CMPSCI 611: Advanced Algorithms

Lecture 12: Network Flow Part Il

Andrew McGregor

Last Compiled: April 4, 2024

Definitions

Input:
» Directed Graph G = (V, E)
» Capacities C(u,v) > 0 for (u,v) € E and C(u,v) =0 for (u,v) € E
» A source node s, and sink node t

Capacity

Definitions

Input:
» Directed Graph G = (V, E)
» Capacities C(u,v) > 0 for (u,v) € E and C(u,v) =0 for (u,v) ¢ E
> A source node s, and sink node t

Output: A flow f from s to t where f : V x V — R satisfies
» Skew-symmetry: Yu,v € V., f(u,v) = —f(v,u)

» Conservation of Flow: Vv € V —{s,t},> \, f(u,v) =0
» Capacity Constraints: Yu,v € V, f(u,v) < C(u, v)

Goal: Maximize “size of the flow”, i.e., the total flow coming leaving s:

=2 f(s,v)

vev

Capacity

Capacity/Flow

Cut Definitions
Definition
An s — t cut of G is a partition of the vertices into two sets A and B
such that s€ Aand t € B.
Definition
The capacity of a cut (A, B) is

C(AB)= > C(uv)

ueA,veB

Definition
The flow across a cut (A, B) is

FIAB)= > f(uv)

ueA,veB

Note that because of capacity constraints: (A, B) < C(A, B)

7/24

First Cut

Second Cut

All cuts have same flow

Lemma
For any flow f: for all s-t cuts (A, B), f(A, B) equals |f|.
Proof.
» By induction on size of A where s € A
» Base Case: A= {s} and f(s,V —s) = |f|
» Induction Hypothesis: f(A, B) = |f| for all A such that |A] = k
| 4

Consider cut (A, B’) where |[A'| = k+1. Let ue A —s:
FALB) = f(A" —u,B' +u) = > f(v,u)+ Y f(u,v)
veEA’ veB’
By skew-symmetry and conservation of flow

Z f(v, ”)_Z f(u,v) = Z (v, “)+Z f(v,u) = Z f(v,u)=0

veA’ veB’ veA’ veB’ veVv

Hence, f(A',B’) = f(A' — u, B’ + u) = |f| by induction hypothesis.
[

Max-Flow Min-Cut

Theorem (Max-Flow Min-Cut)
For any flow network and flow f, the following statements are equivalent:

1. f is a maximum flow.

2. There exists an s — t cut (A, B) such that |f| = C(A, B)

Residual Networks and Augmenting Paths
Residual network encodes how you can change the flow between two
nodes given the current flow and the capacity constraints.

Definition
Given a flow network G = (V, E) and flow f in G, the residual network
Gr is defined as

Gr = (V, Ef) where Er = {(u,v) : C(u,v) — f(u,v) >0}

Cr(u,v) = C(u,v) — f(u,v)

Note that (u, v) € Er implies either C(u,v) > 0 or C(v, u) > 0.

Definition

An augmenting path for flow f is a path from s to t in graph Gf. The
bottleneck capacity b(p) is the minimum capacity in G¢ of any edge of p.
We can increase flow by b(p) along an augmenting path.

Capacity/Flow

Residual

Augmenting Path

Old Flow

New Flow

Min Capacity Cut Proves this is Optimal

Old Residual Graph

New Residual Graph

Max-Flow Min-Cut

Theorem (Max-Flow Min-Cut)

For any flow network and flow f, the following statements are equivalent:
1. f is a maximum flow.
2. There exists an s — t cut (A, B) with |f| = f(A,B) = C(A, B).
3. There doesn't exist an augmenting path in Gy.

Proof.
» (2= 1): Increasing flow, increases f(A, B) which violates capacity
» (1= 3): If pis an augmenting path, can increase flow by b(p)

» (3= 2): Suppose Gr has no augmenting path. Define cut

A ={v: v isreachable from s in G¢r} and B=V — A

Yue AyveB, f(uv)= C(u,v). Hence C(A,B) = f(A, B) = |f]
O

Ford-Fulkerson Algorithm

Algorithm

1. flow f =0
2. while there exists an augmenting path p for f

2.1 find augmenting path p
2.2 augment f by b(p) units along p

3. return f

Theorem
The algorithms finds a maximum flow in time O(|E||f*|) if capacities are
integral where |f*| is the size of the maximum flow.

Proof.
O(|E|) time to find each augmenting path via BFS and |f*| iterations
because each augmenting path increases flow by at least 1. O

Ford-Fulkerson Algorithm with Edmonds-Karp Heuristic

Algorithm

1. flow f =0
2. while there exists an augmenting path p for f

2.1 find shortest (unweighted) augmenting path p
2.2 augment f by b(p) units along p

3. return f

Theorem
The algorithms finds a maximum flow in time O(|E|*|V|)

Proof of Running Time (1/3)
Definition
Let 0 (s, u) be length of shortest unweighted path from s to u in Gr.
Definition
(u, v) is critical if it's on augmenting path p for f and C¢(u,v) = b(p).
Lemma
d¢(s, v) is non-decreasing as f changes.

Lemma
Between occasions when (u, v) is critical, d¢(s, u) increases by at least 2.

Proof of Running Time.

» Max distance in Gr is |V/| so any edge is critical at most 1+ |V/|/2
times

> At most 2|E| edges in residual network
> There's a critical edge in each iteration so r = O(|E||V/|) iterations.
» Each iteration takes O(|E|) to find shortest path

0

