CMPSCI 611: Advanced Algorithms

Lecture 13: Finishing Network Flow. Randomized Algorithms

Andrew McGregor

Residual

Augmenting Path

New Residual Graph

Ford-Fulkerson Algorithm with Edmonds-Karp Heuristic

Algorithm

1. flow $f=0$
2. while there exists an augmenting path p for f
2.1 find shortest (unweighted) augmenting path p
2.2 augment f by $b(p)$ units along p
3. return f

Theorem
The algorithms finds a maximum flow in time $O\left(|E|^{2}|V|\right)$

Proof of Running Time (1/3)

Definition

Let $\delta_{f}(s, u)$ be length of shortest unweighted path from s to u in the G_{f}.

Definition

(u, v) is critical if it's on augmenting path p for f and $C_{f}(u, v)=b(p)$.
Lemma
$\delta_{f}(s, v)$ is non-decreasing as f changes.

Lemma

Between occasions when (u, v) is critical, $\delta_{f}(s, u)$ increases by at least 2 .
Proof of Running Time.

- Max distance in G_{f} is $|V|$ so any edge is critical at most $1+|V| / 2$ times
- At most $2|E|$ edges in residual network
- There's a critical edge in each iteration so $O(|E \| V|)$ iterations
- Each iteration takes $O(|E|)$ to find shortest path

Proof of Running Time (2/3)

Lemma

$\delta_{f}(s, v)$ is non-decreasing as f changes.
Proof.

- Consider augmenting f to f^{\prime}
- For contradiction, pick v that minimizes $\delta_{f^{\prime}}(s, v)$ subject to:

$$
\delta_{f^{\prime}}(s, v)<\delta_{f}(s, v)
$$

- Let u be vertex before v on shortest $s-v$ path in $G_{f^{\prime}}$. Note $\delta_{f^{\prime}}(s, u) \geq \delta_{f}(s, u)$ and $\delta_{f^{\prime}}(s, v)=\delta_{f^{\prime}}(s, u)+1$
- Claim $(u, v) \notin E_{f}$
- Otherwise $\delta_{f}(s, v) \leq \delta_{f}(s, u)+1$
- $\delta_{f}(s, u) \leq \delta_{f^{\prime}}(s, u)$ implies $\delta_{f}(s, v) \leq \delta_{f^{\prime}}(s, u)+1=\delta_{f^{\prime}}(s, v)$.
- Contradicts $\delta_{f^{\prime}}(s, v)<\delta_{f}(s, v)$.
- $(u, v) \notin E_{f}$ and $(u, v) \in E_{f}$, implies augmentation contains (v, u)
- Since augmentation was shortest path:

$$
\delta_{f}(s, v)=\delta_{f}(s, u)-1 \underset{\tau / 12}{\leq} \delta_{f^{\prime}}(s, u)-1=\delta_{f^{\prime}}(s, v)-2
$$

Proof of Running Time (3/3)

Lemma

Between occasions when (u, v) is critical, $\delta_{f}(s, u)$ increases by at least 2 .

Proof.

- Let (u, v) be critical in the augmentation of f
- Since (u, v) on shortest path: $\delta_{f}(s, u)=\delta_{f}(s, v)-1$
- After augmentation (u, v) disappears from residual network!
- Let $f^{\prime \prime}$ be next flow with $(u, v) \in G_{f^{\prime \prime}}$ and f^{\prime} be flow right before $f^{\prime \prime}$
- $(u, v) \notin G_{f^{\prime}}$ but $(u, v) \in G_{f^{\prime \prime}}$ implies (v, u) used to augment f^{\prime}
- Therefore $\delta_{f^{\prime}}(s, v)=\delta_{f^{\prime}}(s, u)-1$ and so

$$
\delta_{f}(s, u)=\delta_{f}(s, v)-1 \leq \delta_{f^{\prime}}(s, v)-1=\delta_{f^{\prime}}(s, u)-2
$$

Probability Refresher

- Expectation of random variable:

$$
\mathbb{E}[X]=\sum_{r} r \mathbb{P}[X=r]
$$

- Linearity of expectation:

$$
\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]
$$

- Conditional Probability: For arbitrary events A and B,

$$
\mathbb{P}[A \mid B]=\mathbb{P}[A \cap B] / \mathbb{P}[B]
$$

and $\mathbb{P}\left[\cap_{i=1}^{n} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{n} \mid \cap_{i=1}^{n-1} A_{i}\right]$

Quicksort

Problem: Sort an array of distinct values $X=\left[x_{1}, \ldots, x_{n}\right]$

Algorithm

1. Pick a pivot $x \in X$ at random from the array
2. Construct new arrays $Y=\left[y_{1}, \ldots, y_{k}\right], Z=\left[z_{1}, \ldots, z_{n-k-1}\right]$ where

$$
y<x<z \text { for all } y \in Y, z \in Z
$$

3. Recursively sort Y and Z to get Y^{\prime} and Z^{\prime}
4. Return the array that concatenates Y^{\prime}, x, and Z^{\prime}

What's the expected number of comparisons performed in this algorithm?

Probability two items are compared

Lemma
Let a and b be the i-th and j-th smallest element of X where $i<j$.

$$
\operatorname{Pr}[a \text { is compared to } b]=\frac{2}{j-i+1}
$$

Proof.

1. Consider $S=\{x \in X: a \leq x \leq b\}$
2. a and b are compared iff the first pivot chosen from S is either a or b
3. Elements of S are equally likely to be chosen as a pivot, so

$$
\operatorname{Pr}[a \text { is compared to } b]=\frac{2}{|S|}=\frac{2}{j-i+1}
$$

Expected Number of Comparisons

Lemma

Expected number of comparisons performs is $O(n \log n)$.
Proof.

1. Let $Z_{i j}=1$ if the i-th smallest element is compared to j-th smallest element and $Z_{i j}=0$ otherwise.
2. Number of comparisons: $\sum_{1 \leq i<j \leq n} Z_{i j}$
3. Expected number of comparisons:

$$
\mathbb{E}\left[\sum_{1 \leq i<j \leq n} Z_{i j}\right]=\sum_{1 \leq i<j \leq n} \mathbb{E}\left[Z_{i j}\right]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}=\sum_{j=2}^{n} \sum_{k=2}^{j} \frac{2}{k}
$$

4. Because $H_{n}=1+1 / 2+1 / 3+\ldots+1 / n=O(\log n)$,

$$
\mathbb{E}\left[\sum_{1 \leq i<j \leq n} Z_{i j}\right] \leq \sum_{j=2}^{n} \sum_{k=2}^{n} \frac{2}{k}=n \cdot O(\log n)=O(n \log n)
$$

