
CMPSCI 611: Advanced Algorithms
Lecture 8: Dynamic Programming

Andrew McGregor

Last Compiled: January 31, 2024

1/12

Outline

Dynamic Programming

Shortest Paths

2/12

Knapsack Warmup

Problem

I Input: n items each with value wi ∈ N and a capacity W ∈ N
I Output: Subset S that maximizes

∑
i∈S wi subject to

∑
i∈S wi ≤W

Example
Consider input {7, 5, 4} and W = 10. Optimal is 9.

3/12

Try something like divide and conquer. . .

Definition
Let knap(i , j) be the optimal solution obtained by using only first i items
and capacity j where knap(i , j) = −∞ for j < 0

To compute knap(i , j):

I If i = 0: knap(i , j) = 0

I Otherwise:
I Compute knap(i − 1, j) and knap(i − 1, j − wi)
I knap(i , j) = max(knap(i − 1, j), knap(i − 1, j − wi) + wi)

Claim
The above recursive algorithm will return knap(n,W) correctly.

But it’s very inefficient because evaluating both knap(i − 1, j) and
knap(i − 1, j − wi) requires a lot of duplication of work.

4/12

Blank Slide

5/12

Dynamic Programming Table

Construct a (n + 1)× (W + 1) table K where Ki,j = knap(i , j):

I Fill in “0” for each entry of first row

I To fill in i-th row use entries of (i − 1)-th row:

Ki,j =

{
max(Ki−1,j ,Ki−1,j−wi + wi) if j ≥ wi

Ki−1,j if j < wi

Claim
Running time is O(nW) and space required is O(W).

Easy to tweak algorithm to find S and not just
∑

i∈S wi

Actually Knapsack is NP-complete, have we proved that P = NP?

6/12

When to use dynamic programming. . .

I Optimal Substructure: The solution to the problem can be found
using solutions to smaller sub-problems.

I Overlap of Sub-Problems: By taking advantage of the fact that
many identical sub-problems are created, a dynamic programming
algorithm may be more efficient than a divide and conquer algorithm.

7/12

Outline

Dynamic Programming

Shortest Paths

8/12

Shortest Paths

Let G = (V ,E) be a directed graph with weights w : E → R+.

Definition
For path p = (v1, . . . , vk) be a path, define

w(p) =
k−1∑
i=1

w(vi , vi+1) .

The shortest path between u and v is

δ(u, v) = min{w(p) : p is a path from u to v}

if there is a path from u to v and ∞ otherwise.

9/12

Floyd-Warshall Warm-Up

Problem: Find δ(u, v) for all u, v ∈ V .

I Define sub-problems by limiting the set of intermediate nodes

I Let d
(k)
ij = length of shortest path from i to j for which all

intermediate vertices are in {v1, . . . , vk}
I Easy: d

(0)
ij = w(i , j) if (i , j) ∈ E and d

(0)
ij =∞ otherwise

I For k ≥ 1:
d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

10/12

Floyd-Warshall Algorithm

Algorithm

1. Let d
(0)
ij = w(i , j) if (i , j) ∈ E and d

(0)
ij =∞ otherwise.

2. For k = 1 to n:

2.1 For i , j ∈ [n]: let

d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

3. Return d
(n)
ij

Running Time: Θ(n3) where n = |V |

11/12

Blank Slide

12/12

	Dynamic Programming
	Shortest Paths

