CMPSCI 611: Advanced Algorithms Lecture 7: Bipartite Matchings and Union Find

Andrew McGregor

Last Compiled: January 31, 2024

Intersection of Matroids and Bipartite Matchings

Union-Find Data Structure

Bipartite Matchings

Problem

- Input: Bipartite graph B = (U, V, E) where U, V are disjoint sets of vertices and E is a set of edges between U and V.
- Output: The matching (i.e., subset of E where no two edges share a vertex) of maximum size.

Example Application: There's a set of tasks V to be performed and a set of individuals U, each capable of doing a subset of the tasks.

- Each person may be assigned to at most one task.
- At most one person may be assigned a task.
- Not every person can do every task. Can encode this in E.

Intersection of Matroids

The bipartite matching subset system is not a matroid but it is the intersection of two matroids.

Define:

 $\mathcal{I} = \mathsf{subsets} \text{ of } E$ where each $u \in U$ has degree at most 1

 $\mathcal{I}' = \mathsf{subsets} \text{ of } E$ where each $v \in V$ has degree at most 1

Then, bipartite matching subset system is $(E, \mathcal{I} \cap \mathcal{I}')$

Theorem

For matroids (E, \mathcal{I}) and (E, \mathcal{I}') , the largest set in $\mathcal{I} \cap \mathcal{I}'$ can be found in time $O(|E|^3 \cdot C(\mathcal{I}, \mathcal{I}'))$ where $C(\mathcal{I}, \mathcal{I}')$ is time to check $i \in \mathcal{I}$ or $i \in \mathcal{I}'$. We won't prove this general theorem but will focus on the special case of bipartite matching. Note that there is no analogous theorem for the intersection of three matroids.

Augmenting Paths Definitions

Let *M* be a matching in a bipartite graph B = (U, V, E). A *free vertex* is a node not incident to any edge in *M*. E.g., the blue vertices in

Definition

An *augmenting path* is an odd sequence of edges that begins and ends at (different) free vertices and alternates between matching edges $e \in M$ and non-matching edges $e \in E - M$.

Definition

If P is an augmenting path for matching M, the symmetric difference of M and P is $M \oplus P := (M \cup P) - (M \cap P)$.

Augmenting Paths Properties

Lemma For matching M and augmenting path P, $M \oplus P$ is a matching and

 $|M\oplus P|=|M|+1.$

Lemma

If M is non-maximum matching, there exists an augmenting path.

Algorithm: Find augmenting paths until we can't find anymore!

Finding an augmenting path allows us to "grow" matching

Lemma

For matching M and augmenting path P, $M \oplus P$ is a matching and

$$|M\oplus P|=|M|+1.$$

Proof.

- A matching is a graph where no node has degree > 1
- Size of matching is (number of degree 1 nodes)/2
- Remove edges in $P \cap M$ and add edges in $P \setminus M$:
 - Adds one to degree of two nodes that initially were free.
 - Degree of interior points of P still have degree 1.

Augmenting path exists for non-maximum matching

Lemma

If M is non-maximum matching, there exists an augmenting path.

Proof.

- Let M' be a matching such that |M'| > |M|
- ▶ Consider $E' = M \oplus M'$... consists of simple paths and cycles whose edges alternate between M and M'

- Cycles have the same number of edges from M' and M
- There must exist a path P with more edges from M' than M, i.e., one that starts and end with an edge in M'
- This is an augmenting path: edges alternate between M' and M and it starts and ends with free vertices

Bipartite Matching Algorithm

Algorithm

- ► $M \leftarrow \emptyset$
- ▶ While there exists an augmenting path $P: M \leftarrow M \oplus P$

Return M

We can find an augmenting path in O(|U||E|) time:

- ▶ Direct matched edges $V \rightarrow U$ and non-matched edges $U \rightarrow V$
- For each free vertex u ∈ U, grow a BFS: If a free vertex v ∈ V is reachable from u, we have an augmenting path

Total running time is $O(\min(|U|, |V|)|U||E|)$ because the maximum matching size is at most $\min(|U|, |V|)$. Can be improved by finding the augmenting paths in a more clever way.

Intersection of Matroids and Bipartite Matchings

Union-Find Data Structure

Recall Kruskal's Algorithm...

Problem: Given an undirected, connected graph G = (V, E) with positive edge weights, find the minimum-weight subset $E' \subset E$ such that the graph G = (V, E') is a minimum spanning tree.

