CMPSCI 611: Advanced Algorithms Lecture 5: Greedy Algorithms and Matroids

Andrew McGregor

Last Compiled: February 13, 2024

Definition

A subset system S = (E, I) is a finite set E with a collection I of subsets E such that:

 $\text{ if } A \in \mathcal{I} \text{ and } B \subset A \text{ then } B \in \mathcal{I} \\$

i.e., " \mathcal{I} is closed under inclusion"

Definition

A subset system S = (E, I) is a finite set E with a collection I of subsets E such that:

 $\text{ if } A \in \mathcal{I} \text{ and } B \subset A \text{ then } B \in \mathcal{I} \\$

i.e., " \mathcal{I} is closed under inclusion"

Example

1. $E = \{e_1, e_2, e_3\}, \mathcal{I} = \{\{e_1, e_2\}, \{e_2, e_3\}, \{e_1\}, \{e_2\}, \{e_3\}, \{\}\}$

Definition

A subset system $S = (E, \mathcal{I})$ is a finite set E with a collection \mathcal{I} of subsets E such that:

```
if A \in \mathcal{I} and B \subset A then B \in \mathcal{I}
```

i.e., " \mathcal{I} is closed under inclusion"

Example

- 1. $E = \{e_1, e_2, e_3\}, \mathcal{I} = \{\{e_1, e_2\}, \{e_2, e_3\}, \{e_1\}, \{e_2\}, \{e_3\}, \{\}\}$
- 2. *E* is the edges of a graph and \mathcal{I} is the acyclic subsets of edges

Definition

A subset system $S = (E, \mathcal{I})$ is a finite set E with a collection \mathcal{I} of subsets E such that:

```
if A \in \mathcal{I} and B \subset A then B \in \mathcal{I}
```

i.e., " \mathcal{I} is closed under inclusion"

Example

- 1. $E = \{e_1, e_2, e_3\}, \ \mathcal{I} = \{\{e_1, e_2\}, \{e_2, e_3\}, \{e_1\}, \{e_2\}, \{e_3\}, \{\}\}$
- 2. E is the edges of a graph and \mathcal{I} is the acyclic subsets of edges
- 3. *E* is the edges of a graph and \mathcal{I} are the matchings, i.e., subsets of edges such that no two edges share a vertex

Problem Given a subset system $S = (E, \mathcal{I})$ and weight function $w : E \to \mathbb{R}^+$, find $A \in \mathcal{I}$ such that $w(A) = \sum_{e \in A} w(e)$ is maximized.

Problem Given a subset system $S = (E, \mathcal{I})$ and weight function $w : E \to \mathbb{R}^+$, find $A \in \mathcal{I}$ such that $w(A) = \sum_{e \in A} w(e)$ is maximized.

Algorithm (Greedy)

- 1. $A = \emptyset$
- 2. Sort elements of E by non-increasing weight
- 3. For each $e \in E$: If $A + e \in \mathcal{I}$ then $A \leftarrow A + e$

Problem Given a subset system $S = (E, \mathcal{I})$ and weight function $w : E \to \mathbb{R}^+$, find $A \in \mathcal{I}$ such that $w(A) = \sum_{e \in A} w(e)$ is maximized.

Algorithm (Greedy)

- 1. $A = \emptyset$
- 2. Sort elements of E by non-increasing weight
- 3. For each $e \in E$: If $A + e \in \mathcal{I}$ then $A \leftarrow A + e$

For what subset systems does this give optimal results?

Problem Given a subset system $S = (E, \mathcal{I})$ and weight function $w : E \to \mathbb{R}^+$, find $A \in \mathcal{I}$ such that $w(A) = \sum_{e \in A} w(e)$ is maximized.

Algorithm (Greedy)

1. $A = \emptyset$

- 2. Sort elements of E by non-increasing weight
- 3. For each $e \in E$: If $A + e \in \mathcal{I}$ then $A \leftarrow A + e$

For what subset systems does this give optimal results?

Terminology: Solution $A \in \mathcal{I}$ is a maximum if $w(A) \ge w(A')$ for all other $A' \in \mathcal{I}$.

Problem Given a subset system $S = (E, \mathcal{I})$ and weight function $w : E \to \mathbb{R}^+$, find $A \in \mathcal{I}$ such that $w(A) = \sum_{e \in A} w(e)$ is maximized.

Algorithm (Greedy)

1. $A = \emptyset$

- 2. Sort elements of E by non-increasing weight
- 3. For each $e \in E$: If $A + e \in \mathcal{I}$ then $A \leftarrow A + e$

For what subset systems does this give optimal results?

