CMPSCI 611: Advanced Algorithms
 Lecture 10: Seidel's Algorithm

Andrew McGregor

Seidel's Algorithm

Problem: For an undirected, unweighted graph G, compute all distances.
Seidel's Algorithm is based on matrix multiplication and runs in time

$$
O(\mu(n) \log n)
$$

where $\mu(n)$ is the time to multiply two $n \times n$ matrices together. Recall

$$
n^{2} \leq \mu(n) \leq n^{2.3727}
$$

Definition
Let M_{G} be the adjacency matrix of $G=(V, E)$, i.e., an $n \times n$ binary matrix where $M_{G}(i, j)=1$ iff $(i, j) \in E$.

The G_{2} graph

Definition

Given a undirected, unweighted graph $G=(V, E)$, define $G_{2}=\left(V, E^{\prime}\right)$ where $(i, j) \in E^{\prime}$ iff $\delta_{G}(i, j) \leq 2$.

Lemma
Let $P_{G}(i, j)=1$ if $\delta_{G}(i, j)$ is odd and $P_{G}(i, j)=0$ otherwise. Then,

$$
\delta_{G}(i, j)=2 \delta_{G_{2}}(i, j)-P_{G}(i, j) .
$$

Proof.
A path of length $2 k$ in G corresponds to a path of length k in G_{2}. A path of length in $2 k+1$ in G corresponds to a path of length $k+1$ in G_{2}.

Seidel's Algorithm

Algorithm (Seidel $\left(M_{G}\right)$)

1. compute $M_{G_{2}}$
2. if all non-diagonal entries of $M_{G_{2}}(i, j)$ are 1 , return D_{G} where

$$
D_{G}[i, j]= \begin{cases}0 & \text { if } i=j \\ 1 & \text { if } M_{G}(i, j)=1 \\ 2 & \text { otherwise }\end{cases}
$$

3. else:
3.1 compute $D_{G_{2}}=\operatorname{Seidel}\left(M_{G_{2}}\right)$
3.2 compute P_{G}
3.3 return $D_{G}=2 D_{G_{2}}-P_{G}$

Mystery Steps: How can we compute $M_{G_{2}}$ and P_{G} efficiently?

Depth of Recursion

- The diameter of a graph G is the "longest shortest path",

$$
\operatorname{diam}(G)=\max _{i, j} \delta_{G}(i, j)
$$

- Note that if $\operatorname{diam}(G) \geq 3$:

$$
\operatorname{diam}\left(G_{2}\right) \leq \frac{\operatorname{diam}(G)}{2}+\frac{1}{2} \leq \frac{2 \operatorname{diam}(G)}{3}
$$

- After recursing t steps, the diameter is at most
$(2 / 3)^{t} \operatorname{diam}(G)$
and so after $\log (n / 2) / \log (3 / 2)$ steps, the diameter is at most 2 .

Computing $M_{G_{2}}$ via $M_{G} \times M_{G}$

Lemma

$$
M_{G_{2}}(i, j)= \begin{cases}1 & \text { if } i \neq j \text { and }\left(M_{G}(i, j)=1 \text { or } M_{G}^{2}(i, j)>0\right) \\ 0 & \text { otherwise }\end{cases}
$$

Proof.
$M_{G}^{2}(i, j)=\sum_{k} M_{G}(i, k) M_{G}(k, j)=\#$ of length 2 paths from i to j. So there is an edge (i, j) in G_{2} iff $(i, j) \in G$ or $M_{G}^{2}(i, j)>0$.

Can compute $M_{G_{2}}$ in $O(\mu(n))$ time.

Computing P_{G} via $D_{G_{2}} \times M_{G}$

P_{G} can be computed in $O(\mu(n))$ time...

Lemma

Let $X=D_{G_{2}} M_{G}$ where $D_{G_{2}}(i, j)=\delta_{G_{2}}(i, j)$. Then,

$$
P_{G}(i, j)=0 \Longleftrightarrow \frac{X(i, j)}{\operatorname{degree}_{G}(j)} \geq \delta_{G_{2}}(i, j)
$$

where $\operatorname{degree}_{G}(j)$ is the number of edges incident to node j in graph G.

Note that,

$$
\frac{X(i, j)}{\operatorname{degree}_{G}(j)}=\frac{\sum_{k} \delta_{G_{2}}(i, k) M_{G}(k, j)}{\operatorname{degree}_{G}(j)}=\frac{\sum_{k: \text { neighbor of } j \text { in } G} \delta_{G_{2}}(i, k)}{\operatorname{degree}_{G}(j)}
$$

Fix i and let $d_{k}=\delta_{G_{2}}(i, k)$, then we need to show:

$$
P_{G}(i, j)=0 \Longleftrightarrow\left(\text { average of } d_{k} \text { over neighbors } k \text { of } j\right) \geq d_{j}
$$

Proof of Lemma

- If $P_{G}(i, j)=0$, then $\delta_{G}(i, j)=2 d_{j}$

- For all neighbors k note that $\delta_{G}(i, k)$ is either $2 d_{j}-1,2 d_{j}$, or $2 d_{j}+1$
- Hence, each d_{k} is either d_{j} or $d_{j}+1$
- Therefore average d_{k} values is at least d_{j}
- If $P_{G}(i, j)=1$, then $\delta_{G}(i, j)=2 d_{j}-1$

Blue: Distance from node to i in G Red: Distance from node to i in G_{2}

- For all neighbors k note that $\delta_{G}(i, k)$ is either $2 d_{j}-2,2 d_{j}-1$, or $2 d_{j}$
- Hence, each d_{k} is either $d_{j}-1$ or d_{j}
- At least one neighbor has $\delta_{G}(i, k)=2 d_{j}-2$ and $d_{k}=d_{j}-1$
- Therefore average d_{k} values is strictly less than d_{j}

Total Running Time

Algorithm (Seidel $\left(M_{G}\right)$)

1. compute $M_{G_{2}}$
2. if $\forall i \neq j: M_{G_{2}}(i, j)=1$, return

$$
D_{G}(i, j)= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } M_{G}(i, j)=1 \\ 2 & \text { if otherwise }\end{cases}
$$

3. else:

$$
\begin{aligned}
& 3.1 \text { compute } D_{G_{2}}=\operatorname{Seidel}\left(M_{G_{2}}\right) \\
& 3.2 \text { compute } P_{G} \\
& 3.3 \text { return } D_{G}=2 D_{G_{2}}-P_{G}
\end{aligned}
$$

Running Time: $O(\mu(n) \log n)$ since depth of recursion is $O(\log n)$ and each iteration takes $O(\mu(n))$ time.

