# CMPSCI 611: Advanced Algorithms <br> Lecture 14: Min-Cut 

Andrew McGregor

Last Compiled: April 4, 2024

From Last Time: Quicksort

Problem: Sort an array of distinct values $X=\left[x_{1}, \ldots, x_{n}\right]$

## From Last Time: Quicksort

Problem: Sort an array of distinct values $X=\left[x_{1}, \ldots, x_{n}\right]$

Algorithm

1. Pick a pivot $x \in X$ at random from the array
2. Construct new arrays $Y=\left[y_{1}, \ldots, y_{k}\right], Z=\left[z_{1}, \ldots, z_{n-k-1}\right]$ where

$$
y<x<z \text { for all } y \in Y, z \in Z
$$

3. Recursively sort $Y$ and $Z$ to get $Y^{\prime}$ and $Z^{\prime}$
4. Return the array that concatenates $Y^{\prime}, x$, and $Z^{\prime}$

## From Last Time: Quicksort

Problem: Sort an array of distinct values $X=\left[x_{1}, \ldots, x_{n}\right]$

Algorithm

1. Pick a pivot $x \in X$ at random from the array
2. Construct new arrays $Y=\left[y_{1}, \ldots, y_{k}\right], Z=\left[z_{1}, \ldots, z_{n-k-1}\right]$ where

$$
y<x<z \text { for all } y \in Y, z \in Z
$$

3. Recursively sort $Y$ and $Z$ to get $Y^{\prime}$ and $Z^{\prime}$
4. Return the array that concatenates $Y^{\prime}, x$, and $Z^{\prime}$

What's the expected number of comparisons performed in this algorithm?

## Probability two items are compared

Lemma
Let $a$ and $b$ be the $i$-th and $j$-th smallest element of $X$ where $i<j$.

$$
\operatorname{Pr}[a \text { is compared to } b]=\frac{2}{j-i+1}
$$

## Probability two items are compared

Lemma
Let $a$ and $b$ be the $i$-th and $j$-th smallest element of $X$ where $i<j$.

$$
\operatorname{Pr}[a \text { is compared to } b]=\frac{2}{j-i+1}
$$

Proof.

## Probability two items are compared

Lemma
Let $a$ and $b$ be the $i$-th and $j$-th smallest element of $X$ where $i<j$.

$$
\operatorname{Pr}[a \text { is compared to } b]=\frac{2}{j-i+1}
$$

Proof.

1. Consider $S=\{x \in X: a \leq x \leq b\}$

## Probability two items are compared

Lemma
Let $a$ and $b$ be the $i$-th and $j$-th smallest element of $X$ where $i<j$.

$$
\operatorname{Pr}[a \text { is compared to } b]=\frac{2}{j-i+1}
$$

## Proof.

1. Consider $S=\{x \in X: a \leq x \leq b\}$
2. $a$ and $b$ are compared iff the first pivot chosen from $S$ is either $a$ or $b$

## Probability two items are compared

Lemma
Let $a$ and $b$ be the $i$-th and $j$-th smallest element of $X$ where $i<j$.

$$
\operatorname{Pr}[a \text { is compared to } b]=\frac{2}{j-i+1}
$$

## Proof.

1. Consider $S=\{x \in X: a \leq x \leq b\}$
2. $a$ and $b$ are compared iff the first pivot chosen from $S$ is either $a$ or $b$
3. Elements of $S$ are equally likely to be chosen as a pivot, so

$$
\operatorname{Pr}[a \text { is compared to } b]=\frac{2}{|S|}
$$

## Probability two items are compared

Lemma
Let $a$ and $b$ be the $i$-th and $j$-th smallest element of $X$ where $i<j$.

$$
\operatorname{Pr}[a \text { is compared to } b]=\frac{2}{j-i+1}
$$

## Proof.

1. Consider $S=\{x \in X: a \leq x \leq b\}$
2. $a$ and $b$ are compared iff the first pivot chosen from $S$ is either $a$ or $b$
3. Elements of $S$ are equally likely to be chosen as a pivot, so

$$
\operatorname{Pr}[a \text { is compared to } b]=\frac{2}{|S|}=\frac{2}{j-i+1}
$$

## Expected Number of Comparisons

Lemma
Expected number of comparisons performs is $O(n \log n)$.

