CMPSCI 611: Advanced Algorithms
 Lecture 6: Cardinality Theorem and Matroid Examples

Andrew McGregor

Outline

Summary of Matroid Results

The Problem

Definition

A subset system $S=(E, \mathcal{I})$ is a finite set E with a collection \mathcal{I} of subsets of E such that if $A \in \mathcal{I}$ and $B \subset A$ then $B \in \mathcal{I}$.

Problem Given a subset system $S=(E, \mathcal{I})$ and weight function $w: E \rightarrow \mathbb{R}^{+}$, find $A \in \mathcal{I}$ such that $w(A)=\sum_{e \in A} w(e)$ is maximized.

Algorithm (Greedy)

1. $A=\emptyset$
2. Sort elements of E by non-increasing weight
3. For each $e \in E$: If $A+e \in \mathcal{I}$ then $A \leftarrow A+e$

Matroid Definition and Theorem

Definition
Subset system (E, \mathcal{I}) has the exchange property if

$$
\forall A, B \in \mathcal{I}:(|A|<|B|) \Longrightarrow(\exists e \in B-A \text { such that } A+e \in \mathcal{I})
$$

Definition

A subset system (E, \mathcal{I}) has the cardinality property if

$$
\forall E^{\prime} \subseteq E:\left(A, B \in \mathcal{I} \text { maximal subsets of } E^{\prime}\right) \Longrightarrow(|A|=|B|)
$$

where we say $A \in \mathcal{I}$ is a maximal subset of E^{\prime} if $A \subseteq E^{\prime}$ and there doesn't exist $e \in E^{\prime}$ such that $A+e \in \mathcal{I}$.
Theorem
Given a subset system (E, \mathcal{I}), the following statements are equivalent:

1. Greedy algorithm returns optimal solution for any weight function.
2. The subset system obeys the exchange property.
3. The subset system obeys the cardinality property.

Exchange Property implies Cardinality Property

- Suppose A, B are maximal subsets of $E^{\prime} \subseteq E$. Need to show

$$
|A|=|B|
$$

- If $|B|>|A|$, the exchange property implies

$$
\exists e \in B-A \text { such that } A+e \in \mathcal{I}
$$

- Note that $A+e$ would still be in E^{\prime} since $e \in B \subseteq E^{\prime}$.
- Thus A was not maximal in E^{\prime}. Contradiction!

Cardinality Property implies Exchange Property

- Suffices to show that (E, \mathcal{I}) not a matroid implies there exists E^{\prime} and $A, B \in \mathcal{I}$ such that $|A|<|B|$ and A, B are maximal in E^{\prime}
- (E, \mathcal{I}) not a matroid implies that
$\exists A, C \in \mathcal{I}$ such that $|A|<|C|$ and $\nexists e \in C-A$ with $A+e \in \mathcal{I}$
- Define $E^{\prime}=A \cup C$ and note that A is maximal in E^{\prime}.
- There exists $B \in \mathcal{I}$ such that $C \subseteq B$ and B is maximal in E^{\prime}.
- But $|B| \geq|C|>|A|$ as required.

Example 1

Theorem
The Maximum Weight Forest (MWF) subset system is a matroid.
Proof.

- Pick an arbitrary subset of edges $E^{\prime} \subseteq E$.
- Let n_{1}, \ldots, n_{k} be the number of nodes in the connected components.
- Any maximal acyclic subset of E^{\prime} has size

$$
\left(n_{1}-1\right)+\left(n_{2}-1\right)+\ldots+\left(n_{k}-1\right)=n-k
$$

because a maximal acyclic subgraph of a connected graph on n_{i} nodes is a tree and has $n_{i}-1$ edges.

- Cardinality Theorem implies that it's a matroid.

Example 2

Theorem
Let E be a set of directed edges and \mathcal{I} be subsets such that no two edges in the same subset point to same node. This is a matroid.

Proof.

- For any $E^{\prime} \subseteq E$, the number of edges in a maximal subset of E^{\prime} is equal to the number of vertices pointed to in E^{\prime}.
- Cardinality Theorem implies that it's a matroid.

