CMPSCI 611: Advanced Algorithms
 Lecture 9: Dijkstra's Algorithm

Andrew McGregor

Shortest Paths

Let $G=(V, E)$ be a directed graph with weights $w: E \rightarrow \mathbb{R}^{+}$.
Definition
For path $p=\left(v_{1}, \ldots, v_{k}\right)$ be a path, define

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right) .
$$

The shortest path between u and v is

$$
\delta(u, v)=\min \{w(p): p \text { is a path from } u \text { to } v\}
$$

if there is a path from u to v and ∞ otherwise.

Dijkstra's Warm-Up

Single-Source Problem: Given $s \in V$, find $\delta(s, v)$ for all $v \in V$.
Dijkstra's algorithm solves problem if all edges are non-negative:

- Maintains array $(d[v]: v \in V)$ where $d[v]$ will always be ∞ or the length of some path from s to v, not necessarily the shortest. Hence,

$$
d[v] \geq \delta(s, v)
$$

- Maintains a set of processed vertices R. We'll prove that for all $v \in R$:

$$
d[v]=\delta(s, v)
$$

Dijkstra's Algorithm

Algorithm

1. $d[s]=0$ and for $s \neq v$:

$$
d[v]=w(s, v) \text { if }(s, v) \in E \text { and } \infty \text { otherwise }
$$

2. $R \leftarrow\{s\}$
3. While $|R|<|V|$:
$3.1 u \leftarrow \operatorname{argmin}_{v \notin R} d[v]$
$3.2 R \leftarrow R+u$
3.3 For each $v \notin R$ that is a neighbor of u :

$$
d[v]=\min (d[u]+w(u, v), d[v])
$$

Running Time: $O\left(|V|^{2}\right)$ for simple implementation but can be improved.

Example

1. Step 1: $d[s]=0, d[a]=3, d[b]=6, d[c]=\infty$, and $R=\{s\}$
2. Step 2: $d[s]=0, d[a]=3, d[b]=5, d[c]=12$, and $R=\{s, a\}$
3. Step 3: $d[s]=0, d[a]=3, d[b]=5, d[c]=8$, and $R=\{s, a, b\}$
4. Step 4: $d[s]=0, d[a]=3, d[b]=5, d[c]=8$, and $R=\{s, a, b, c\}$

Correctness of Algorithm

The correctness of the algorithm follows because a) $d[v]$ never increases, b) $d[v] \geq \delta(s, u)$ at all times, and c) appealing to the following lemma:

Lemma
When u is added to $R, d[u]=\delta(s, u)$

When u gets added to $R, d[u]$ is correct $(1 / 2)$

Let $d_{u}[v]$ be value of $d[v]$ just before u is chosen as minimum.

Lemma

For all $u, d_{u}[u]=\delta(s, u)$

- By contradiction: Let u be first vertex put in R with $d_{u}[u]>\delta(s, u)$
- Consider a shortest path from s to u. Let y be first vertex not in R. Note that y may or may not be u.

- Claim: $d_{u}[y]=\delta(s, y)$
- Let x be the predecessor of y on the path. Note that $x \in R$.
- $d_{x}[x]=\delta(s, x)$ by assumption that u is first bad vertex.
- After iteration where x is added to $R: d[y] \leq \delta(s, x)+w(x, y)$
- $\delta(s, x)+w(x, y)=\delta(s, y)$ since path included shortest path to y

When u gets added to $R, d[u]$ is correct $(2 / 2)$

Let $d_{u}[v]$ be value of $d[v]$ just before u is chosen as minimum.
Lemma
For all $u, d_{u}[u]=\delta(s, u)$

- By contradiction: Let u be first vertex put in R with $d_{u}[u]>\delta(s, u)$
- Consider a shortest path from s to u. Let y be first vertex not in R. Note that y may or may not be u.

- Claim: $d_{u}[y]=\delta(s, y)$
- Since y lies on shortest path to $u: \delta(s, y) \leq \delta(s, u)$
- Putting above two lines together:

$$
d_{u}[y]=\delta(s, y) \leq \delta(s, u)<d_{u}[u]
$$

- If $y \neq u$: Contradiction because u was the next minimum and so

$$
d_{u}[u] \leq d_{u}[y]
$$

- If $y=u$: Contradicts $d_{u}[y]<d_{u}[u]$