## Expected Number of Comparisons

## Lemma

Expected number of comparisons performs is $O(n \log n)$.
Proof.

1. Let $Z_{i j}=1$ if the $i$-th smallest element is compared to $j$-th smallest element and $Z_{i j}=0$ otherwise.

## Expected Number of Comparisons

## Lemma

Expected number of comparisons performs is $O(n \log n)$.
Proof.

1. Let $Z_{i j}=1$ if the $i$-th smallest element is compared to $j$-th smallest element and $Z_{i j}=0$ otherwise.
2. Number of comparisons: $\sum_{1 \leq i<j \leq n} Z_{i j}$

## Expected Number of Comparisons

## Lemma

Expected number of comparisons performs is $O(n \log n)$.
Proof.

1. Let $Z_{i j}=1$ if the $i$-th smallest element is compared to $j$-th smallest element and $Z_{i j}=0$ otherwise.
2. Number of comparisons: $\sum_{1 \leq i<j \leq n} Z_{i j}$
3. Expected number of comparisons:
$\mathbb{E}\left[\sum_{1 \leq i<j \leq n} Z_{i j}\right]$

## Expected Number of Comparisons

## Lemma

Expected number of comparisons performs is $O(n \log n)$.
Proof.

1. Let $Z_{i j}=1$ if the $i$-th smallest element is compared to $j$-th smallest element and $Z_{i j}=0$ otherwise.
2. Number of comparisons: $\sum_{1 \leq i<j \leq n} Z_{i j}$
3. Expected number of comparisons:
$\mathbb{E}\left[\sum_{1 \leq i<j \leq n} Z_{i j}\right]=\sum_{1 \leq i<j \leq n} \mathbb{E}\left[Z_{i j}\right]$

## Expected Number of Comparisons

## Lemma

Expected number of comparisons performs is $O(n \log n)$.
Proof.

1. Let $Z_{i j}=1$ if the $i$-th smallest element is compared to $j$-th smallest element and $Z_{i j}=0$ otherwise.
2. Number of comparisons: $\sum_{1 \leq i<j \leq n} Z_{i j}$
3. Expected number of comparisons:

$$
\mathbb{E}\left[\sum_{1 \leq i<j \leq n} z_{i j}\right]=\sum_{1 \leq i<j \leq n} \mathbb{E}\left[Z_{i j}\right]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}=\sum_{j=2}^{n} \sum_{k=2}^{j} \frac{2}{k}
$$

## Expected Number of Comparisons

## Lemma

Expected number of comparisons performs is $O(n \log n)$.
Proof.

1. Let $Z_{i j}=1$ if the $i$-th smallest element is compared to $j$-th smallest element and $Z_{i j}=0$ otherwise.
2. Number of comparisons: $\sum_{1 \leq i<j \leq n} Z_{i j}$
3. Expected number of comparisons:

$$
\mathbb{E}\left[\sum_{1 \leq i<j \leq n} Z_{i j}\right]=\sum_{1 \leq i<j \leq n} \mathbb{E}\left[Z_{i j}\right]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}=\sum_{j=2}^{n} \sum_{k=2}^{j} \frac{2}{k}
$$

4. Because $H_{n}=1+1 / 2+1 / 3+\ldots+1 / n=O(\log n)$,

$$
\mathbb{E}\left[\sum_{1 \leq i<j \leq n} Z_{i j}\right] \leq \sum_{j=2}^{n} \sum_{k=2}^{n} \frac{2}{k}=n \cdot O(\log n)=O(n \log n)
$$

## Outline

Karger's Randomized Min-Cut Algorithm

## Min-Cut Problem

Given an unweighted, multi-graph $G=(V, E)$, we want to partition $V$ into $V_{1}$ and $V_{2}$ such that $\left|E \cap\left(V_{1} \times V_{2}\right)\right|$ is minimized.

## Min-Cut Problem

Given an unweighted, multi-graph $G=(V, E)$, we want to partition $V$ into $V_{1}$ and $V_{2}$ such that $\left|E \cap\left(V_{1} \times V_{2}\right)\right|$ is minimized.
Algorithm

- Contract a random edge $e=(u, v)$ and remove self-loops but not multi-edges
- Repeat until there are only 2 vertices remaining.
- Output the number of remaining edges.