Terminology: Solution $A \in \mathcal{I}$ is a maximum if $w(A) \ge w(A')$ for all other $A' \in \mathcal{I}$. Solution $A \in \mathcal{I}$ is maximal if there doesn't exist $e \in E - A$ such that $A + e \in \mathcal{I}$.

Example

Let $E = \{e_1, e_2, e_3\}$, $\mathcal{I} = \{\{e_1, e_2\}, \{e_2, e_3\}, \{e_1\}, \{e_2\}, \{e_3\}, \{\}\}$, and $w(e_1) = 3, w(e_2) = 1$, and $w(e_3) = 4$. The greedy algorithm returns

Example

Let $E = \{e_1, e_2, e_3\}$, $\mathcal{I} = \{\{e_1, e_2\}, \{e_2, e_3\}, \{e_1\}, \{e_2\}, \{e_3\}, \{\}\}$, and $w(e_1) = 3, w(e_2) = 1$, and $w(e_3) = 4$. The greedy algorithm returns $\{e_2, e_3\}$

and this is optimal.

Example

Let $E = \{e_1, e_2, e_3\}$, $\mathcal{I} = \{\{e_1, e_2\}, \{e_2, e_3\}, \{e_1\}, \{e_2\}, \{e_3\}, \{\}\}$, and $w(e_1) = 3, w(e_2) = 1$, and $w(e_3) = 4$. The greedy algorithm returns

$$\{e_2, e_3\}$$

and this is optimal.

Example (Maximum Weight Forest)

E is the edges of a graph and ${\cal I}$ is the acyclic subsets of edges. This is essentially the same as the MST and greedy does work.

Example

Let $E = \{e_1, e_2, e_3\}$, $\mathcal{I} = \{\{e_1, e_2\}, \{e_2, e_3\}, \{e_1\}, \{e_2\}, \{e_3\}, \{\}\}$, and $w(e_1) = 3, w(e_2) = 1$, and $w(e_3) = 4$. The greedy algorithm returns

$$\{e_2, e_3\}$$

and this is optimal.

Example (Maximum Weight Forest)

E is the edges of a graph and ${\cal I}$ is the acyclic subsets of edges. This is essentially the same as the MST and greedy does work.

Example (Maximum Weight Matching)

E is the edges of a graph and \mathcal{I} are the matchings. Greedy does not work.

Matroid Definition and Theorem

Definition Subset system (E, \mathcal{I}) has the exchange property if

 $orall A, B \in \mathcal{I} : (|A| < |B|) \implies (\exists e \in B - A \text{ such that } A + e \in \mathcal{I})$

Matroid Definition and Theorem

Definition Subset system (E, \mathcal{I}) has the exchange property if

$$\forall A,B\in\mathcal{I}:\left(|A|<|B|\right)\implies\left(\exists e\in B-A \text{ such that }A+e\in\mathcal{I}\right)$$

Definition

A matroid is a subset system $M = (E, \mathcal{I})$ with the exchange property

Matroid Definition and Theorem

Definition Subset system (E, \mathcal{I}) has the exchange property if

 $\forall A,B \in \mathcal{I}: (|A| < |B|) \implies (\exists e \in B - A \text{ such that } A + e \in \mathcal{I})$

Definition

A matroid is a subset system $M = (E, \mathcal{I})$ with the exchange property

Theorem

Given a subset system (E, \mathcal{I}) , the following statements are equivalent:

- 1. Greedy algorithm returns optimal solution for any weight function.
- 2. The subset system obeys the exchange property, i.e., it's a matroid.

▶ Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let

greedy solution: $A = \{e_1, e_2, \dots, e_k\}$ optimal solution: $B = \{f_1, f_2, \dots, f_{k'}\}$ where w(B) > w(A)

▶ Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let

greedy solution: $A = \{e_1, e_2, \dots, e_k\}$ optimal solution: $B = \{f_1, f_2, \dots, f_{k'}\}$ where w(B) > w(A) \blacktriangleright Can deduce k = k'

▶ Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let

greedy solution: $A = \{e_1, e_2, \dots, e_k\}$ optimal solution: $B = \{f_1, f_2, \dots, f_{k'}\}$ where w(B) > w(A)

Can deduce k = k' by the exchange property. (Both solutions are maximal and if k ≠ k' then the exchange property would imply an element from the larger set could be added to the smaller set).

