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What's the expected number of comparisons performed in this algorithm?
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Expected Number of Comparisons

Lemma
Expected number of comparisons performs is O(nlog n).
Proof.

1. Let Zj = 1 if the i-th smallest element is compared to j-th smallest
element and Z; = 0 otherwise.

2. Number of comparisons: >, ; i<, Zj

3. Expected number of comparisons:

E ZZU:ZIE[ZU]:ZJ__I%:

1<i<j<n 1<i<j<n 1<i<j<n j=2 k=

n j

2
k
2

. Because H,=1+1/24+1/3+...4+1/n= O(logn),

E Z Z; <ZZ O(log n) = O(nlog n)

1<i<j<n Jj=2 k=2
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Outline

Karger's Randomized Min-Cut Algorithm
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Given an unweighted, multi-graph G = (V/, E), we want to partition V
into Vi and V5 such that [E N (Vi x V,)| is minimized.

Algorithm

» Contract a random edge e = (u, v) and remove self-loops but not
multi-edges

» Repeat until there are only 2 vertices remaining.

» Qutput the number of remaining edges.

Let |V|=nand |E| = m.




Example



Example




Correctness with low probability

Theorem
Algorithm is correct with probability > 2/n? and never underestimates.




Correctness with low probability

Theorem
Algorithm is correct with probability > 2/n? and never underestimates.

Proof.

» Min cut of the graph doesn't decrease: after e = (x,y) contracted,
set of possible cuts is limited to all those with x and y on same side




Correctness with low probability

Theorem
Algorithm is correct with probability > 2/n? and never underestimates.

Proof.

» Min cut of the graph doesn't decrease: after e = (x,y) contracted,
set of possible cuts is limited to all those with x and y on same side

» Let C = (V4, V) be a specific minimum cut with |C| = k.




Correctness with low probability

Theorem
Algorithm is correct with probability > 2/n? and never underestimates.

Proof.

» Min cut of the graph doesn't decrease: after e = (x,y) contracted,
set of possible cuts is limited to all those with x and y on same side

» Let C = (V4, V) be a specific minimum cut with |C| = k.
> Let A; be event that we don't contract edge across C at step i.

P[Ni<i<n—2Ai] = P[A1] P[A2]A1] .. . P[An—2| Ni<i<n—3 Al




Correctness with low probability

Theorem
Algorithm is correct with probability > 2/n? and never underestimates.

Proof.

Min cut of the graph doesn't decrease: after e = (x,y) contracted,
set of possible cuts is limited to all those with x and y on same side

Let C = (V4, V) be a specific minimum cut with |C| = k.
Let A; be event that we don’t contract edge across C at step i.

P[Ni<i<n—2Ai] = P[A1] P[A2]A1] .. . P[An—2| Ni<i<n—3 Al

Number of edges before i-th step if no edges across C have been
contracted so far is at least




Correctness with low probability

Theorem
Algorithm is correct with probability > 2/n? and never underestimates.

Proof.

Min cut of the graph doesn't decrease: after e = (x,y) contracted,
set of possible cuts is limited to all those with x and y on same side

Let C = (V4, V) be a specific minimum cut with |C| = k.

Let A; be event that we don’t contract edge across C at step i.

P[Ni<i<n—2Ai] = P[A1] P[A2]A1] .. . P[An—2| Ni<i<n—3 Al

Number of edges before i-th step if no edges across C have been
contracted so far is at least (n — i 4+ 1)k/2 since there are n — i +1
nodes remaining each with degree > k




Correctness with low probability

Theorem
Algorithm is correct with probability > 2/n? and never underestimates.

Proof.

» Min cut of the graph doesn't decrease: after e = (x,y) contracted,
set of possible cuts is limited to all those with x and y on same side

» Let C = (V4, V) be a specific minimum cut with |C| = k.

> Let A; be event that we don't contract edge across C at step i.
P[Ni<i<n—2Ai] = P[A1] P[A2]A1] .. . P[An—2| Ni<i<n—3 Al

Number of edges before i-th step if no edges across C have been
contracted so far is at least (n — i 4+ 1)k/2 since there are n — i +1
nodes remaining each with degree > k

PlA|ALNAN...NA_1]>1—2/(n—i+1)




Correctness with low probability

Theorem
Algorithm is correct with probability > 2/n? and never underestimates.

Proof.

Min cut of the graph doesn't decrease: after e = (x,y) contracted,
set of possible cuts is limited to all those with x and y on same side

Let C = (V4, V) be a specific minimum cut with |C| = k.

Let A; be event that we don’t contract edge across C at step i.
P[Ni<i<n—2Ai] = P[A1] P[A2]A1] .. . P[An—2| Ni<i<n—3 Al

Number of edges before i-th step if no edges across C have been
contracted so far is at least (n — i 4+ 1)k/2 since there are n — i +1
nodes remaining each with degree > k

> ]P’[A,-|A1ﬂA2ﬁ...ﬂA,-,1]21—2/(n—i+1) and so

2 2
(1-——)...1-3)

Plrucicn 2] > (1—2)(1-—

n n—1




Correctness with low probability

Theorem
Algorithm is correct with probability > 2/n? and never underestimates.

Proof.
Min cut of the graph doesn't decrease: after e = (x,y) contracted,
set of possible cuts is limited to all those with x and y on same side
Let C = (V4, V) be a specific minimum cut with |C| = k.
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Min-Cut Problem: Boosting the probability

Theorem

Repeating an®/2 times (with new random coin flips) and returning
smallest cut is correct with probability at least 1 — e~ <.

Proof.

» Because each repeat is independent,

Plalways fails] =[]  P[i-th try fails] < (1 —2/n?)2"/2
1<i<an?/2

> Use fact 1 — x < e ™ for x > 0 and simplify.
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