## Min-Cut Problem

Given an unweighted, multi-graph $G=(V, E)$, we want to partition $V$ into $V_{1}$ and $V_{2}$ such that $\left|E \cap\left(V_{1} \times V_{2}\right)\right|$ is minimized.
Algorithm

- Contract a random edge $e=(u, v)$ and remove self-loops but not multi-edges
- Repeat until there are only 2 vertices remaining.
- Output the number of remaining edges.

Let $|V|=n$ and $|E|=m$.

Example

## Example



Step 1


Step 2


Step 3


Step 4


Step 5


## Correctness with low probability

Theorem
Algorithm is correct with probability $\geq 2 / n^{2}$ and never underestimates.

## Correctness with low probability

## Theorem

Algorithm is correct with probability $\geq 2 / n^{2}$ and never underestimates.
Proof.

- Min cut of the graph doesn't decrease: after $e=(x, y)$ contracted, set of possible cuts is limited to all those with $x$ and $y$ on same side


## Correctness with low probability

## Theorem

Algorithm is correct with probability $\geq 2 / n^{2}$ and never underestimates.
Proof.

- Min cut of the graph doesn't decrease: after $e=(x, y)$ contracted, set of possible cuts is limited to all those with $x$ and $y$ on same side
- Let $C=\left(V_{1}, V_{2}\right)$ be a specific minimum cut with $|C|=k$.


## Correctness with low probability

## Theorem

Algorithm is correct with probability $\geq 2 / n^{2}$ and never underestimates.
Proof.

- Min cut of the graph doesn't decrease: after $e=(x, y)$ contracted, set of possible cuts is limited to all those with $x$ and $y$ on same side
- Let $C=\left(V_{1}, V_{2}\right)$ be a specific minimum cut with $|C|=k$.
- Let $A_{i}$ be event that we don't contract edge across $C$ at step $i$.

$$
\mathbb{P}\left[\cap_{1 \leq i \leq n-2} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{n-2} \mid \cap_{1 \leq i \leq n-3} A_{i}\right]
$$

## Correctness with low probability

## Theorem

Algorithm is correct with probability $\geq 2 / n^{2}$ and never underestimates.
Proof.

- Min cut of the graph doesn't decrease: after $e=(x, y)$ contracted, set of possible cuts is limited to all those with $x$ and $y$ on same side
- Let $C=\left(V_{1}, V_{2}\right)$ be a specific minimum cut with $|C|=k$.
- Let $A_{i}$ be event that we don't contract edge across $C$ at step $i$.

$$
\mathbb{P}\left[\cap_{1 \leq i \leq n-2} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{n-2} \mid \cap_{1 \leq i \leq n-3} A_{i}\right]
$$

- Number of edges before $i$-th step if no edges across $C$ have been contracted so far is at least


## Correctness with low probability

## Theorem

Algorithm is correct with probability $\geq 2 / n^{2}$ and never underestimates.

## Proof.

- Min cut of the graph doesn't decrease: after $e=(x, y)$ contracted, set of possible cuts is limited to all those with $x$ and $y$ on same side
- Let $C=\left(V_{1}, V_{2}\right)$ be a specific minimum cut with $|C|=k$.
- Let $A_{i}$ be event that we don't contract edge across $C$ at step $i$.

$$
\mathbb{P}\left[\cap_{1 \leq i \leq n-2} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{n-2} \mid \cap_{1 \leq i \leq n-3} A_{i}\right]
$$

- Number of edges before $i$-th step if no edges across $C$ have been contracted so far is at least $(n-i+1) k / 2$ since there are $n-i+1$ nodes remaining each with degree $\geq k$


## Correctness with low probability

## Theorem

Algorithm is correct with probability $\geq 2 / n^{2}$ and never underestimates.

