CMPSCI 611: Advanced Algorithms Lecture 6: Cardinality Theorem and Matroid Examples

Andrew McGregor

Last Compiled: January 31, 2024

Outline

Summary of Matroid Results

The Problem

Definition

A subset system $S = (E, \mathcal{I})$ is a finite set E with a collection \mathcal{I} of subsets of E such that if $A \in \mathcal{I}$ and $B \subset A$ then $B \in \mathcal{I}$.

Problem Given a subset system $S = (E, \mathcal{I})$ and weight function $w : E \to \mathbb{R}^+$, find $A \in \mathcal{I}$ such that $w(A) = \sum_{e \in A} w(e)$ is maximized.

Algorithm (Greedy)

- 1. $A = \emptyset$
- 2. Sort elements of E by non-increasing weight
- 3. For each $e \in E$: If $A + e \in \mathcal{I}$ then $A \leftarrow A + e$

Matroid Definition and Theorem

Definition

Subset system (E, \mathcal{I}) has the exchange property if

 $\forall A,B \in \mathcal{I}: (|A| < |B|) \implies (\exists e \in B - A \text{ such that } A + e \in \mathcal{I})$

Definition

A subset system (E, \mathcal{I}) has the cardinality property if

 $\forall E' \subseteq E : (A, B \in \mathcal{I} \text{ maximal subsets of } E') \implies (|A| = |B|)$

where we say $A \in \mathcal{I}$ is a maximal subset of E' if $A \subseteq E'$ and there doesn't exist $e \in E'$ such that $A + e \in \mathcal{I}$.

Theorem

Given a subset system (E, \mathcal{I}) , the following statements are equivalent:

- 1. Greedy algorithm returns optimal solution for any weight function.
- 2. The subset system obeys the exchange property.
- 3. The subset system obeys the cardinality property.

Exchange Property implies Cardinality Property

Suppose A, B are maximal subsets of $E' \subseteq E$. Need to show

|A| = |B|

• If |B| > |A|, the exchange property implies

 $\exists e \in B - A$ such that $A + e \in \mathcal{I}$

- Note that A + e would still be in E' since $e \in B \subseteq E'$.
- Thus A was not maximal in E'. Contradiction!

Cardinality Property implies Exchange Property

- Suffices to show that (E, I) not a matroid implies there exists E' and A, B ∈ I such that |A| < |B| and A, B are maximal in E'</p>
- (E, \mathcal{I}) not a matroid implies that

 $\exists \ A, \ C \in \mathcal{I} \text{ such that } |A| < |C| \text{ and } \not\exists \ e \in C - A \text{ with } A + e \in \mathcal{I}$

- Define $E' = A \cup C$ and note that A is maximal in E'.
- There exists $B \in \mathcal{I}$ such that $C \subseteq B$ and B is maximal in E'.
- But $|B| \ge |C| > |A|$ as required.

Example 1

Theorem

The Maximum Weight Forest (MWF) subset system is a matroid.

Proof.

- Pick an arbitrary subset of edges $E' \subseteq E$.
- Let n_1, \ldots, n_k be the number of nodes in the connected components.
- Any maximal acyclic subset of E' has size

$$(n_1-1)+(n_2-1)+\ldots+(n_k-1)=n-k$$

because a maximal acyclic subgraph of a connected graph on n_i nodes is a tree and has $n_i - 1$ edges.

Cardinality Theorem implies that it's a matroid.

Example 2

Theorem

Let E be a set of directed edges and \mathcal{I} be subsets such that no two edges in the same subset point to same node. This is a matroid.

Proof.

- For any E' ⊆ E, the number of edges in a maximal subset of E' is equal to the number of vertices pointed to in E'.
- Cardinality Theorem implies that it's a matroid.