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Definitions

Input:

I Directed Graph G = (V ,E )

I Capacities C (u, v) > 0 for (u, v) ∈ E and C (u, v) = 0 for (u, v) 6∈ E

I A source node s, and sink node t
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Definitions

Input:

I Directed Graph G = (V ,E )

I Capacities C (u, v) > 0 for (u, v) ∈ E and C (u, v) = 0 for (u, v) 6∈ E

I A source node s, and sink node t

Output: A flow f from s to t where f : V × V → R satisfies

I Skew-symmetry: ∀u, v ∈ V , f (u, v) = −f (v , u)

I Conservation of Flow: ∀v ∈ V − {s, t},
∑

u∈V f (u, v) = 0

I Capacity Constraints: ∀u, v ∈ V , f (u, v) ≤ C (u, v)

Goal: Maximize “size of the flow”, i.e., the total flow coming leaving s:

|f | =
∑
v∈V

f (s, v)
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Capacity/Flow
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Cut Definitions
Definition
An s − t cut of G is a partition of the vertices into two sets A and B
such that s ∈ A and t ∈ B.

Definition
The capacity of a cut (A,B) is

C (A,B) =
∑

u∈A,v∈B

C (u, v)

Definition
The flow across a cut (A,B) is

f (A,B) =
∑

u∈A,v∈B

f (u, v)

Note that because of capacity constraints: f (A,B) ≤ C (A,B)
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Second Cut
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All cuts have same flow
Lemma
For any flow f : for all s-t cuts (A,B), f (A,B) equals |f |.

Proof.
I By induction on size of A where s ∈ A

I Base Case: A = {s} and f (s,V − s) = |f |
I Induction Hypothesis: f (A,B) = |f | for all A such that |A| = k

I Consider cut (A′,B ′) where |A′| = k + 1. Let u ∈ A′ − s:

f (A′,B ′) = f (A′ − u,B ′ + u)−
∑
v∈A′

f (v , u) +
∑
v∈B′

f (u, v)

I By skew-symmetry and conservation of flow∑
v∈A′

f (v , u)−
∑
v∈B′

f (u, v) =
∑
v∈A′

f (v , u)+
∑
v∈B′

f (v , u) =
∑
v∈V

f (v , u) = 0

I Hence, f (A′,B ′) = f (A′ − u,B ′ + u) = |f | by induction hypothesis.
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Max-Flow Min-Cut

Theorem (Max-Flow Min-Cut)
For any flow network and flow f , the following statements are equivalent:

1. f is a maximum flow.

2. There exists an s − t cut (A,B) such that |f | = C (A,B)
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Residual Networks and Augmenting Paths
Residual network encodes how you can change the flow between two
nodes given the current flow and the capacity constraints.

Definition
Given a flow network G = (V ,E ) and flow f in G , the residual network
Gf is defined as

Gf = (V ,Ef ) where Ef = {(u, v) : C (u, v)− f (u, v) > 0}

Cf (u, v) = C (u, v)− f (u, v)

Note that (u, v) ∈ Ef implies either C (u, v) > 0 or C (v , u) > 0.

Definition
An augmenting path for flow f is a path from s to t in graph Gf . The
bottleneck capacity b(p) is the minimum capacity in Gf of any edge of p.
We can increase flow by b(p) along an augmenting path.
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Residual
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Augmenting Path
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Old Flow

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/110/0
7/7

20/15

4/4

16/24



New Flow
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Min Capacity Cut Proves this is Optimal
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Old Residual Graph
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New Residual Graph
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Max-Flow Min-Cut

Theorem (Max-Flow Min-Cut)
For any flow network and flow f , the following statements are equivalent:

1. f is a maximum flow.

2. There exists an s − t cut (A,B) with |f | = f (A,B) = C (A,B).

3. There doesn’t exist an augmenting path in Gf .

Proof.
I (2⇒ 1): Increasing flow, increases f (A,B) which violates capacity

I (1⇒ 3): If p is an augmenting path, can increase flow by b(p)

I (3⇒ 2): Suppose Gf has no augmenting path. Define cut

A = {v : v is reachable from s in Gf } and B = V − A

∀u ∈ A, v ∈ B, f (u, v) = C (u, v). Hence C (A,B) = f (A,B) = |f |
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Ford-Fulkerson Algorithm

Algorithm

1. flow f = 0

2. while there exists an augmenting path p for f

2.1 find augmenting path p
2.2 augment f by b(p) units along p

3. return f

Theorem
The algorithms finds a maximum flow in time O(|E ||f ∗|) if capacities are
integral where |f ∗| is the size of the maximum flow.

Proof.
O(|E |) time to find each augmenting path via BFS and |f ∗| iterations
because each augmenting path increases flow by at least 1.
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Ford-Fulkerson Algorithm with Edmonds-Karp Heuristic

Algorithm

1. flow f = 0

2. while there exists an augmenting path p for f

2.1 find shortest (unweighted) augmenting path p
2.2 augment f by b(p) units along p

3. return f

Theorem
The algorithms finds a maximum flow in time O(|E |2|V |)
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Proof of Running Time (1/3)
Definition
Let δf (s, u) be length of shortest unweighted path from s to u in Gf .

Definition
(u, v) is critical if it’s on augmenting path p for f and Cf (u, v) = b(p).

Lemma
δf (s, v) is non-decreasing as f changes.

Lemma
Between occasions when (u, v) is critical, δf (s, u) increases by at least 2.

Proof of Running Time.

I Max distance in Gf is |V | so any edge is critical at most 1 + |V |/2
times

I At most 2|E | edges in residual network

I There’s a critical edge in each iteration so r = O(|E ||V |) iterations.

I Each iteration takes O(|E |) to find shortest path
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