## Proof.

- Min cut of the graph doesn't decrease: after $e=(x, y)$ contracted, set of possible cuts is limited to all those with $x$ and $y$ on same side
- Let $C=\left(V_{1}, V_{2}\right)$ be a specific minimum cut with $|C|=k$.
- Let $A_{i}$ be event that we don't contract edge across $C$ at step $i$.

$$
\mathbb{P}\left[\cap_{1 \leq i \leq n-2} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{n-2} \mid \cap_{1 \leq i \leq n-3} A_{i}\right]
$$

- Number of edges before $i$-th step if no edges across $C$ have been contracted so far is at least $(n-i+1) k / 2$ since there are $n-i+1$ nodes remaining each with degree $\geq k$
- $\mathbb{P}\left[A_{i} \mid A_{1} \cap A_{2} \cap \ldots \cap A_{i-1}\right] \geq 1-2 /(n-i+1)$


## Correctness with low probability

## Theorem

Algorithm is correct with probability $\geq 2 / n^{2}$ and never underestimates.

## Proof.

- Min cut of the graph doesn't decrease: after $e=(x, y)$ contracted, set of possible cuts is limited to all those with $x$ and $y$ on same side
- Let $C=\left(V_{1}, V_{2}\right)$ be a specific minimum cut with $|C|=k$.
- Let $A_{i}$ be event that we don't contract edge across $C$ at step $i$.

$$
\mathbb{P}\left[\cap_{1 \leq i \leq n-2} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{n-2} \mid \cap_{1 \leq i \leq n-3} A_{i}\right]
$$

- Number of edges before $i$-th step if no edges across $C$ have been contracted so far is at least $(n-i+1) k / 2$ since there are $n-i+1$ nodes remaining each with degree $\geq k$
- $\mathbb{P}\left[A_{i} \mid A_{1} \cap A_{2} \cap \ldots \cap A_{i-1}\right] \geq 1-2 /(n-i+1)$ and so

$$
\mathbb{P}\left[\cap_{1 \leq i \leq n-2} A_{i}\right] \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \ldots\left(1-\frac{2}{3}\right)
$$

## Correctness with low probability

## Theorem

Algorithm is correct with probability $\geq 2 / n^{2}$ and never underestimates.

## Proof.

- Min cut of the graph doesn't decrease: after $e=(x, y)$ contracted, set of possible cuts is limited to all those with $x$ and $y$ on same side
- Let $C=\left(V_{1}, V_{2}\right)$ be a specific minimum cut with $|C|=k$.
- Let $A_{i}$ be event that we don't contract edge across $C$ at step $i$.

$$
\mathbb{P}\left[\cap_{1 \leq i \leq n-2} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{n-2} \mid \cap_{1 \leq i \leq n-3} A_{i}\right]
$$

- Number of edges before $i$-th step if no edges across $C$ have been contracted so far is at least $(n-i+1) k / 2$ since there are $n-i+1$ nodes remaining each with degree $\geq k$
- $\mathbb{P}\left[A_{i} \mid A_{1} \cap A_{2} \cap \ldots \cap A_{i-1}\right] \geq 1-2 /(n-i+1)$ and so

$$
\begin{aligned}
\mathbb{P}\left[\cap_{1 \leq i \leq n-2} A_{i}\right] & \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right) \ldots\left(1-\frac{2}{3}\right) \\
& =\frac{n-2}{n} \cdot \frac{n-3}{8-1} \cdot \frac{n-4}{n-2} \cdot \ldots \cdot \frac{1}{3}=\frac{2}{n(n-1)}
\end{aligned}
$$

# Min-Cut Problem: Boosting the probability 

Theorem
Repeating $\alpha n^{2} / 2$ times (with new random coin flips) and returning smallest cut is correct with probability at least $1-e^{-\alpha}$.

## Min-Cut Problem: Boosting the probability

## Theorem

Repeating $\alpha n^{2} / 2$ times (with new random coin flips) and returning smallest cut is correct with probability at least $1-e^{-\alpha}$.

Proof.

- Because each repeat is independent,

$$
\mathbb{P} \text { [always fails] }=\prod_{1 \leq i \leq \alpha n^{2} / 2} \mathbb{P}[i \text {-th try fails }] \leq\left(1-2 / n^{2}\right)^{\alpha n^{2} / 2}
$$

- Use fact $1-x \leq e^{-x}$ for $x \geq 0$ and simplify.

