\{f_{1}, f_{2}, \ldots, f_{k^{\prime}}\right\}$ where $w(B)>w(A)$

- Can deduce $k=k^{\prime}$ by the exchange property. (Both solutions are maximal and if $k \neq k^{\prime}$ then the exchange property would imply an element from the larger set could be added to the smaller set).
- Can assume by reordering

$$
\begin{aligned}
& w\left(e_{1}\right) \geq w\left(e_{2}\right) \\
& w\left(f_{1}\right) \geq w\left(f_{2}\right) \geq \ldots \geq w\left(e_{k}\right) \\
&
\end{aligned}
$$

- Consider smallest such s with $w\left(f_{s}\right)>w\left(e_{s}\right)$ and let

$$
\alpha=\left\{e_{1}, e_{2}, \ldots, e_{s-1}\right\} \quad \text { and } \quad \beta=\left\{f_{1}, f_{2}, \ldots, f_{s}\right\}
$$

Matroid implies Greedy Algorithm is Optimal

- Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let
greedy solution: $A=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$
optimal solution: $B=\left\{f_{1}, f_{2}, \ldots, f_{k^{\prime}}\right\}$ where $w(B)>w(A)$
- Can deduce $k=k^{\prime}$ by the exchange property. (Both solutions are maximal and if $k \neq k^{\prime}$ then the exchange property would imply an element from the larger set could be added to the smaller set).
- Can assume by reordering

$$
\begin{array}{r}
w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \ldots \geq w\left(e_{k}\right) \\
w\left(f_{1}\right) \geq w\left(f_{2}\right) \geq \ldots \geq w\left(f_{k}\right)
\end{array}
$$

- Consider smallest such s with $w\left(f_{s}\right)>w\left(e_{s}\right)$ and let

$$
\alpha=\left\{e_{1}, e_{2}, \ldots, e_{s-1}\right\} \quad \text { and } \quad \beta=\left\{f_{1}, f_{2}, \ldots, f_{s}\right\}
$$

- By the exchange property there exists $t \in[s]$ such that:

$$
f_{t} \in \beta-\alpha \text { with } \alpha+f_{t} \in \mathcal{I}
$$

Matroid implies Greedy Algorithm is Optimal

- Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let

$$
\text { greedy solution: } \quad A=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}
$$

optimal solution: $B=\left\{f_{1}, f_{2}, \ldots, f_{k^{\prime}}\right\}$ where $w(B)>w(A)$

- Can deduce $k=k^{\prime}$ by the exchange property. (Both solutions are maximal and if $k \neq k^{\prime}$ then the exchange property would imply an element from the larger set could be added to the smaller set).
- Can assume by reordering

$$
\begin{array}{r}
w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \ldots \geq w\left(e_{k}\right) \\
w\left(f_{1}\right) \geq w\left(f_{2}\right) \geq \ldots \geq w\left(f_{k}\right)
\end{array}
$$

- Consider smallest such s with $w\left(f_{s}\right)>w\left(e_{s}\right)$ and let

$$
\alpha=\left\{e_{1}, e_{2}, \ldots, e_{s-1}\right\} \quad \text { and } \quad \beta=\left\{f_{1}, f_{2}, \ldots, f_{s}\right\}
$$

- By the exchange property there exists $t \in[s]$ such that:

$$
f_{t} \in \beta-\alpha \text { with } \alpha+f_{t} \in \mathcal{I}
$$

- But then $w\left(f_{t}\right) \geq w\left(f_{s}\right)$ and hence $w\left(f_{t}\right)>w\left(e_{s}\right)$. This is a contradiction since greedy algorithm picked e_{s} rather than f_{t}

Greedy Algorithm Always Optimal implies (E, \mathcal{I}) is Matroid

- Sufficient to show that greedy may not work if (E, \mathcal{I}) isn't a matroid

Greedy Algorithm Always Optimal implies (E, \mathcal{I}) is Matroid

- Sufficient to show that greedy may not work if (E, \mathcal{I}) isn't a matroid
- (E, \mathcal{I}) not a matroid implies that
$\exists A, B \in \mathcal{I}$ such that $|A|<|B|$ and $\nexists e \in B-A$ with $A+e \in \mathcal{I}$

Greedy Algorithm Always Optimal implies (E, \mathcal{I}) is Matroid

- Sufficient to show that greedy may not work if (E, \mathcal{I}) isn't a matroid
- (E, \mathcal{I}) not a matroid implies that
$\exists A, B \in \mathcal{I}$ such that $|A|<|B|$ and $\nexists e \in B-A$ with $A+e \in \mathcal{I}$
- Let $m=|A|$ and $n=|E|$. Define weight function:

$$
w(e)= \begin{cases}m+2 & \text { if } e \in A \\ m+1 & \text { if } e \in B-A \\ 1 /(2 n) & \text { otherwise }\end{cases}
$$

Greedy Algorithm Always Optimal implies (E, \mathcal{I}) is Matroid

- Sufficient to show that greedy may not work if (E, \mathcal{I}) isn't a matroid
- (E, \mathcal{I}) not a matroid implies that
$\exists A, B \in \mathcal{I}$ such that $|A|<|B|$ and $\nexists e \in B-A$ with $A+e \in \mathcal{I}$
- Let $m=|A|$ and $n=|E|$. Define weight function:

$$
w(e)= \begin{cases}m+2 & \text { if } e \in A \\ m+1 & \text { if } e \in B-A \\ 1 /(2 n) & \text { otherwise }\end{cases}
$$

- Greedy algorithm returns A with weight at most $(m+2) m+1 / 2$ but a better solution is B with weight at least $(m+1)^{2}$

Blank Slide

