CMPSCI 611: Advanced Algorithms

Lecture 10: Seidel's Algorithm

Andrew McGregor

Last Compiled: January 31, 2024

Seidel's Algorithm

Problem: For an undirected, unweighted graph G, compute all distances.

Seidel's Algorithm is based on matrix multiplication and runs in time

$$O(\mu(n)\log n)$$

where $\mu(n)$ is the time to multiply two $n \times n$ matrices together. Recall

$$n^2 \le \mu(n) \le n^{2.3727}$$

Definition

Let M_G be the adjacency matrix of G = (V, E), i.e., an $n \times n$ binary matrix where $M_G(i, j) = 1$ iff $(i, j) \in E$.

The G_2 graph

Definition

Given a undirected, unweighted graph G = (V, E), define $G_2 = (V, E')$ where $(i, j) \in E'$ iff $\delta_G(i, j) \leq 2$.

Lemma

Let $P_G(i,j) = 1$ if $\delta_G(i,j)$ is odd and $P_G(i,j) = 0$ otherwise. Then,

$$\delta_G(i,j) = 2\delta_{G_2}(i,j) - P_G(i,j) .$$

Proof.

A path of length 2k in G corresponds to a path of length k in G_2 . A path of length in 2k + 1 in G corresponds to a path of length k + 1 in G_2 . \square

Seidel's Algorithm

Algorithm (Seidel(M_G))

- 1. compute M_{G_2}
- 2. if all non-diagonal entries of $M_{G_2}(i,j)$ are 1, return D_G where

$$D_G[i,j] = egin{cases} 0 & \textit{if } i = j \ 1 & \textit{if } M_G(i,j) = 1 \ 2 & \textit{otherwise} \end{cases}$$

- 3. else:
 - 3.1 compute $D_{G_2} = \text{Seidel}(M_{G_2})$
 - 3.2 compute P_G
 - 3.3 return $D_G = 2D_{G_2} P_G$

Mystery Steps: How can we compute M_{G_2} and P_{G_3} efficiently?

Depth of Recursion

▶ The diameter of a graph *G* is the "longest shortest path",

$$diam(G) = \max_{i,j} \delta_G(i,j)$$

Note that if $diam(G) \ge 3$:

$$\mathsf{diam}(\mathit{G}_{2}) \leq \frac{\mathsf{diam}(\mathit{G})}{2} + \frac{1}{2} \leq \frac{2\mathsf{diam}(\mathit{G})}{3}$$

▶ After recursing *t* steps, the diameter is at most

$$(2/3)^t \operatorname{diam}(G)$$

and so after $\log(n/2)/\log(3/2)$ steps, the diameter is at most 2.

Computing M_{G_2} via $M_G \times M_G$

Lemma

$$M_{G_2}(i,j) = egin{cases} 1 & \textit{if } i
eq j \textit{ and } (M_G(i,j) = 1 \textit{ or } M_G^2(i,j) > 0) \\ 0 & \textit{otherwise} \end{cases}$$

Proof.

 $M_G^2(i,j) = \sum_k M_G(i,k) M_G(k,j) = \#$ of length 2 paths from i to j. So there is an edge (i,j) in G_2 iff $(i,j) \in G$ or $M_G^2(i,j) > 0$.

Can compute M_{G_2} in $O(\mu(n))$ time.

Computing P_G via $D_{G_2} \times M_G$

 P_G can be computed in $O(\mu(n))$ time...

Lemma

Let $X = D_{G_2}M_G$ where $D_{G_2}(i,j) = \delta_{G_2}(i,j)$. Then,

$$P_G(i,j) = 0 \iff \frac{X(i,j)}{\operatorname{degree}_G(j)} \ge \delta_{G_2}(i,j)$$

where $degree_G(j)$ is the number of edges incident to node j in graph G.

Note that,

$$\frac{X(i,j)}{\mathsf{degree}_G(j)} = \frac{\sum_k \delta_{G_2}(i,k) M_G(k,j)}{\mathsf{degree}_G(j)} = \frac{\sum_{k: \mathsf{neighbor} \ \mathsf{of} \ j \ \mathsf{in} \ G} \delta_{G_2}(i,k)}{\mathsf{degree}_G(j)}$$

Fix *i* and let $d_k = \delta_{G_2}(i, k)$, then we need to show:

$$P_G(i,j) = 0 \iff (average of d_k over neighbors k of j) \ge d_j$$

Proof of Lemma

▶ If $P_G(i,j) = 0$, then $\delta_G(i,j) = 2d_j$

- For all neighbors k note that $\delta_G(i, k)$ is either $2d_j 1, 2d_j$, or $2d_j + 1$
- ▶ Hence, each d_k is either d_i or $d_i + 1$
- ▶ Therefore average d_k values is at least d_j
- ▶ If $P_G(i,j) = 1$, then $\delta_G(i,j) = 2d_i 1$

- For all neighbors k note that $\delta_G(i, k)$ is either $2d_i 2, 2d_i 1$, or $2d_i$
- ▶ Hence, each d_k is either $d_i 1$ or d_i
- At least one neighbor has $\delta_G(i, k) = 2d_i 2$ and $d_k = d_i 1$
- ▶ Therefore average d_k values is strictly less than d_i

Total Running Time

Algorithm (Seidel(M_G))

- 1. compute M_{G_2}
- 2. if $\forall i \neq j : M_{G_2}(i,j) = 1$, return

$$D_G(i,j) = egin{cases} 0 & ext{if } i
eq j \ 1 & ext{if } M_G(i,j) = 1 \ 2 & ext{if otherwise} \end{cases}$$

- 3. else:
 - 3.1 compute $D_{G_2} = \text{Seidel}(M_{G_2})$
 - 3.2 compute P_G
 - 3.3 return $D_G = 2D_{G_2} P_G$

Running Time: $O(\mu(n) \log n)$ since depth of recursion is $O(\log n)$ and each iteration takes $O(\mu(n))$ time.