▶ Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let

greedy solution: $A = \{e_1, e_2, \dots, e_k\}$ optimal solution: $B = \{f_1, f_2, \dots, f_{k'}\}$ where w(B) > w(A)

- Can deduce k = k' by the exchange property. (Both solutions are maximal and if k ≠ k' then the exchange property would imply an element from the larger set could be added to the smaller set).
- Can assume by reordering

$$w(e_1) \ge w(e_2) \ge \ldots \ge w(e_k)$$

 $w(f_1) \ge w(f_2) \ge \ldots \ge w(f_k)$

▶ Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let

greedy solution: $A = \{e_1, e_2, \dots, e_k\}$ optimal solution: $B = \{f_1, f_2, \dots, f_{k'}\}$ where w(B) > w(A)

- Can deduce k = k' by the exchange property. (Both solutions are maximal and if k ≠ k' then the exchange property would imply an element from the larger set could be added to the smaller set).
- Can assume by reordering

$$w(e_1) \ge w(e_2) \ge \ldots \ge w(e_k)$$

 $w(f_1) \ge w(f_2) \ge \ldots \ge w(f_k)$

• Consider smallest such s with $w(f_s) > w(e_s)$ and let

$$\alpha = \{ \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{\mathbf{s}-1} \} \quad \text{and} \quad \beta = \{ f_1, f_2, \dots, f_{\mathbf{s}} \}$$

▶ Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let

greedy solution: $A = \{e_1, e_2, \dots, e_k\}$ optimal solution: $B = \{f_1, f_2, \dots, f_{k'}\}$ where w(B) > w(A)

- Can deduce k = k' by the exchange property. (Both solutions are maximal and if k ≠ k' then the exchange property would imply an element from the larger set could be added to the smaller set).
- Can assume by reordering

$$w(e_1) \ge w(e_2) \ge \ldots \ge w(e_k)$$

 $w(f_1) \ge w(f_2) \ge \ldots \ge w(f_k)$

• Consider smallest such s with $w(f_s) > w(e_s)$ and let

$$\alpha = \{e_1, e_2, \dots, e_{s-1}\} \text{ and } \beta = \{f_1, f_2, \dots, f_s\}$$

• By the exchange property there exists $t \in [s]$ such that:

$$f_t \in \beta - \alpha$$
 with $\alpha + f_t \in \mathcal{I}$

▶ Proof by contradiction: Assume (E, \mathcal{I}) is a matroid and let

greedy solution: $A = \{e_1, e_2, \dots, e_k\}$ optimal solution: $B = \{f_1, f_2, \dots, f_{k'}\}$ where w(B) > w(A)

- Can deduce k = k' by the exchange property. (Both solutions are maximal and if k ≠ k' then the exchange property would imply an element from the larger set could be added to the smaller set).
- Can assume by reordering

$$w(e_1) \ge w(e_2) \ge \ldots \ge w(e_k)$$

 $w(f_1) \ge w(f_2) \ge \ldots \ge w(f_k)$

• Consider smallest such s with $w(f_s) > w(e_s)$ and let

$$\alpha = \{e_1, e_2, \dots, e_{s-1}\} \text{ and } \beta = \{f_1, f_2, \dots, f_s\}$$

▶ By the exchange property there exists $t \in [s]$ such that:

$$f_t \in \beta - \alpha$$
 with $\alpha + f_t \in \mathcal{I}$

▶ But then w(f_t) ≥ w(f_s) and hence w(f_t) > w(e_s). This is a contradiction since greedy algorithm picked e_s rather than f_t

Sufficient to show that greedy may not work if (E, \mathcal{I}) isn't a matroid

Sufficient to show that greedy may not work if (E, \mathcal{I}) isn't a matroid

• (E, \mathcal{I}) not a matroid implies that

 $\exists \ A,B \in \mathcal{I} \text{ such that } |A| < |B| \text{ and } \not\exists \ e \in B - A \text{ with } A + e \in \mathcal{I}$

Sufficient to show that greedy may not work if (E, I) isn't a matroid
(E, I) not a matroid implies that

 $\exists \ A,B \in \mathcal{I} \text{ such that } |A| < |B| \text{ and } \not\exists \ e \in B - A \text{ with } A + e \in \mathcal{I}$

• Let m = |A| and n = |E|. Define weight function:

$$w(e) = egin{cases} m+2 & ext{if } e \in A \ m+1 & ext{if } e \in B-A \ 1/(2n) & ext{otherwise} \end{cases}$$

Sufficient to show that greedy may not work if (E, I) isn't a matroid
(E, I) not a matroid implies that

 $\exists \ A,B \in \mathcal{I} \text{ such that } |A| < |B| \text{ and } \not\exists \ e \in B - A \text{ with } A + e \in \mathcal{I}$

• Let m = |A| and n = |E|. Define weight function:

$$w(e) = egin{cases} m+2 & ext{if } e \in A \ m+1 & ext{if } e \in B-A \ 1/(2n) & ext{otherwise} \end{cases}$$

► Greedy algorithm returns A with weight at most (m+2)m+1/2 but a better solution is B with weight at least (m+1)²

Blank Slide