Algorithm (Kruskal)

- 1. Sort edges by non-decreasing weight
- 2. $F = \emptyset$

We saw how to implement this with $O(|E| \log |E| + |V|^2)$ running time. This class: improving to $O(|E| \log |E|)$ via the union-find data structure.

Union-Find Data Structure

Encodes a set of disjoint sets where each set contains an element designated as the "label" of the set. E.g.,

```
\{a, b, c\} labeled "a" \{d, e, f\} labeled "e"
```

Supports three operations:

1. Make-Set(v): Adds a set {v} with label "v"

 $\{a, b, c\}$ labeled "a" $\{d, e, f\}$ labeled "e" $\{v\}$ labeled "v"

 Union-Set(u, v): Replaces sets including u and v with a new set that is union of both sets and labels this set by some element it contains. For example, the result of Union-Set(f, v) is

 $\{a, b, c\}$ labeled "a" $\{d, e, f, v\}$ labeled "e"

3. Find(v): Returns the label of the set including v

Kruskal's Algorithm with Union-Find

Algorithm (Kruskal)

- 1. Sort edges by non-decreasing weight
- 2. For each vertex $v \in V$: Make-Set(v)

4. For each edge
$$e = (u, v)$$
 in E
4.1 If Find(u) \neq Find(v) then Union(u, v) and F = F

Well, how should we implement union-find...

+e

Simple Implementation of Union-Find

- $1. \ \mbox{Each}$ disjoint set is stored as a linked list of nodes
- 2. Each node consists of three data items:
 - 2.1 name of element
 - 2.2 "label" pointer to label of the set
 - 2.3 "next" pointer to next node in list
- 3. Also maintain auxiliary pointer for each label to last node of corresponding list and the size of this list.

- 1. Make-Set(v): Takes O(1) time to add a single node.
- 2. Find(v): Takes O(1) time to follow pointer to label.
- 3. Union-Set(u, v): O(size of smaller set).
 - Update "next" pointer at end of longer list to point to start of shorter list
 - Update "label" pointers of shorter list to point to label of other list
 - Update auxiliary pointers and size information

Union-Find Analysis

Theorem

Consider a sequence of *m* operations including *n* Make-Set operations. Total running time is $O(m + n \log n)$.

Proof.

- ▶ Total time from Find and Make-Set: *O*(*m*)
- ▶ Total time from Union: $O(n \log n)$
 - Updating next pointers: O(n)
 - Updating label pointers: O(n log n) because the label pointer for a node can be updated at most log₂ n times.

Hence, Kruskal's algorithm can be implemented in time

 $O(|E|\log |E|) + O(|E| + |V|\log |V|) = O(|E|\log |E|)$

Faster Implementation of Union Find

Theorem

There exists an implementation that, given a sequence of n Make-Set operations and m total operations, takes $O(m\alpha(n))$ time where α is the inverse Ackermann's function.

Definition (Ackermann's Function)

Define a sequence of functions: $A_0(x) = 1 + x$ and

$$A_k(x) = A_{k-1}(A_{k-1}(\ldots A_{k-1}(x) \ldots))$$

where A_{k-1} is applied x times. E.g., $A_1(x) = 2x$, $A_2(x) = 2^x x$. Ackermann function is $A(k) = A_k(2)$. $\alpha(n)$ is defined as smallest k such that $A(k) \ge n$.

Example

 $\alpha(n) \leq 4$ for all $n \leq 2^{2^{2(\dots 2048)}}$ where tower is of height 2048.

Idea Behind Faster Implementation

- Store each set as a rooted tree.
- Each node encodes an element and pointer to the parent.
- The element at the root is the label of the set.
- 1. Make-Set(v): Takes O(1) time to add a single node.
- 2. Find(v): Takes $O(d_v)$ time where d_v is the depth of v
- 3. Union-Set(u, v): $O(d_v + d_u)$ time
 - Perform Find(u), and Find(v)
 - Add pointer from root of smaller tree to root of larger tree

Extra Trick! Do *path compression*. When we do a Find operation, update the pointers from all nodes encountered to point to the root. Increases time by a constant factor but saves time for future Find operations.

More Details: See Section 21.4 of CLRS (3rd edition) or Section 5.1 of DPV.

Blank Slide