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From Last Time: Quicksort

Problem: Sort an array of distinct values X = [x1, . . . , xn]

Algorithm

1. Pick a pivot x ∈ X at random from the array

2. Construct new arrays Y = [y1, . . . , yk ], Z = [z1, . . . , zn−k−1] where

y < x < z for all y ∈ Y , z ∈ Z

3. Recursively sort Y and Z to get Y ′ and Z ′

4. Return the array that concatenates Y ′, x, and Z ′

What’s the expected number of comparisons performed in this algorithm?

2/9



From Last Time: Quicksort

Problem: Sort an array of distinct values X = [x1, . . . , xn]

Algorithm

1. Pick a pivot x ∈ X at random from the array

2. Construct new arrays Y = [y1, . . . , yk ], Z = [z1, . . . , zn−k−1] where

y < x < z for all y ∈ Y , z ∈ Z

3. Recursively sort Y and Z to get Y ′ and Z ′

4. Return the array that concatenates Y ′, x, and Z ′

What’s the expected number of comparisons performed in this algorithm?

2/9



From Last Time: Quicksort

Problem: Sort an array of distinct values X = [x1, . . . , xn]

Algorithm

1. Pick a pivot x ∈ X at random from the array

2. Construct new arrays Y = [y1, . . . , yk ], Z = [z1, . . . , zn−k−1] where

y < x < z for all y ∈ Y , z ∈ Z

3. Recursively sort Y and Z to get Y ′ and Z ′

4. Return the array that concatenates Y ′, x, and Z ′

What’s the expected number of comparisons performed in this algorithm?

2/9



Probability two items are compared

Lemma
Let a and b be the i-th and j-th smallest element of X where i < j .

Pr[a is compared to b] =
2

j − i + 1

Proof.
1. Consider S = {x ∈ X : a ≤ x ≤ b}
2. a and b are compared iff the first pivot chosen from S is either a or b

3. Elements of S are equally likely to be chosen as a pivot, so

Pr[a is compared to b] =
2

|S |
=

2

j − i + 1
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Expected Number of Comparisons
Lemma
Expected number of comparisons performs is O(n log n).

Proof.
1. Let Zij = 1 if the i-th smallest element is compared to j-th smallest

element and Zij = 0 otherwise.

2. Number of comparisons:
∑

1≤i<j≤n Zij

3. Expected number of comparisons:

E

 ∑
1≤i<j≤n

Zij

 =
∑

1≤i<j≤n

E [Zij ] =
∑

1≤i<j≤n

2

j − i + 1
=

n∑
j=2

j∑
k=2

2

k

4. Because Hn = 1 + 1/2 + 1/3 + . . .+ 1/n = O(log n),

E

 ∑
1≤i<j≤n

Zij

 ≤ n∑
j=2

n∑
k=2

2

k
= n · O(log n) = O(n log n)
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Outline

Karger’s Randomized Min-Cut Algorithm
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Min-Cut Problem

Given an unweighted, multi-graph G = (V ,E ), we want to partition V
into V1 and V2 such that |E ∩ (V1 × V2)| is minimized.

Algorithm

I Contract a random edge e = (u, v) and remove self-loops but not
multi-edges

I Repeat until there are only 2 vertices remaining.

I Output the number of remaining edges.

Let |V | = n and |E | = m.
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Correctness with low probability
Theorem
Algorithm is correct with probability ≥ 2/n2 and never underestimates.

Proof.

I Min cut of the graph doesn’t decrease: after e = (x , y) contracted,
set of possible cuts is limited to all those with x and y on same side

I Let C = (V1,V2) be a specific minimum cut with |C | = k .

I Let Ai be event that we don’t contract edge across C at step i .

P [∩1≤i≤n−2Ai ] = P [A1]P [A2|A1] . . .P [An−2| ∩1≤i≤n−3 Ai ]

I Number of edges before i-th step if no edges across C have been
contracted so far is at least (n − i + 1)k/2 since there are n − i + 1
nodes remaining each with degree ≥ k

I P [Ai |A1 ∩ A2 ∩ . . . ∩ Ai−1] ≥ 1− 2/(n − i + 1) and so

P [∩1≤i≤n−2Ai ] ≥ (1− 2

n
)(1− 2

n − 1
)(1− 2

n − 2
) . . . (1− 2

3
)

=
n − 2

n
· n − 3

n − 1
· n − 4

n − 2
· . . . · 1

3
=

2

n(n − 1)
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Min-Cut Problem: Boosting the probability

Theorem
Repeating αn2/2 times (with new random coin flips) and returning
smallest cut is correct with probability at least 1− e−α.

Proof.
I Because each repeat is independent,

P [always fails] =
∏

1≤i≤αn2/2

P [i-th try fails] ≤ (1− 2/n2)αn
2/2

I Use fact 1− x ≤ e−x for x ≥ 0 and simplify.
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